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INTRODUCTION 

Traditional statistical inference focuses on response and 

treatment variable, and their relationships. With growing 

interest in causal inference, there needs to be greater 

attention paid to the third leg of a “causal stool”: the 

causal element. In this paper, a causal element at the 

population level is introduced in order to formalize a 

causal quantity. The formalization not only comprises 

randomization and intervention but also leads to an 

approach to observational studies. 

Structural equation modeling is often the applied 

statistician’s first foray into causal inference. Structural 

equation models are used by many, but causal 

interpretations are generally questioned or avoided, even 

by leading practitioners. In applications of structural 

equation modeling, one needs to postulate the structure 

behind probability distributions or mechanism of 

assigning treatment. This lesson was gradually forgotten, 

and often conditional probabilities have been mistakenly 

considered as a causal quantity. To cope with this 

frequent mistake, scientists began to formalize the 

assignment mechanism and represent it by a rigorous 

notation. Rubin
1-3 

formalized the assignment mechanism 

and rendered a framework for causal inference; see also 

Imbens.
4
 Pearl

5-7
 rendered and simplified causal 

framework through application of causal graphs, which 

satisfy Markov conditions. Despite efforts by these 

scientists and others such as Dawid,
8
 Pearl

5
 commented 

that causality is still seeking to find an applied language.  

Since causality is a challenging novel concept for many, 

notations and explanations are presented in order to help 

the reader better understand the concept and, as a result, 

promote appropriate applications. The outline of this 

perspective is as follows. In section 1, the underlying 

question is explained in order to motivate the problem. In 

section 2, the necessary elements for a causal quantity are 

introduced. In section 3, the causal quantity is explained; 

and a conclusion is represented in section 4. The notation 

and formalization presented here will help the interested 

reader gain a better understanding of causal concepts.  

WHAT IS THE UNDERLYING QUESTION? 

To understand the effect of treatment on a response 

variable in a population, we compare treated and 

untreated units and make inference about the effect of 

treatment. We would like any difference between the 
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treated and untreated units to be ascribed to the effect of 

treatment. This inference is accurate if we can assume 

that other inputs on the response variable are balanced 

between treated and untreated groups. In many cases, this 

assumption is best satisfied through randomization of the 

units to the treated and untreated groups. However, 

randomization is often expensive, impractical or 

unethical. In this case, a clear understanding of the 

assignment mechanism is critical. 

Assume we have N individuals in the population and that 

all are under study. Consider a treatment variable (T) 

which, for simplicity, has two levels active treatment “t” 

and control treatment “c”. Each unit can be assigned to 

either treatment or control, and in any single study only 

one of the 2
N 

different assignment possibilities will be 

realized. To have causal inference, we need to understand 

why one of the 2
N
 possibilities was actually realized and 

not the others. In other words, we need to understand the 

assignment mechanism. If knowledge related to a unit’s 

reaction to treatment is used, either knowingly or 

unknowingly, then the assignment mechanism itself is 

considered confounded. In the presence of such 

confounding, the ability to make causal inference is 

seriously compromised, and the ability to adequately 

adjust for such confounding should always be questioned. 

NOTATION AND ASSUMPTIONS 

Let Yi(t) and Yi(c) be the i
th

 unit’s reactions assigned to 

the treatment and control, respectively called “potential 

outcomes”.
2,9

 Although unrealistic in most simple 

practical applications, if all N individuals are assigned to 

the treatment group, we observe

))(),...,(),...,(()( 1 tYtYtYtY Ni
; and if all N 

individuals are assigned to the control group, we observe

))(),...,(),...,(()( 1 cYcYcYcY Ni
. In this special 

case, two values are defined for each individual- one 

under treatment and the other under control. For the 

entire population, we can define two arrays Y(t) and Y(c). 

In most applications, treatment and control cannot be 

assigned to each individual. Instead, we observe some 

values of array Y(t) and some values of array Y(c) 

regarding the actual treatment assignment. Let variable 

Yobs(t) stands for the observed components of Y(t) and 

variable Yobs(c) for the observed components of Y(c). 

In causal inference, the element which plays a role is not 

only the value of revealed responses but also the reason 

why one of the 2
N
 possible assignments has been realized 

and not the others. Clarification of the Assignment 

Mechanism (AM) is essential in causal inference because 

the practitioner makes inference using the observed 

responses which are determined by the one realized 

assignment. The notation AM (KR) is introduced as the 

third element and is called causal element. Identification 

of causal element implies that we fully understand the 

mechanism used to assign treatment to individuals. KR 

comprises any knowledge related to response, so the 

practitioner must be diligent to gather as much 

information regarding the assignment mechanism as 

possible and cautious not to let a priori biases misinform 

knowledge about the assignment mechanism.  

AM (KR) is called the causal parameter or causal element. 

Through a better understanding of AM (KR), we can 

identify a realization in which the responses are proper 

for causal inference. In probability language, the 

assignment mechanism of units in the population with a 

particular causal element is represented as following:  

))(|())(|( fKAMtTPfKAMtTP RjRi 
, 

for 
 ji,

 the (sub)population identified with AM (KR) 

= f. f simply indicates that the causal element  AM (KR), is 

well-identified.  

The two popular approaches to identify the causal 

element are propensity score
11 

and causal graphs.
5
 In the 

latter, causal graphs are illustrations of AMs, we illustrate 

the causal structure behind observations and graphically 

find the confounders of AM; and then, individuals with 

the same likelihood to receive treatment. In the former, 

we apply mathematical method propensity score to find 

units with the same propensity to receive treatment. In 

both methods, the aim is to find treated and untreated 

individuals in observational study as if we have 

randomization. This is carried out through considering 

have confounder of AM, which is possible by (KR).  

Like any complex analytic, it is necessary for the 

practitioner to be mindful of the underlying assumptions. 

In the area of causal inference, the assumptions can be 

classified into two categories: Monitoring Assumptions, 

where the experiment must be monitored from the time of 

assignment to the time of observation; and Illumination 

Assumptions, where the assignment mechanism or data 

generating process themselves must be understood. These 

two assumptions are necessary to be considered in any 

causal inference. The monitoring assumption is satisfied 

if there is no interference either from the units or from 

external factors;
10

 for instance, treatment is assigned 

blindly, units are independent, and during time no other 

event changes the conditions influential on units’ 

responses. Violating the monitoring assumption means 

that the difference between treatment and control 

responses cannot be solely ascribed to the treatment; 

other factors are involved too.  The monitoring 

assumptions are represented by notations Yobs(t) and 

Yobs(c) which means observations are units’ reactions 

under only treatment or control, which is called 

intervention.  

The illumination assumptions are represented by the 

causal element, AM (KR). Clarification of AM (i.e. 

illumination), which is done by KR, represents a complete 

understanding of how the units have been assigned to 
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treatment or how the observations (data) have been 

generated.  

CAUSAL QUANTITY 

In the population or subpopulation in which the causal 

element AM (KR) has been identified and the treated and 

control units have been observed, we are able to infer 

causal effects by comparing the following two quantities, 

))(|)((&))(|)(( fKAMycYPfKAMytYP RobsRobs  . (1) 

Both quantities are conditioned on AM (KR) = f; which 

means the assignment mechanism has been identified 

regarding knowledge related to response, and the 

assignment mechanism is the same over the population. 

In this case, we are able to make causal inference. 

Application of the causal element and the ability to make 

causal inference, in this case, is due to the illumination 

assumption. We conclude that a comparison of the 

quantities in (1) leads to causal effect over the population. 

The two quantities in (1) might not involve observations 

on all N units. In this case, to find the causal effect over 

the population of N units, we compute the weighted 

average of the causal effects measured in each 

subpopulation identified by the causal element. It is 

important to note the causal element AM (KR) cannot be 

replaced by a design variable or an adjusting covariate. 

The notation AM (KR) means the assignment mechanism 

has been fully identified by considering knowledge 

related to the response, thus conveying more information 

than conditioning on a covariate.  

CONCLUSION 

The quantity in (1) is comprehensive because it 

comprises both intervention and randomization, and it 

leads us to causal inference in observational studies. In 

the case of randomization, no knowledge related to the 

response is considered, and the causal element is the 

same in the treated and untreated groups. In the case of 

observational studies that cannot be randomized, we 

assume after determining causal element, the units are 

independent and we observe them under both the control 

and treatment. By introducing the causal element, the 

conditional probability is kept for the association 

component of the study, and an additional component 

with the causal element is present in order to facilitate 

causal inference. If one is given the conditional 

probabilities:  

),|( xXtTyYP 
&

),|( xXcTyYP 
, 

the practitioner wishing to go beyond mere association 

and make causal inference, the first question he/she must 

address is: What is the causal element? In the case of the 

observational or non-randomized intervention, the 

challenge is to find the structure behind the observations, 

which is an accurate approach to find population causal 

effect. 
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