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INTRODUCTION 

In recent years, there has been a growing of interest, 

supported by a number of studies on the understanding of 

how phytochemicals influence the prevention and/or 

treatment of diverse chronic diseases. Despite prominent 

progress in our understanding of the carcinogenic 

process, the mechanisms of action of most 

chemopreventive phytochemicals have not been entirely 

explained. A number of dietary compounds have been 

identified as prospective chemopreventive agents. Several 

vegetables and fruits including; broccoli, blueberries and 

cacao beans, are among the most protective specifically 

due to an excess of active molecules such as 

isothiocyanates, polyphenols, and flavonoids. Together, 

these naturally occurring molecules are known as 

phytochemicals.
1
 Upon entering cells, these 

phytochemicals can directly scavenge free radicals and 

can also provoke electrophilic stress signals that trigger 

proteins linked to diverse cellular signaling pathways.
2
 

This capability involves the activation of Nrf2/Keap1 

complex. Nrf2 has emerged as a transcription factor that 

plays an important part in the maintenance of cellular 

homeostasis.
3
 Activation of the Nrf2/Keap1 complex 

results in the induction of cellular defence mechanisms, 

including phase II detoxifying enzymes and other stress 

defence molecules that preserve normal cells from 

reactive oxygen species (ROS) and/or reactive nitrogen 

species (RNS).
4
 Previous studies have demonstrated that 

nutritional components may modulate the Nrf2/Keap1 

complex system, it is therefore may be of significance to 

elucidate the useful effects of this system in numerous 

chronic diseases.  

Keap1/Nrf2 SYSTEM 

The antioxidant-activated transcription factor nuclear 

factor erythroid 2-related factor 2 (Nrf2) regulates the 

induction of cytoprotective genes against chemical 

toxicity and oxidative injuries.
5
 Nrf2 belongs to the basic 

leucine zipper transcription factor family, a member of 

the cap ’n’ Collar family of regulatory proteins that also 
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includes NF-E2, Nrf1, Nrf3, Bach1, and Bach2.
6
 Under 

basal conditions, Nrf2 is sequestered in the cytoplasm by 

Keap1 protein and facilitates Nrf2 degradation via the 

proteasome system.
7
 Upon exposure to electrophilic or 

oxidative stress, Nrf2 dissociates from Keap1 and 

translocates into the nucleus, where it undergoes 

heterodimerization with sMaf protein and binds to the 

ARE sequence in the upstream promoter regions, leading 

to the induction of a diverse cytoprotective genes include: 

NAD(P)H: quinone oxidoreductase (NQO-1), 

glutathione-S-transferase (GST), glutamate cysteine 

ligase (GCL), heme oxygenase-1 (HO-1), etc.
8
 This Nrf2-

ARE binding complex seems to be the main mechanism 

for the defence strategy of the cells against oxidative 

stress, by inducing proteins that are involved in 

antioxidative responses as well as by elimination of 

electrophiles through conjugation by induction of 

detoxifying enzymes.
9
 Moreover, Nrf2-null mice lack this 

co-ordinated genetic programme, and are susceptible to 

diverse oxidative stress-related diseases, including 

chemical carcinogenesis, acetaminophen toxicity, and 

diesel-exhaust induced DNA damage.
10 

 

Based upon the homology of cross-species orthologous, 

six highly conserved functional domains were identified 

in the primary structure of Nrf2, known as Nrf2-ECH 

homology (Neh) domains, Neh1 to Neh6.
5
 Neh1 domain 

has a CNC basic leucine zipper domain which is required 

for its ability to dimerize with other b-Zip proteins and to 

bind DNA as a heterodimer.
11

 Neh2 consists of the 

amino-terminal region of the Nrf2 and serve as a negative 

regulator of Nrf2.
12

 Neh3 domain located at the C-

terminal end of the protein and required for the 

transcriptional activation of Nrf2.
13

 Both Neh4 and Neh5 

are transactivation domains, interact with the cAMP 

response element-binding protein (CREB)-binding 

protein (CBP) to regulate the start of transcription.
14

 

Neh6 domain, in turn, contributes to redox-independent 

negative control of Nrf2.
12 

 

It has been elucidated that Nrf2 through its Neh2 domain 

interacts with the cytosolic protein Keap1, also known as 

inhibitor of Nrf2 (INrf2), and negatively controls Nrf2 

function. The Keap1 protein consists of 624 amino acids 

and structurally related to Drosophila actin-binding 

protein Kelch.
5
 Keap1 is composed of five major 

domains: an N-terminal region (NTR), broad complex, 

tramtrack, and bric-a-brac domain (BTB), a cysteine-rich 

intervening region (IVR), the double glycine repeat 

region (DGR) or Kelch domain, and a C terminal Kelch 

region (CTR). Keap1 forms a homodimer and each dimer 

binds one molecule of Nrf2  by its two Kelch domains, 

with one high affinity binding site (ETGF motif) and one 

weak affinity binding site (DLG motif). Both motifs are 

located in the Neh2 domain of Nrf2.
15

 The ETGF motif 

has a higher affinity for Keap1 than the DLG motif and 

this is the so-called ‘‘hinge-and-latch’’ model.
16

 In 

overall, ubiquitination of Nrf2 either by Keap1 dependent 

or independent means is an essential mechanism to 

suppress Nrf2. Activation of Nrf2 is started by the 

dissociation of Nrf2 from Keap1, preventing its 

ubiquitination, and allowing its translocation into the 

nucleus. Through its control by multiple kinases and 

proteins, Nrf2 eventually binds with ARE and triggers 

phase II detoxification enzymes and antioxidants.
17

 

BIOLOGICALLY ACTIVE FOOD COMPONENTS 

AND Nrf2 

Keap1, which regulates Nrf2 activity, is structurally 

designed to respond to oxidants and electrophiles.
18

 The 

high cysteine content of Keap1 suggested that cysteine 

residues would be an excellent candidate as the sensor for 

inducers. Hence, chemical inducers are able to modifying 

cysteine residues, they are likely also able to be 

activators/inducers of Nrf2.
18

 Following Nrf2 activation, 

induction of phase II and antioxidative enzymes, 

especially GST, NQO1, and elevated glutathione levels 

are characteristic cellular events.
19

 Activation of Nrf2 

signalling by specific chemicals can be considered as one 

of efficient ways for prevention of oxidative stresses. 

Nrf2-activating chemicals that induce ARE downstream 

genes have been categorized as cytoprotective agents. 

These include phenolic antioxidants (e.g. butylated 

hydroxyanisole), isothiocyanates (sulforaphane from 

broccoli), derivatives of 1,2-dithiole-3-thiones (oltipraz, 

3H-1,2-dithiol-3-thione, D3T), derivatives of polyphenols 

(e.g. Resveratrol), turmeric compounds (Curcumin), and 

many others.
20,21

 Researchers routinely use these 

compounds to identify Nrf2-inducible genes.  

Butylated hydroxylanisole (BHA) 

BHA is a synthetic phenolic antioxidant that is widely 

utilized as a food additive, due to its chain-breaking 

action during the autooxidation of lipid, and probably 

present in nearly all food preservatives.
23

 In addition to 

its ability to inhibit lipid peroxidation, BHA displays a 

number of interesting and potentially important biological 

activities.
24

 Dietary administration of BHA has been 

suggested to provide protection against chemical 

carcinogens,
25

 possibly due to its ability to induce phase 

II detoxifying enzymes including; epoxide hydrolases 

(EH), UDP-glucuronosyltransferase (UGT), NQO-1 and  

GST.
26,27

 Moreover, the ability of BHA to inhibit 

cytochrome p450 and monooxygenases that activate 

carcinogens has also been attributed to this effect.
28

 In 

addition to the anticarcinogenic effects of BHA, several 

reports have established that BHA may also be a tumor 

initiator in some tissues of animals. For instance, BHA 

has been found to be carcinogenic to the forestomachs of 

rats, mice, and hamsters when fed constantly at high 

concentrations.
29,30

 Both of anti-carcinogenic and 

carcinogenic effects of BHA are well described, and has 

been suggest to be dose- and/or tissue-dependent.
23

 

Studies on the metabolism of BHA describes several 

metabolic processes presumably occur, including 

dimerization, conjugation, and O-demethylation.
31

 Tert-

butylhydroquinone (tBHQ), one of the main metabolites 

of BHA, has been identified to exert anti-carcinogenic 
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activities in some animal models of cancer in a similar 

way that displayed by BHA. This implicates modulation 

of enzymes responsible for metabolic activation or 

deactivation of carcinogenic compounds.
32

 Therefore, 

metabolic formation of tBHQ is suggested to contribute 

to the anticarcinogenic properties of BHA.
23

 

Sulforaphane (1-isothiocyanato-4-methylsulfinylbutane, 

SFN) 

SFN is a naturally occurring isothiocyanate that has been 

isolated from broccoli as the main phase II enzyme 

induce found in organic solvent extracts of this vegetable. 

SFN has captured researchers’ attention as a favourable 

cancer chemopreventive agent.
33

 In many studies, 

sulforaphane can reduce the incidence of a various forms 

of tumor.
34

 It has been suggested that the main 

mechanisms of chemoprotection by isothiocyanates 

depend on the modulation of carcinogen metabolism by 

inhibition of metabolic activation of phase I enzymes and 

the induction of phase II detoxification enzymes.
35,36

 In 

fact, reporters from molecular studies have revealed that 

isothiocyanates can induce phase II enzymes by 

catalysing the transcription of their genes via a common 

antioxidant and/or electrophile promoter element placed 

in the upstream regulatory region of diverse phase II 

enzyme genes for example by activation of Nrf2 and 

inhibition of nuclear factor-κB (NF-κB).
37,38

 Moreover, 

sulforaphane increased mRNA and protein expressions of 

Nrf2 and its downstream target gene NQO-1 in in-vitro 

experiments.
39

 A number of studies have revealed the 

mechanism of Nrf2 activation by SFN to involve 

disturbed Keap1 interactions due to alterations in critical 

Keap1 cysteine residues.
40

 The interaction of SFN with 

Keap1 causes the nuclear build-up of Nrf2 and the 

activation of its transcriptional machinery. Likewise, SFN 

may impact the activity of a diverse intracellular kinases 

to phosphorylate Nrf2 proteins, by involving in 

nucleocytoplasmic pathway of Nrf2 or modulation of 

Nrf2 protein stability.
41,42

 Further, a variety of other 

independent mechanisms have been suggested to play a 

powerful role in the prevention of cancer growth by 

isothiocyanates such as; the activation of c-Jun NH2-

terminal kinase,
36

 and extracellular signal-regulated 

kinase-1/2.
43 

Isothiocyanates could also work at the DNA 

level or impact signal transduction pathways leading to 

cell cycle arrest.
44

 

Dithiolethiones (3H-1,2-dithiole-3-thiones) 

Dithiolethiones including 3H-1,2-dithiole-3-thione 

(D3T), 4-methyl-5-pyrazinyl- 3H-1,2-dithiole-3-thione 

(OLT) and 5-tert-butyl-3H-1,2-dithiole- 3-thione (TBD) 

are class of organosulfur compounds exhibiting cancer 

chemopreventive activity in many target organs. These 

chemical compounds are known to activate the 

transcription factor Nrf2.
45

 Administration of sulfhydryl 

reactive compounds such as D3T abolishes Keap1 

suppression of Nrf2 activity, allowing the translocation 

and accumulation of Nrf2 in the nucleus.
46

 The 

modification of protein thiol residues on Keap1 by 

dithiolethiones appear to be the most possible mechanism 

by which dithiolethiones activate Keap1/Nrf2 system. 

Moreover, the reaction of thiols with dithiolethiones 

results in generation of reactive oxygen species, which 

have the possibility to alter cysteine residues on Keap1.
47

 

Oltipraz, one of dithiolethiones, was primarily developed 

for the treatment of schistosomiasis and has been 

identified as an effective chemopreventive agent in 

various rodent organs such as the pancreas, lung, 

stomach, bladder, colon, kidney, trachea liver, mammary 

gland and skin.
48

 It has also been demonstrated that 

oltipraz is effective against wide range of carcinogen, 

some of which are popular human carcinogens, e.g. 

aflatoxin B1 (AFB1), benzo[a]pyrene, and 2-amino-1-

methyl-6-phenylimidazo[4,5]pyridine.
45

 

Resveratrol (3, 5, 4’-trihydroxystilbene)  

Resveratrol is a type of plant compounds called non-

flavonoid polyphenols found in peanuts, grapes, and red 

wines.
49

 Resveratrol thought to has antioxidant activity, 

which depends on the redox activities of phenolic 

hydroxyl groups, protecting the body against many 

conditions such as cancer and heart diseases.
50

 

Researchers reported that the antioxidant activity of 

resveratrol are mediated by the induction of phase II 

detoxification enzymes via Nrf2 including; NQO-1, GST, 

and superoxide dismutase (SOD), etc.
51

 Corroborating 

these findings, Palsamy et al. also demonstrated that 

resveratrol treatment of diabetic rats normalized the renal 

expression of Nrf2/Keap1 and increased SOD, GST, 

glutathione peroxidase (GPx), glutathione reductase (GR) 

and catalase activities.
52

 A number of studies have shown 

that resveratrol can modulate several pathways involved 

in cell cycle growth and apoptosis.
53

 Resveratrol gained 

enormous significance as it possesses cancer protective as 

well as anticancer activities in diverse biological 

systems.
54

 In animal studies, administration of resveratrol 

results in prevents the development of skin,
55 

mammary,
56 

prostate tumours,
57

 as well as suppresses tumorigenesis in 

the stomach,
58

 colon,
59

 and liver.
60

 Several mechanisms 

may account for the cancer preventive effect of 

resveratrol including inhibition of free radical formation 

and activities of cyclooxygenase (COX), 

hydroperoxidase, inducible nitric oxide synthase, 

cytochrome P-450 and protein kinase C, regulation of 

growth factors and matrix metalloproteins.
61 

These 

multiple mechanisms participate to the comprehensive 

influence of resveratrol’s effects against cancer cells.
62

 

Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-

heptadiene-3,5-dione)  

Curcumin is the main active component of turmeric, a 

yellow compound isolated from the rhizomes of Curcuma 

longa, distributed mainly throughout tropical and 

subtropical regions of the world, and has been used for 

thousands of years in traditional medicines.
63

 Curcumin 

exhibit various important activities such as anti-
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inflammatory, antioxidant, and chemopreventive 

activities. All of these activities are thought to be 

mediated through its regulation of many transcription 

factors, growth factors, inflammatory cytokines, protein 

kinases, and other enzymes.
64

 Curcumin shows both 

direct and indirect antioxidant activities by scavenging 

reactive oxygen species and inducing the expression of 

cytoprotective proteins in an Nrf2-dependent way.
65,66

 In 

a study by Garg et al., dietary administration of curcumin 

in mice raised nuclear Nrf2, ARE binding activity, and 

target gene expression in the liver and lungs.
67 

Moreover, 

administration of curcumin has been found to increase 

expression of the xenobiotic detoxifying enzymes in both 

liver and kidney of mice.
68

 

Vitamin E  

Vitamin E is well known for its strong antioxidant 

activity and has been suggested as the most important 

lipid soluble antioxidant in humans.
69 

Vitamin E represent 

eight different isomers that belong to two classes; 

tocopherols (TP) and tocotrienols (T3).
70

 The α-

tocopherol is the main form in the human body, and it is a 

famous antioxidant compound that inhibits lipid 

peroxidation and other free radical-mediated reactions in 

biological systems.
71

 However, tocotrienols have been 

suggested to possess superior antioxidant activity 

compared to tocopherols at preventing cardiovascular 

diseases and cancers.
72,73

 The consumption of vitamin E 

for prevention and treatment of human diseases is well 

documented. Numerous studies revealed that vitamin E 

exhibited chemopreventive activity. For instance, Barve 

et al. studied the effects of a diet contain a mix of γ-

tocopherol and α-tocopherol on prostate carcinogenesis in 

a murine model of prostate cancer, and they found that 

Nrf2 was significantly upregulated following treatment.
74

 

Hsieh et al. demonstrated the ability of tocotrienol to 

induce Nrf2 expression, as evidenced by decrease in 

Keap1 levels in estrogen receptor-negative MDA-MB-

231 cells but not in estrogen receptor-positive MCF-7 

cells. Tocotrienols represent distinguished and selective 

activity in controlling the Nrf2-Keap1 system, in 

coordination with the induced expression of genes that 

modulate cytoprotective oxidative stress and regulation of 

proliferation in breast cancer cells.
75

 Moreover, 

tocotrienols was found to induce various Nrf2 regulated 

enzymes such as γ-glutamyltransferase (GGT), UDP-

Glucuronyltranferase (UDP-GT) and GST.
76,77

 Although 

tocopherol have been found to increases the expression of 

Nrf2, a recent study conducted by Li et al. elucidated that 

the antioxidant activity of the tocopherols in mice are 

independent of the Nrf2 pathway using Nrf2-knockout 

mice.
78 

Therefore, more studies are needed to confirm the 

activity of vitamin E on Nrf2 gene expression. 

CONCLUSION 

As discussed above, a compelling data demonstrating the 

transcription of Nrf2 is influenced by nutritional 

compounds. Most of the dietary component evaluated 

above shows protective effect against many diseases by 

modulation of the Nrf2/Keap1 system leading to 

coordinated up-regulation of ARE driven detoxification 

enzymes. Taking together all the studies that have been 

discussed in this review, it is not yet possible to provide 

safe and efficient doses for supplementation since most 

studies are performed in in-vitro or in animals and it is 

unclear how far these doses can be extrapolated to be 

influential in humans. 
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