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INTRODUCTION 

Cancer is a group of diseases due to abnormal growth of 

cells, which comprise a complex environment of different 

types of malignant cells which support its growth and 

development.1,2 It is among the leading cause of death 

worldwide. Globally, 9.8 million deaths were reported in 

2018.3-5 The number of cancer deaths are expected to rise 

to 13 million by 2030.6 

In Kenya, cancer is a major health problem, it is a third 

leading cause of mortality, responsible for 7% of the 

annual deaths.7 The current treatment methods are facing 

many challenges; they are only effective at early stages, 

very expensive and resistance to the chemotherapeutic 

drugs has occurred in some cases.8-13 In addition, the 

severe side effects are not effectively mitigated. Hence 

there is an urgent need for continuous research to find 

alternative agents to fight against cancer. 

Plants have been used as sources of anticancer drugs. For 

instance, camptothecin, an alkaloid extracted from 

Camptotheca acuminata is a drug used in cancer treatment 

by Thomas et al. Other anticancer drugs derived from 

plants include but not limited to vincristine, vinblastine 

from Catharanthus roseus and taxol from Taxus 
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ABSTRACT 

 

Background: Cancer is one of the major causes of death worldwide. Current cancer therapy is costly, it has poor 

therapeutic outcomes and many side effects. Therefore, new medications are needed. Plants have been used as sources 

of anticancer drugs. Vepris species have anticancer properties. The purpose of this study is to assess Vepris nobilis, a 

plant found in Kenya as a potential source of anticancer drugs.  

Methods: The dichloromethane/methanol (CH2Cl2/MeOH) 1:1 extract of the stem bark of Vepris nobilis led to the 

isolation of an alkaloid named, 4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy)furo[2,3-b]quinolone. SwissADME 

online tool was used to assess the compound’s pharmacokinetic parameters. Pass online tool identified potential targets 

while protox server described the toxicity of the compound. Chimera and Avogadro softwares were used for molecular 

docking studies. 

Results: In-silico pharmacokinetic studies, showed that the isolated compound complied with Lipinski rule of five, it 

showed high gastrointestinal activity, and it also inhibits cytochrome P450 (CYP) isoforms 1A2, 2C9 and 2C19. In 

toxicity studies the compound was relatively safe with a predicted median lethal dose (LD50) of 1600 mg/kg, apart 

from potential immunotoxicity and mutagenicity. Molecular docking studies demonstrated that, the compound has 

potential anticancer activity, it interacted with deoxyribonucleic acid (DNA) topoisomerase I in an almost similar 

manner to camptothecin though it had less binding potential.  

Conclusions: 4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy) furo[2,3-b]quinolone derived from Vepris nobilis is 

a potential drug for the management of cancer which can be administered orally.  
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brevifolia.16 The genus Vepris is a rich source of 

furoquinoline and acridone alkaloids, which have been 

reported to have anticancer antiplasmodial, antimicrobial 

and antioxidant activities.17-20 Therefore, it was worthwhile 

to isolate the secondary metabolites of this genus. 

Drug discovery is very expensive and requires a lot of 

time. However, in silico drug discovery is cheaper and not 

as time-consuming as conventional methods of drug 

discovery like in vitro and in vivo studies. In silico drug 

discovery involves use of softwares and databases to assist 

in discovery and development of drugs. It facilitates 

predictions of how ligands and drugs may interact with 

various targets or receptors.  

METHODS 

General 

The 1H (200, 600 MHz) and 13C (50, 150 MHz) were 

acquired using Varian-Mercury and Bruker instrument 

using residual solvent signals as reference. Column 

chromatography was on normal silica gel 60G (Merck, 70-

230 mesh) and Sephadex LH-20. Analytical thin layer 

chromatography (TLC) using silica gel 60 F254 (Merck) 

pre-coated plates were used to monitor the separation of 

compounds. For qualitative work, the TLC plates were 

visualized under ultraviolet (254 and 366 nm) light, 

exposure to iodine (I2) vapor or spraying with Dragendorff 

reagent. 

Plant material  

The stem bark of Vepris nobilis was collected from 

Kakamega forest, Kenya, in July 2010. The plant was 

identified at the University Herbarium, School of 

Biological Sciences, University of Nairobi. 

Extraction and isolation  

The dried and ground stem bark (3.2 kg) of Vepris nobilis 

was extracted thrice using dichloromethane/methanol 

(CH2Cl2/MeOH) 1:1 by cold percolation. The crude 

extract (80 g) was subjected to column chromatography on 

silica gel (600 g). Gradient elution with n-hexane 

containing increasing amount of ethyl acetate and finally 

washed with MeOH afforded twenty major fractions 

(labeled A-T). Fraction M (eluted with 55% CH2Cl2 in n-

hexane) was used to obtain compound 1 (24 mg) as 

colourless solids, after further purification on a silica gel 

(50 g) column with n-hexane containing increasing 

amounts of CH2Cl2 (1 to 99% v/v). 

In-silico pharmacokinetic analysis 

SwissADME online tool (http://www.swissadme.ch/) was 

used to predict the pharmacokinetic profile of 4,6-

dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy)furo [2,3 

b]quinolone.23 Canonical SMILES of the compound were 

uploaded to the SwissADME tool which predicts and 

evaluates medicinal chemistry likeness, drug-likeness and 

pharmacokinetic properties.  

In-silico toxicity prediction 

Canonical SMILES of 4,6-dimethoxy-7-((3-methylbuta-

1,3-dien-1-yl)oxy)furo[2,3-b]quinoline were uploaded to 

the ProTox server (http://tox.charite.de/protox_II/) which 

was used to predict the toxicity profile including 

hepatotoxicity, cytotoxicity, mutagenicity, 

immunotoxicity, carcinogenicity, toxicological pathways 

and toxicity targets.24  

Determination of potential targets 

Using the pass online website, potential targets for 4,6-

dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy)furo[2,3-

b]quinolone were identified.25 

Molecular docking 

4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy)furo 

[2,3-b]quinolone was drawn using pubchem sketcher. A 

molfile of the compound was downloaded and converted 

to 3-D using Avogadro software.26 Optimisation of the 

chemical structure to the most stable conformation was 

done using the Avogadro software. Based on the pass 

online results, the compound had antineoplasic activity 

and targeted beta-glucurunidase. Anticancer that are also 

affected by beta glucuronidase are the topoisomerase 

inhibitors. Therefore, DNA topoisomerase (PDB 

ID:1A36) was downloaded from the protein databank. 

Residues were removed from the DNA topoisomerase 

enzyme using the chimera software.27 Molecular docking 

between DNA topoisomerase enzyme and 4,6-dimethoxy-

7-((3-methylbuta-1,3-dien-1-yl) oxy)furo[2,3-b]quinolone 

was done using autodock vina feature in chimera software. 

The binding energies were compared with the binding 

between campotothecin and DNA topoisomerase. Ligand-

receptor interactions were observed using Discovery 

studio software. 

RESULTS 

Compound 1 was isolated as yellow oil with retention 

factor (Rf) value of 0.5 (1% MeOH in CH2Cl2). The spot 

turned orange when sprayed with Dragendorff reagent 

which is an indication of an alkaloid. The 1H NMR 

spectrum revealed the presence of a pair of AB doublets 

corresponding to the two furan protons (H-2 and H-3) of 

furoquinoline alkaloids along with a downfield shifted 

methoxyl which is also characteristic of a methoxyl group 

at C-4 for furoquinoline alkaloids.28 The 1H NMR 

spectrum further showed a second methoxyl group 

resonating at δH 4.02, with corresponding carbon 

resonating at δC 56.1. 

The presence of two singlet aromatic protons at 7.52 (H-5, 

δC 104.6) and 7.32 (H-8, δC 101.2) is consistent with C-6 

and C-7 substituted c ring. One of these substituents being 
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methoxyl (δH 4.02, δC 56.1) groups and was placed at C-

6 based on Nodiff experiment. Irradiation of methoxyl at 

C-4 showed interaction with H-3 and H-5, and irradiation 

of the methoxyl group resonating at δH 4.02 ppm (6-OMe) 

showed interaction with H-5. 

The substituent at C-7 is 3-methylbut-1,3-dienyloxy, as 

evidenced by the presence in the 1H NMR spectrum of a 

pair of doublets resonating at δH 6.85 (J=12.2 Hz, for H-

1’), and 6.32 (J=12.2 Hz, H-2’), terminal methylene 

protons resonating at δH 4.94 (1H, Br S) and 4.89 (1H, Br 

S), and a methyl group at δH 1.91 for Me-5. The 

corresponding carbon atoms of this group appeared at δC 

142.3 (C-1’), 115.3 (C-2’), 114.5 (C-3’), 118.9 (C-4’) and 

18.9 (C-5’). Therefore this compound was characterized as 

7-(3-methylbuta-1,3-dienylloxy)-4, 6-dimethoxyfuro [2,3-

b]quinolone. 

Pharmacokinetics 

Based on SwissADME, 4,6-dimethoxy-7-((3-methylbuta-

1,3-dien-1-yl)oxy)furo[2,3-b]quinolone has high 

gastrointestinal activity, it crosses the blood brain barrier 

and inhibits cytochrome P450 (CYP) isoforms 1A2, 2C9 

and 2C19. In terms of Pan-assay interefence compounds 

(PAINS) alert, it had no alert. The compound has a 

molecular weight of 311.33 g/mol, partition coefficient 

(log P) of 3.76, 0 hydrogen bond donors and 5 hydrogen 

bond acceptors. The bioavailability score was 0.55. 

Toxicity 

The predicted median lethal dose (LD50) for 4,6-

dimethoxy-7-((3-methylbuta-1,3-dien-1-yl) oxy) furo[2,3-

b] quinolone was 1600 mg/kg which indicates that the 

compound is in toxicity class 4 (LD50 between 300 and 

2000). Assessment of organ toxicity, toxicity end points, 

toxicological pathways and toxicity targets indicated that 

the compound can cause immunotoxicity and 

mutagenicity. 

Potential targets 

Based on Pass online website, the major potential actions 

of 4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy) 

furo[2,3-b]quinolone were antineoplastic activity, beta 

glucuronidase inhibitor and gluconate-2-dehydrogenase 

inhibitor. 

Molecular docking 

4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy)furo 

[2,3-b]quinolone bound to DNA topoisomerase I as shown 

in Figure 1. However, the binding energies were less 

optimal compared to the binding energies of camptothecin 

and DNA topoisomerase I. The compound intercalated 

with the DNA of the topoisomerase enzyme. 

The compound interacted with DNA topoisomerase via pi-

cation interactions with lysine at position 493, hydrogen 

bond with threonine at position 501, alkyl interactions with 

alanine at position 499, arginine at position 364, lysine at 

position 493 and position 532. More interactions are 

shown in Figure 2.  

 

Figure 1: 4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-

yl) oxy)furo[2,3-b]quinolone bound to DNA 

topoisomerase I. 

 

Figure 2: Interactions between DNA topoisomerase I 

with 4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-

yl)oxy)furo[2,3-b] quinolone.  

DISCUSSION 

4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy)furo 

[2,3-b]quinolone lacks any PAINS alert and thus is a very 

good lead compound to be developed to a drug.29,30 This 
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compound complies with rules of drug likeness proposed 

by Lipinski which recommended that a potentially orally 

active drug has a molecular weight of less than or equal to 

500, a log P of less than or equal to 5, less than or equal to 

10 hydrogen acceptors and less than or equal to 5 hydrogen 

bonds.31 It also complied to Veber’s rules on drug likeness 

which recommended less than or equal to 10 rotatable 

bonds and less than or equal to 140 angstroms in terms of 

polar surface area.32 The compound also has high 

gastrointestinal activity. This indicates that the compound 

is a potential drug that can be administered orally. 

The compound inhibits cytochrome P450 isoform 1A2 and 

thus may affect metabolism of caffeine, clozapine, 

olanzapine, lidocaine, ropivacaine, melatonin, tacrine, 

tizanidine, triamterene, zolmitriptan and frovatriptan.33 It 

also inhibits CYP2C9 which is critical in metabolism of 

warfarin, phenytoin, tolbutamide, some non-steroidal anti-

inflammatory drugs, losartan, candesartan, 

cyclophosphamide, zafirlukast and other drugs.34 It also 

inhibits CYP2C19 and thus affects metabolism of 

carisoprodol, omeprazole, pantoprazole, lansoprazole, 

moclobemide, diazepam, mephenytoin, mephobarbital and 

hexobarbital.35 Therefore, this compound has many drug-

drug interactions and cost versus benefit analysis should 

be done for patients with several comorbidities. 

This compound is generally safe since it does not affect 

toxicological pathways, toxicity targets and 

hepatotoxicity. However, it causes immunotoxocity and 

mutagenicity. A number of anticancer drugs like 

doxorubicin, cyclophosphamide, busulphan and 

mercaptopurine are also mutagenic.36 This still indicates 

the potential of this compound as an anticancer agent. 

4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy)furo 

[2,3-b]quinolone intercalates the DNA in a similar manner 

to camptothecin. It also interacts with arginine amino acid 

at position 364 similar to camptothecin. However, 

camptothecin also interacts with aspartate at position 533 

and asparagine at position 722 unlike this compound.37,38 

Therefore, camptothecin has better binding capacity to 

DNA topoisomerase I compared to 4,6-dimethoxy-7-((3-

methylbuta-1,3-dien-1-yl)oxy)furo[2,3-b]quinolone. 

However, it can still interact with DNA topoisomerase I 

and thus has potential in management of cancer.  

CONCLUSION 

4,6-dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy)furo 

[2,3-b]quinolone derived from Vepris nobilis is a potential 

drug for the management of cancer which can be 

administered orally. However, it has many drug-drug 

interactions. 

Recommendations 

In vitro and in vivo studies are needed to test 4,6-

dimethoxy-7-((3-methylbuta-1,3-dien-1-yl)oxy)furo[2,3-

b] quinolone for management of cancer.  
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