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Abstract: In this paper, we show how light absorption in a plasmonic
grating nanosurface can be calculated by means of a simple, analytical
model based on a transmission line equivalent circuit. The nanosurface
is a one-dimensional grating etched into a silver metal film covered by a
silicon slab. The transmission line model is specified for both transverse
electric and transverse magnetic polarizations of the incident light, and it
incorporates the effect of the plasmonic modes diffracted by the ridges
of the grating. Under the assumption that the adjacent ridges are weakly
interacting in terms of diffracted waves, we show that the approximate,
closed form expression for the reflection coefficient at the air-silicon
interface can be used to evaluate light absorption of the solar cell. The
weak-coupling assumption is valid if the grating structure is not closely
packed and the excitation direction is close to normal incidence. Also, we
show the utility of the circuit theory for understanding how the peaks in
the absorption coefficient are related to the resonances of the equivalent
transmission model and how this can help in designing more efficient
structures.
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1. Introduction

Light trapping is an optical phenomenon that many photovoltaic cells employ to increase per-
formance. The design and fabrication of novel optical components that can improve light trap-
ping capability is essential to achieve higher efficiencies in photovoltaic devices [1]. In recent
years, researchers have investigated several architectures to accomplish this goal including the
use of different semiconductor materials, such as cadmium telluride and copper indium gal-
lium arsenide, which have produced record efficiencies [2, 3]. Unfortunately, these materials
are scarce in nature; thus, the dominant commercial solar material, silicon (Si), is still most rel-
evant. Silicon is a weak absorber in much of the optical regime, requiring at least 200−300μm
of material thickness to completely absorb incident sunlight [4, 5]. For crystalline Si, 50% of
the cell cost is due to the cost of material itself [4], which suggests the film could be made
thinner to substantially decrease cost. However, the energy trapped and converted into pho-
tocurrent is in fact proportional to the number of cavity modes supported by the semiconductor
film [6, 7]. As a general guideline, the higher the number of modes, the higher the absorption
of the incident light in the semiconductor. The number of modes is dictated primarily by the
thickness of the semiconductor layer. In particular, the number of modes supported increases
with the thickness of the film, which implies higher material costs. Also, for thick films, due to
the long path length of the photonic modes, the electron-hole recombination rate increases [3].
As a consequence, the photocurrent available for conversion decreases, diminishing the solar
cell efficiency. For these reasons, the tradeoff between keeping the cost of semiconductors low
and providing a high degree of absorption must be achieved in a different way.

The recent trend in photovoltaics is to fabricate solar cells with a thin semiconductor film [8],
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and, at the same time, to increase the optical path length by increasing the light scattering pro-
cess inside the semiconductor. Incorporation of plasmonic nanostructures into photovoltaic de-
vices has been demonstrated as a viable pathway to achieve these goals [1,7,9]. One of the most
common plasmonic structures employed to reduce the physical thickness of the film material is
a 1-D corrugated metallic film on the back surface of a thin photovoltaic absorber layer. This
grating structure can couple sunlight into Surface Plasmon Polariton (SPP) modes supported at
the metal-semiconductor interface as well as into cavity modes in the semiconductor slab (also
called photonic or guided modes). This structure has been investigated previously using numer-
ical methods [10–12], namely Finite Difference Time Domain [13], Finite Integration Tech-
niques [14], and semi-analytical methods based on Rigorous Coupled Wave Analysis [15–17]
and Modal Transmission Line theory [18]. Recently, researchers have also developed analytical
methods [19–21] to analyze different aspects of the light trapping mechanism supported by a
corrugated metallic film. In Ref. [20] for example, the authors develop a statistical temporal
coupled mode theory formalism to study the limit of absorption for grating structures. An in-
teresting simplified three-dimensional model is presented in Ref. [21], based on the theory of
periodic radiation arrays and applied to one- and two-dimensional diffraction gratings. The au-
thors apply the approximated model to investigate the scattering direction and the path length
enhancement in diffraction gratings.

In the framework of the analytical methods, we show in this paper how a simple transmission
line equivalent circuit theory [22] can be applied to calculate the absorption coefficient of the
solar cell. The transmission line model is characterized for both polarizations of the incident
light, transverse electric (TE) and transverse magnetic (TM). We consider a grating structure
composed of a Si film that covers a silver (Ag), 1-D corrugated back surface. We show that
if the adjacent ridges of the grating are not strongly coupled, the approximate, closed form
expression for the reflection coefficient at the air-Si interface can be used to evaluate the light
absorption of the solar cell. The weak-coupling assumption is valid if the grating structure is
not closely packed and if the impinging light is arriving from a direction close to normal inci-
dence. Even with these constraints, the circuit theory results are useful to understand how the
peaks in the absorption coefficient are related to the resonances of the equivalent transmission
model. In fact, we show that the maximum absorption occurs when the equivalent impedance
at the air-Si interface acts as on open circuit condition, which from the electromagnetic point
of view is equivalent to a perfect magnetic conductor (PMC) condition. Under this condition,
the tangential component of the electric field is maximum, thus justifying the maximum of ab-
sorption within the Si slab. The specific condition is dictated by the cavity mode resonances
and by their interaction with both diffraction and plasmonic modes. This information can be
used to design efficient grating nanosurfaces with multiple open circuit conditions or broader
bandwidth resonances by optimizing the equivalent impedance retrieved at the interface.

The paper is organized as follows. In Section 2, we apply the transmission line model to
the simple case of a flat, Ag-Si cell and demonstrate how to calculate the absorption through
the circuit theory. Also, we show the dispersion diagram of the solar cell, obtained by means
of the relevant Green’s function, emphasizing the number of cavity (photonic) modes and the
TM-plasmonic mode. In Section 3, we apply the same model to the 1-D grating nanosurface,
characterizing both TE and TM polarization. We show how to modify the model by applying
the circuit theory based on the conservation of the tangential components of the electromagnetic
field at the junction between the ridge zone and the flat zone of the grating. This leads to a shunt
connection for TE fields and to a series connection for TM fields. Also, we demonstrate how
to include an extra load in the circuit, which represents the plasmonic near field accumulation
around the ridge of the grating. The absorption coefficient is calculated and compared with a
full wave simulation using CST Microwave Studio [23]. The model is also applied to the same
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structure covered by an antireflecting coating of TiO2. In Section 4, we present the absorption
enhancement with respect to a flat metallic film solar cell. In particular, we demonstrate how
the circuit theory allows us to interpret the peaks in the absorption spectrum in terms of an
equivalent open circuit condition at the air-Si interface, which can be used as a guideline to
design more efficient structures.

2. Plasmonic modes and photonic modes

We first develop the transmission line model for a single solar cell arrangement composed of
a flat, Ag film covered by a Si slab of height h, as shown in Fig. 1(a). The thickness of the
Ag film is larger than the skin depth. The optical constants of Ag and Si have been taken from
Ref. [24]. When the light strikes the solar cell, part of the energy is trapped inside the Si slab.
The number and the nature of the excited modes inside the Si slab can be calculated by means
of the spectral domain Green’s function (GF) of the structure. The GF singularities represent

Fig. 1. (a) Reference geometry for a flat metallic film solar cell. (b) Equivalent transmission
line (p=TM,TE)

the modes supported by the Si slab [22,25]. The spectral GF can be calculated in a closed form
by resorting to an equivalent transmission line model along the longitudinal direction (z), as
shown in Fig. 1(b). The transmission line source is assumed to be fed by an elementary point
source placed at the interface between air and Si (Ig in Fig. 1(b)). This spectral point source (i.e.
elementary dipole) represents the expansion of all plane waves impinging on the structure from
all possible directions [22], and additionally, it acts as the current generator of the equivalent
electric circuit. The model is valid for both TM and TE polarization by simply selecting the
correct representation of the modal impedances along the transmission line. In particular,

ZTM
X (kt) = ξX

√
k2

X − k2
t

kX
(1a)

ZTE
X (kt) = ξ0

k0√
k2

X − k2
t

(1b)

where X = 0 in air, X = Si in silicon, and X = Ag in the silver. In the above equations,
ξX = ξ0/nX represents the characteristic impedance of the material, expressed in terms of
the free space characteristic impedance ξ0 and the refractive index of the medium nX . Anal-
ogously, kX = nXk0 represents the wavenumber in the material with k0 being the free space
wavenumber. The spectral dependence is taken into account through the transverse wavenum-

ber kt =
√

k2
X − k2

zX , which is invariant along the interfaces. In fact, kt represents the component

of the incoming light wavevector that is parallel to the interface. This component is required to
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be constant according to Snell’s laws. At the air-Si interface, the equivalent impedance for both
TM and TE polarizations can be calculated as

Zp
int = Zp

Si

Zp
Ag + jZp

Si tan
(

h
√

k2
Si − k2

t

)

Zp
Si + jZp

Ag tan
(

h
√

k2
Si − k2

t

) (2)

where p =TM,TE. All the impedances in Eq. (2) are variables of kt . From hereinafter, this
dependence is considered understood and suppressed for simplicity of notation. The spectral
GF associated with the electric field can be now calculated as the equivalent voltage at the
interface where the point source is located [22]. This leads to the following implicit expression

GF p = I p
g

Zp
0 Zp

int

Zp
0 +Zp

int
(3)

where the constant Ig can be set to 1 without lack of generality. In general, Ig is proportional
to the dipole momentum Iδ , where I is current flowing in a dipole of length δ . Since we are
looking at the dispersion, the amplitude of the generator is not crucial. By inserting Eq. (2) into
Eq. (3), we then obtain

GF p =
Zp

0 Zp
Si

[
Zp

Ag + jZp
Si tan

(
h
√

k2
Si − k2

t

)]
[
Zp

Si

(
Zp

0 +Zp
Ag

)
+ j

(
Zp

0 Zp
Ag +Zp 2

Si

)
tan

(
h
√

k2
Si − k2

t

)] p = TM,TE (4)

where the formulas in Eq. (1) can be used for each impedance to obtain an explicit TM and TE
spectral GF expression.

By investigating the spectral GF, we note that the denominator of Eq. (4) shows singulari-
ties in terms of the variable kt . These singularities can be calculated by using a complex ze-
ros searching routine. In the present case, a Fortran 90 routine has been customized based on
Ref. [26]. The singularities of the spectral GF allow us to understand the typology of modes
supported by the flat metallic film solar cell. There are two main categories: cavity modes and
one SPP mode supported at the interface between the metal film and the Si slab. The cavity
modes are found by searching for the singularities for which k0 < Re{kt} < Re{kSi}, and by
adding an imaginary part that is proportional to Im{kSi} in order to account for the losses. The
starting point that we used in the present routine is kt = (Re{kSi}+ k0)/2. The SPP mode is
found by using the same zeros searching routine but by changing the starting point. In this case,
we use the value of kt associated with the solution for the ideal case of an interface between
two semi-infinite media, i.e.

kt = k0

√
εSiεAg

εSi + εAg
(5)

where εSi and εAg are the permittivities of Si and Ag, respectively. The permittivity is related
to the refractive index through the expression

√
εX = nX (X = Si,Ag).The dispersion diagram

for the geometry shown in Fig. 1 (h = 200nm) is displayed in Fig. 2. The TM and TE cavity
modes show a dispersion curve that always resides between the air-light line and the Si-light
line. Their cut-off is ruled by the intersection with the air-light line. The TM polarization also
shows one SPP mode, as expected. As is clear from Fig. 2, this mode is a cavity mode for long
wavelengths, and it does not have a cut-off. The mode becomes plasmonic when its dispersion
curve crosses the Si-light line. Its phase velocity becomes smaller than the velocity of light in
the Si, which means that it can propagate only along directions tangential to the interface while
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Fig. 2. Dispersion diagram of the flat Ag-Si solar cell. The Si slab has height h = 200nm.

attenuating in the longitudinal direction (z). Figure 2 is very useful to elucidate the number of
modes supported by the structure that are involved in the light trapping mechanism.

The overall absorption of the solar cell can be calculated as

Ap(λ ) = 1−|Γp(λ )|2 p = TM,TE (6)

where Γ(λ ) is the reflection coefficient at the air-Si interface. The transmission coefficient is
neglected because it is negligibly small for these thicknesses. The reflection coefficient can be
expressed via the equivalent impedance at the same interface as

Γp(λ ) =
Zp

int −Zp
0

Zp
int +Zp

0
p = TM,TE (7)

where Zp
0 is the TM or TE free space impedance. The calculated absorption is shown in Fig.

3(a) and compared with a full wave simulation performed using CST. The light is impinging
normally to the surface, i.e. kt = k0 sinθ = 0 (see Fig. 1), which implies that the two polar-
izations are equivalent. The structure, in fact, is totally symmetrical. The agreement between
the calculated solution from the transmission line model and the full wave result is excellent.
We also want to emphasize the spectral nature of the interface impedance, Zint , shown in Fig.
3(b). It is easy to verify that the peaks of absorption occur when the real part of the impedance
at the air-Si interface assumes large values and the imaginary part crosses the zero line. This
corresponds to an open circuit condition, which implies a peak of the voltage in the equivalent
circuit. From the electromagnetic point of view, this behavior reflects a quasi-PMC condition
at the interface, justifying a maximum in the tangential electric field, which in turn maximizes
penetration inside the Si slab. The peaks shift in the spectrum when the angle of incidence is
varied from normal, but the general concepts still hold.

3. Transmission line model of the 1-D grating nanosurface

In this section, we show how to apply the same equivalent transmission line model to a 1-D
grating nanosurface. An example of the grating nanosurface is shown in Fig. 4. The ridges have
width w, height r, and are in a periodic configuration of period d. The Si has height h. The
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Fig. 3. (a) Calculated absorption compared with a full wave CST simulation for a Si sub-
strate of height h = 200nm. The light is impinging normal to the surface, implying that the
two polarizations coincide. (b) Equivalent impedance Zint at the air-Si interface calculated
through Eq. (2).

(C) 2012 OSA 2 January 2012 / Vol. 20,  No. S1 / OPTICS EXPRESS  A147
#157235 - $15.00 USD Received 28 Oct 2011; revised 13 Dec 2011; accepted 16 Dec 2011; published 2 Jan 2012



Fig. 4. Reference geometry for the grating nanosurface

conventional TM and TE polarization reference is taken and defined with respect to the plane
crossing the grating (xz plane). The presence of the ridges introduces additional scattering inside
the Si slab, which results in an increase of the photonic and plasmonic path length. A qualitative
description of the scattering phenomena is depicted in the top of Fig. 5. The cavity modes are
primarily dictated by the reflection of the electromagnetic wave on the metal surface or the
ridges of the grating. Furthermore, because of the plasmonic nature of Ag, the light impinging
on the edges of the ridge creates an accumulation of positive and negative charge resulting in
a dipole-like behavior on each ridge, which is only present for TM polarization. If the ridges
are not closely packed, this effect is stronger than the coupling between adjacent ridges. For
TE polarization, the electric field is oriented along the edge of the ridges and does not undergo
diffraction. This behavior is clear from Fig. 5(a) and (b), where the electric field distribution is
shown for both polarizations. In the TM case, the dipole-like electric field appears around the
ridge of the grating, while in the TE case, the field distribution is affected just by the reflection
mechanism.

The above mentioned phenomena can be interpreted in terms of a transmission line model,
as was done for the flat film in Section 2. This leads to an approximate, closed form expres-
sion for the total reflection coefficient in Eq. (7), which can be used to calculate the overall
absorption from Eq. (6). Although a closed form expression of the absorption coefficient is dif-
ficult to obtain for complicated structures, this simple examination of the grating nanosurface
is insightful for understanding the basic phenomena. As a first step, we need to calculate the
interface impedance, Zint . We use an equivalent transmission line model, which is shown in Fig.
6 and 8 for TE and TM polarizations, respectively. Each unit cell of the grating nanosurface is
subdivided into two zones. At the interface between Zone 1 and Zone 2, the tangent component
of the electric or magnetic field is continuous. Depending on the polarization, we will use this
information to connect the two zones according to the circuit theory.

3.1. Transverse electric excitation

We start with the TE case for simplicity. From Zone 1, we expect to retrieve an equivalent
impedance at the interface that can be calculated as in Eq. (2), where here kt = k0 sinθ and θ
is the angle of incidence of the incoming light. We write the transmission line expression again
for convenience:

ZTE
1 = ZTE

Si

ZTE
Ag + jZTE

Si tan

(
h
√

k2
Si − k2

0 sin2 θ
)

ZTE
Si + jZTE

Ag tan

(
h
√

k2
Si − k2

0 sin2 θ
) . (8)
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Fig. 5. Qualitative depiction of the scattering process induced by the grating nanosurface
(top of the figure). Electric field distribution for normal incidence at λ = 857 nm: (a) TM
polarization; (b) TE polarization.

Fig. 6. (left) The unit cell is divided into two main zones, one relevant to the ridge and one
relevant to its complementary region. For the TE polarization, the electric field tangent to
the junction between the two regions is continuous. This implies that the electric potential
difference across the two equivalent loads retrieved at the interface is constant, and the
connection is in parallel. (right) TE circuit. The equivalent impedance ZTE

int at the interface
can be calculated by means of two equivalent admittances at the air-Si interface in a shunt
connection weighted by the unit cell filling factors.
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For Zone 2, we calculate an equivalent impedance ZTE
2 analogous to ZTE

1 in Eq. (8), but where
the Ag load impedance, ZTE

Ag , is moved to the interface by the distance h− r instead of h. For
TE polarization, at the junction between Zone 1 and Zone 2, the tangent electric field (tangent
to the plane separating the two zones) is always continuous for any angle of incidence (see
Fig 6). From a circuit theory point of view, this means that the electric potential difference at
the nodes of the two impedances is constant, and the connection between the two loads is then
a shunt connection. When dealing with shunt connections, it is easier to express the loads in
terms of admittances Y TE

1,2 = 1/ZTE
1,2 , since the total admittance is simply the sum of the two. To

take into account the actual size of Zone 1 and 2 with respect to the unit cell, we weight the
two admittances according to unit cell filling factors. In particular, YTE

1 is weighted by a factor
f1 = w/d and Y TE

2 by f2 = (d −w)/d. Thus, the equivalent interface impedance to be used in
Eq. (7) can be written as

ZTE
int =

1
Y TE

1 f1 +Y TE
2 f2

(9)

and the absorption can be calculated using Eq. (6). The result for normal incidence (θ = 0) is
shown in Fig. 7(a) (red line) along with the full wave CST simulation of the grating nanosurface.
The agreement is good overall except for some small discrepancies, which are likely due to
higher order effects that are not considered in the model.

3.2. Transverse magnetic excitation

As was done for the TE case, we calculate the equivalent impedance at the air-Si interface from
Zone 1 and Zone 2. For Zone 1, we rewrite the Ag load impedance, ZTM

Ag , at the interface using
the usual transmission line formula (Eq. (8)) applied for TM polarization

ZTM
1 = ZTM

Si

ZTM
Ag + jZTM

Si tan

(
h
√

k2
Si − k2

0 sin2 θ
)

ZTM
Si + jZTM

Ag tan

(
h
√

k2
Si − k2

0 sin2 θ
) . (10)

For Zone 2, we need to consider two different phenomena. As for Zone 1, there is a Ag load
impedance ZTM

Ag ; however, we must also account for the extra dipole-like contribution due to the
TM field diffraction. The latter is dominated by positive and negative charge accumulation at
the edge of the ridge, which can be represented as an extra capacitive load in a shunt connection
with the Ag load as shown in Fig. 8. We approximate the capacitive impedance associated with
this charge accumulation, ZC, as the series of a capacitance and a resistance (Si has losses)

ZC =
1

jωC
+RC, (11)

with C = Re(εSi)w and RC = Im(εSi)w. Then, the impedance ZTM
2 is calculated as the parallel

of ZC and ZTM
Ag moved to the air-Si interface through the formula in Eq. (10), where ZTM

Ag is
substituted by the shunt of ZTM

Ag ||ZC. Moreover, for TM polarization at the junction between
Zone 1 and Zone 2, the tangent magnetic field (tangent to the plane separating the two zones) is
continuous for any angle of incidence (see Fig 8). From a circuit theory point of view, this means
that the current flowing through the two impedances is constant, and the connection between
the two loads is then a series connection. The total load is the sum of the two impedances
weighted according to the unit cell filling factors, i.e. ZTM

1 is weighted by f1 = w/d and ZTM
2

by f2 = (d−w)/d. Thus, the equivalent interface impedance to be used in Eq. (7) can be written
as

ZTM
int = ZTM

1 f1 +ZTM
2 f2 (12)
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Fig. 7. Comparison of the CST full wave result and absorption calculated with the model
for (a) TM and (b) TE excitation for a grating nanosurface with h = 200nm, d = 300nm,
w = 100nm, r = 50nm.
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Fig. 8. (left) The unit cell is divided into two main zones, one relevant to the ridge and one
relevant to its complementary region. For TM polarization, the magnetic field tangent to
the junction between the two regions is continuous. This implies that the current flowing
through the two equivalent loads retrieved at the interface is constant, and the connection is
in series. (right) TM circuit. The equivalent impedance ZTM

int at the interface can be calcu-
lated by means of two equivalent impedances at the air-Si interface in a series connection
weighted by the unit cell filling factors.

and then the absorption can be calculated through Eq. (6). The result for normal incidence
(θ = 0) is shown in Fig. 7(b) (blue line) and compared with a full wave CST simulation. De-
spite the degree of approximation of the equivalent impedances calculated above, which only
account for the largest first order effects, the results show that the global physical mechanism
is captured by the model. Also, we show the absorption for the same structure without ac-
counting for the impedance ZC in the model (dotted line). This result is important because it
demonstrates how the plasmonic nature amplifies the diffraction at the ridges of the grating. The
calculated absorption without ZC still agrees with the full wave solution, except in the range of
the spectrum where the SPP is strongly excited (see dispersion diagram in Fig. 2).

3.3. Inclusion of an antireflective coating

In most cases, photovoltaic cells are covered by an antireflection (AR) coating (see Fig. 9(a)).
The AR coating is a thin layer of dielectric material, whose interference effects cause the wave
reflected from the top surface to be out of phase with the wave reflected from the Si surface.
These out of phase reflected waves destructively interfere, resulting in zero net reflected energy.
This ideal zero-reflection occurs only at the specific frequency and angle of incidence for which
its thickness hAR = λ/(4nAR cosθ), where nAR is the refractive index of the material used as
AR coating. We use here TiO2 with refractive index nAR = 2.5 [5] (the material is assumed
to be lossless) and set hAR = 60nm. We apply the transmission line equivalent circuit model
for both TE and TM polarizations, as shown in Fig. 9(b). The equivalent impedance utilized
in Section 3.1 for TE and Section 3.2 for TM needs to be transformed by an extra piece of
transmission line of length hAR and characterized by a characteristic impedance as in Eq. (1),
where X = AR. The new Zint impedance is then calculated at the air-AR coating interface using
the usual transmission line formula as in Eq. (8) for TE and in Eq. (10) for TM. This result
is then plugged into Eq. (7) to evaluate the absorption coefficient analytically via Eq. (6). The
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Fig. 9. (a) Reference geometry of the grating nanosurface with a top cover of AR coating.
(b) Modification of the transmission line equivalent circuit to account for the extra AR
coating.

calculated result is compared with a CST simulation in Fig. 10 for both polarizations. The
agreement is extremely good throughout the optical spectrum.

4. Absorption enhancement

Here we will return to the structure without the AR coating to examine the benefits of using a
grating structure to increase the effective pathlength. The effective absorption gain of the 1-D
grating nanosurface over the flat film solar cell is calculated as

Gp(λ ) = Ap
grating(λ )/Ap

f lat(λ ) p = TM,TE (13)

where Af lat(λ ) is the absorption for the flat metal film and Agrating(λ ) is for the grating nanosur-
face. The absorption in each case can be calculated from Eq. (6) and has been shown previously
in Figs. 3 and 7 for TE and TM polarizations, respectively. The gain in absorption is shown in
Fig. 11(a) for normal incidence. Similar figures have been presented before; however, we want
to interpret this result according to our transmission line model. To better understand the nature
of the peaks in G(λ ), we also show the TE and TM equivalent impedance at the air-Si interface
compared with the flat film solar cell. In particular, in Fig. 11(b) and (c), the real and imaginary
part of Zint is plotted. As described in Section 2, the peaks of absorption occur when the equiva-
lent interface impedance acts like an open circuit, or equivalently the interface acts like a PMC
surface. For the grating nanosurface, whenever the equivalent impedance shows a peak in its
real part and a crossing of the zero line in its imaginary part, the absorption is maximum. Since
we are examining the ratio between the grating absorption and the flat case absorption, the gain
shows a substantial increase only when the open circuit condition between the two cases does
not overlap. In fact, when it overlaps, the effect is effectively equivalent and leads to an overall
cancellation. Also, when the open circuit condition holds only for the flat case, the gain trends
toward a minimum. From the plot of G(λ ) in Fig. 11(a), it is clear that the grating nanosur-
face has a better performance for the TM polarization. The TM curve shows two main peaks
around 750nm and 920nm, while the TE curve shows only one main peak around 900nm. In
addition, the TM absorption enhancement peaks are broader in bandwidth. This occurs because
the open circuit TE resonances are only due to cavity modes resonances, which are sharp and
narrowband. The TM resonances occur as a combination of cavity and plasmonic modes, which
improve the gain in both amplitude and bandwidth. As a consequence, better performance is
attained when the nanosurface is designed to combine cavity and plasmonic modes to increase
the number of open circuit conditions and possibly to increase the bandwidth of the resonances.

(C) 2012 OSA 2 January 2012 / Vol. 20,  No. S1 / OPTICS EXPRESS  A153
#157235 - $15.00 USD Received 28 Oct 2011; revised 13 Dec 2011; accepted 16 Dec 2011; published 2 Jan 2012



Fig. 10. Comparison of the CST full wave result and absorption calculated with the model
for (a) TM and (b) TE excitation for a grating nanosurface with an AR coating of TiO2.
(hAR = 60nm, h = 200nm, d = 300nm, w = 100nm, r = 50nm.
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Fig. 11. (a) Absorption gain of the 1-D grating nanostructure over the flat film solar cell for
TM and TE polarizations. (b) Real and (c) imaginary part of the equivalent impedance at
the air-Si interface for the grating nanosurface and for the flat case.
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5. Conclusions

We have shown how light absorption in a plasmonic grating nanosurface can be calculated ap-
proximately by means of a simple analytical model based on a transmission line equivalent
circuit. The geometry investigated here is a 1-D grating realized on a Ag metal back film cov-
ered by a Si slab. The transmission line model is specified for both TE and TM polarizations of
the incident light. We have shown how to apply the circuit theory based on the conservation of
the tangential components of the electromagnetic field at the junction between the ridge zone
and the flat zone of the grating. This has lead to two different connections of elements for TE
and TM fields, in particular a shunt connection for the first and a series connection for the sec-
ond. Also, for the TM polarization, we have included the effect of charge accumulation at the
grating ridges by adding an extra capacitive impedance in the circuit to account for plasmon ex-
citation. Under the assumption that the adjacent ridges are not strongly coupled, we have shown
that the approximate closed form expression of the reflection coefficient at the air-Si interface
can be used to evaluate the light absorption of the solar cell. Moreover, we have demonstrated
the utility of the circuit theory as an interpretive tool for understanding peaks in the absorp-
tion coefficient and relating these to resonances of the equivalent transmission line model. The
weak-coupling assumption employed here is valid if the grating structure is not closely packed
and the impinging light is close to normal incidence. We have empirically determined that for
the structure under investigation, an angle of incidence beyond 20◦ from the normal is sufficient
to induce higher order couplings, which are not included in the present form of the model. Ex-
panding the model to incorporate higher order effects is under investigation currently. We note
in closing that the transmission line model is not meant to substitute for full wave simulations,
which are essential for complex nanostructures, but it provides physical insight for understand-
ing the resonances that are responsible for the light trapping mechanism at a fraction of the
cost.
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