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INTRODUCTION 

Granger causality  

Granger causality, proposed and formalized by C.W.J. 

GRANGER (1969) has been heavily criticised in the first 

years after the publication of his paper as it reduces 

causality to incremental predictability.
1 

In time series 

analysis, this concept of causality is nevertheless widely 

accepted today. Granger (1969) defined causality as 

follow: A variable Y is causal for another variable X if 

knowledge of the past history of Y is useful for predicting 

the future state of X over and above knowledge of the 

past history of X itself. So if the prediction of X is 

improved by including Y as a predictor, then Y is said to 

be Grangercausal for X. 

In functional neuroimaging, brain networks are primarily 

studied in terms of functional connectivity and effective 

connectivity. The most popular modeldriven approaches to 

study effective connectivity from fMRI data are structural 

equation modeling
2
 and dynamic causal modelling.

3 
These 

techniques require a priori specification of an anatomical 

network model and are therefore best suited to make 

inferences on a limited number of possible networks. 

These disadvantages can largely be circumvented by 

Granger causality method, where recent work has begun to 

consider the causal influence one neural time series can 

exerts on another. The basic idea can be traced back to 

Wiener
4
 who conceived the notion that, if the prediction of 

one time series could be improved by incorporating the 

knowledge of a second one, then the second series is said 

to have a causal influence on the first. Wiener’s idea lacks 

the machinery for practical implementation. Granger later 

formalized the prediction idea in the context of linear 

regression models.
1 
 

There are several applications for Granger causality 

analysis in different fields, such as: economics,
5,6

 

bioinformatics,
7,8

 geophysics,
9,10

 and neuroscience.
11-13

 

With fMRI data, recent studies have interested to derive 

Granger causality maps by applied Granger causality 

analysis among a target region of interest and all other 

voxels in the brain
14-16

 and applied a conditional Granger 
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causality analysis to evaluate the effective connectivity of 

resting state networks.
17,18

 

Two additional developments of Granger’s causality idea 

are important. First, for three or more simultaneous time 

series, the causal relation among any two of the series 

may be direct, may be mediated by a third one, or may be 

a combination of both. This situation can be addressed by 

the technique of conditional Granger causality. Second, 

natural time series, including ones from economics and 

neurobiology, contain oscillatory aspects in specific 

frequency bands. It is thus desirable to have a spectral 

representation of causal influence. 

Pairwise Granger causality 

If we have the two time series X and Y, the paired model 

is as following: 

 t ∑ a  

 

   

 t     t                                    

   ∑   

 

   

                                   

The joint autoregressive representation for Xt and Yt can 

be written as: 

 t ∑ a  

 

   

 t   ∑   

 

   

       t                            

   ∑   

 

   

     ∑   

 

   

                                   

Where Xt and Yt represent the two time series at time t. 

Xt−  and Yt−  represent the time series at time t-j, P 

represents the maximum number of lagged observations 

included in the model  the model order .  1t and  2t are the 

residuals (prediction errors) for each time series, and a, b, 

c and d are coefficients of the model for each time series. 

The noise covariance matrix can be represented as: 

   (
                    

                    
)                           

If a time series Y causes (or has an influence on) X, then 

knowledge of Y should help predict future values of X. 

Thus, causality (or influence) is framed in terms of 

predictability. In more detail, given two discrete time 

series X and Y, we say that Y Granger causes X if we can 

predict the current value of X, using past values of X and 

Y, better than we can when using past values of X alone. 

According to Wiener
4
 and Granger

1 
if var  2t) is less than 

var  1t) in some suitable statistical sense, then Y is said to 

have a causal influence on X. We quantify this causal 

influence from time series Y to X (FY→ ) by: 

       (
      t 

      t 
)                                        

If FY→  = 0, this mean that no further improvement in the 

predication of time series X can be expected by including 

past measurements of time series Y. If FY→  >0, there is 

causal influence from Y to X. Similarly, one can define 

causal influence from X to Y (F →Y) as: 

       (
        

        
)                                     

The instantaneous influence FX.Y quantifies the 

improvement in the prediction of the current value of X 

(or Y) by including the current value of Y (or X) in a 

linear model already containing the past values of X and 

Y. From this symmetry it can be seen that FX.Y indeed 

contains no directional information at all. The 

instantaneous indirect influence (FX.Y) between time 

series X and time series Y is given as: 

       (
      t         

|  |
)                              

The influence measure FX,Y is the sum of three 

components: the directional causal influence from X to Y 

(FX→Y), the directional causal influence from Y to X 

(FY→X), and the instantaneous influence between X and Y 

(FX.Y ). 

                                                  

FX,Y is a measure of the total linear dependence between 

the series x and y. 

Conditional Granger causality 

Recently, the conditional Granger causality analysis has 

been applied to estimate functional coupling effectively 

in multivariate data sets.
19,20

 Consider the case of three 

time series Xt, Yt, and Zt. First, the joint autoregressive 

representation for Xt and Zt can be written as: 

 t ∑ a  

 

   

 t   ∑   

 

   

       t                    

   ∑   

 

   

     ∑   

 

   

                           

and the noise covariance matrix can be represented as: 

   (
                    

                    
)                   

Next, we consider the joint autoregressive representation 

for a system involving all the three time series Xt,Yt and 

Zt as:  

 t ∑ a  
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and the noise covariance matrix for the above system can 

be represented as: 

   (

                                
                                

                                
)      

From these two sets of equations, we define the 

conditional Granger causality from time series Yt to Xt 

conditional on time series Zt as: 

    |    (
      t 

      t 
)                               

When the causal influence from time series Yt to Xt is 

entirely mediated by other time series Zt, the coefficients 

b4 are uniformly zero, and var( 3t) = var( 4t). As such, 

FY→X|Z = 0, meaning that there is no causal influence 

from Yt to Xt conditioned on the other time series Zt. If 

all the other information included in Zt is lost, then only 

pairwise Granger causality between Xt and Yt can be 

calculated. On the contrary, when a direct influence from 

time series Yt to Xt exists, the inclusion of past 

measurements of time series Yt in addition to that of time 

series Xt and Zt should result in better predictions of time 

series Xt, leading to var( 3t) >var( 4t) and FY→X|Z>0. 

Recent several studies applied Granger causality model 

on fMRI data in either time
21,22

 or the spectral
11,23

 domain 

to investigate the direct causality among different 

activated brain regions
17,24,25 

and within resting state 

networks.
26,27

 

The classical pairwise Granger causality approaches have 

been widely used in previous fMRI studies. However, the 

pairwise Granger causality approaches do not clearly 

distinguish between direct causal influences between one 

brain region and another and indirect influences from a 

third factor, also the multivariate causality relationships 

are difficult to interpret and compare across subjects in 

group analysis. This could lead to erroneous conclusions 

about the relationships between regions in fMRI 

studies.
27 

Conditional Granger causality is extremely 

useful because repeated pairwise analyses among 

multiple variables can sometimes give misleading results. 

Another instance in which conditional Granger causality 

is valuable is when a single source drives two outputs 

with different time delays. 

In recent study, Jiao et al.
28

 used pairwise Granger 

causality approach to investigate the directionality and 

strength of causal influence between the seven cortical 

regions within the default mode network (DMN). While 

in Zhou et al.
27

 used conditional Granger causality 

approach to evaluate both the connectivity and 

conditional causal influences between four brain Regions 

of Interest (ROIs) within the DMN and the relationship 

among resting state networks. 

Phase slope index 

A recent advancement in the study of signal connectivity 

is the analysis of Phase Slope Index (PSI) which 

measures how one signal depends on another, which 

gives an indication of information flow in complex 

systems.
29,30

 The idea behind the PSI is that the phase of 

the cross spectrum between two different source activities 

depends on the time needed for the information to flow 

between those areas. Thus the derivative of the phase 

with respect to the frequency, called the phase slope, is 

proportional to the time needed for the information flow. 

Therefore, the sign of the phase slope indicates the 

direction of the information flow. Phase slope index is 

related to the slope of the phase of the cross spectra 

between two time series. Large positive values indicate 

high information outflow and large negative values 

indicate high information inflow. PSI is the weighted sum 

of the phase slope of the cross spectrum. The cross 

spectrum between voxels i and j is defined as: 

       〈       
    〉                                  

Where σi(f), σj(f) are the Fourier transform, at frequency 

(f), of the reconstructed time course at the i voxel and j 

voxels, respectively. <.> denotes the expectation value 

which is typically approximated by an average over the 

segments or trials and * means complex conjugation. The 

derivative of the phase with respect to the frequency, 

called the ’phase slope’, is proportional to the time 

needed for the information flow. 

Coherency of voxels time series i and j is defined as the 

normalized crosss-pectrum: 

       
      

              
 

 ⁄
                                

Where Pii, Pjj are the power spectrum of i and j 

respectively. From the magnitude component of 

coherency, we derive coherence, which is a measure of 

the linear association between two time series. The 

coherence is superior to correlation because correlation is 

sensitive to shape and temporal shift differences in the 

hemodynamic response, while coherence is invariant in 

these differences. 

The PSI estimates the causal structure between any two 

source activities. It is defined as:
29

 

 ̃     (∑   
 

   

            )                          
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Where δf is the frequency resolution of the coherency and 

Im(.) denotes taking the imaginary part.  

To see that the definition of  ̃   corresponds to a 

meaningful estimate of the average slope it is convenient 

to rewrite it as: 

 ̃   ∑   

   

                                        

Where Cij(f) = αij(f)exp(iϕ(f)) and αij(f) = |Cij(f)| being 

frequency dependent weights. For smooth phase spectra 

sin(ϕ(f+δf)-ϕ(f)) ≈ ϕ(f +δf)-ϕ(f), and hence  ̃ 

corresponds to a weighted average of the slope. 

It is convenient to normalize  ̃by an estimate of its 

standard deviation: 

  
 ̃

     ̃ 
                                   

With std( ̃) being estimated by the Jackknife method. We 

compute   using the MATLAB software available at.
29

 

Resting-state functional connectivity MRI (fc-MRI) uses 

task-free blood oxygenation level dependent (BOLD) 

time courses to measure the temporal correlation between 

different regions of the brain. The aim of this study is to 

compare between Granger causality and Phase Slope 

Index to explain fMRI resting state time series causality. 

METHODS 

Imaging methods  

Fourteen healthy right-handed volunteers (mean age [SD] 

= 29.2[4.6] yrs; 5 female) were recruited for this study. 

Volunteers were excluded if they had any medical, 

neurological, or psychiatric disease. All participants gave 

written informed consent. During the resting experiment 

the scanner room was darkened; subjects were lying 

supine in the MRI scanner and were instructed to rest 

quietly but alert keeping their eyes open and looking at a 

fixation crosshair presented in the center of the subjects 

field of view to limit eye movements and to stay awake at 

all times. Throughout the entire scanning session subjects 

were instructed to think of nothing in particular.  

Resting state fMRI data were acquired on a 3T system 

(GE HDx). Functional data were collected by using a 2D 

gradient echo planar sequence, sensitive to Blood Oxygen 

Level Dependent (BOLD) contrast, with repetition time 

(TR): 3000 ms; echo time (TE): 35 ms; number of slices: 

53 (interleaved); slice thickness: 3.2 mm; matrix size: 

64x64; flip angle: 90
◦
; in-plane resolution: 3.2x3.2 mm

2
. 

A total of 125 functional images were acquired with the 

subjects in the resting condition, corresponding to a total 

imaging time of 6 min and 25 sec. Subsequently, a T1 

weighted structural scan was also acquired, (1x 1x 1 

mm
3
), to provide the anatomical reference. 

Data analysis  

Image preprocessing and statistical inference were carried 

out using statistical parametric mapping (SPM8) software 

package (http://www.fil.ion.ucl.ac.uk/spm/) and 

homemade developed software realized in MATLAB. 

The physiological noise fluctuations were corrected using 

RETROICOR,
31 

while low frequency respiratory and 

heart rate effects were removed by using RVHRCOR.
32 

Images of the first five scans were discarded before 

further processing to make sure that the MR signal had 

reached steady state.  

Several processing steps were used to optimize the voxel-

wise analysis. Sources of spurious variance were 

removed from data by means of linear regression of six 

parameters (three translations and three rotations) 

obtained by rigid body correction of head motion. Most 

data analysis schemes assume that every voxel was 

sampled at exactly the same time. Slice acquisition 

correction compensates for staggered order of slice 

acquisition. Data were temporally band pass filtered 

(0.009Hz < f < 0.15Hz). In the final step of the 

preprocessing pipeline, the data were spatial smoothed 

with an isotropic Gaussian kernel of 8 mm full-width 

half-maximum [FWHM]; this is indeed a common 

practice to digitally smooth fMRI data in space prior to 

statistical analysis.  

Regions of interest  

We selected seed regions of interest in the Posterior 

Cingulate Cortex (PCC) with 8 mm radius sphere 

centered at (0,-46,32) in Montreal Neurological Institute 

(MNI) space, then excluding uninteresting signals by 

intersection the PCC voxels and gray matter (GM) mask 

to select the interest voxels. The ROI was defined in MNI 

space and reverse normalized to each sub ect’s mean 

functional image using SPM8.  

For each subject, the mean time series across all voxels in 

the ROI was extracted, and the correlation coefficient was 

computed with the time series of every voxel in the brain. 

Single subject correlation maps were converted to Fisher 

Z-statistics prior to group analysis. Group maps of the 

DMN were computed by normalizing Fisher Z-

transformed correlation maps to a standard template and 

entering them into a random-effects analysis using SPM8.  

The coordinates of the highest activating voxel are then 

used to define a seed voxel in the resting data. Within 

each masked region, ROIs were identified as the most 

significant voxel and all surrounding significant voxels 

within 8 mm radius. 

Granger causality mapping  

The technique of fMRI Granger causality mapping 

explores all regions in the brain that interact with a single 

selected reference region using Granger causality as a 
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measure of directed influence or information flow. 

Granger causality analyses were performed as described 

in Roebroeck et al.
16

 By employing a simple bivariate 

model containing the reference region and, in turn, every 

other GM voxel, the sources and targets of influence for 

the reference region can be mapped. We computed the 

pairwise Granger causality between time series of 

reference region and GM voxels. When performing 

simultaneous statistical tests for all voxels, we assessed 

the significance thresholds by correcting for multiple 

comparisons using the false discovery rate (FDR). 

A critical element in the specification of vector 

autoregressive (VAR) models is the determination of the 

lag length of the VAR. Various lag length selection 

criteria are defined by different authors like, Akaike’s 

(1969) final prediction error (FPE), Akaike Information 

Criterion (AIC) suggested by Akaike (1974), Schwarz 

Criterion (SC) (1978) and Hannan-Quinn Information 

Criterion (HQ) (1979). 

In the current study, the optimal order for the fMRI data 

is selected following Akaike Information Criterion (AIC). 

The input of the Granger causality analysis consisted of 

the average time series of the reference region and the 

time series of GM voxels. For each reference region, we 

created four different maps: 

1. Reference to voxel map (FR→V), 

2. Voxel to Reference map (FV→R), 

3. Instantaneous influence map (FV.R), and 

4. Influence difference map (dFV.R = FR→V - FV→R). 

The two directions of Granger causality, (FR→V and 

FR→V), are subtracted from each other to generate 

differential Granger causality maps, such that positive 

values indicate more Granger causality from the reference 

to the brain’s voxel than from the brain’s voxel to the 

reference region. For a particular pattern, each Granger 

map was entered into a second-level random effects 

analysis and assessed statistically. 

PSI mapping 

The PSI computes a directed, pairwise measure of 

interaction between two time series using the cross-

spectrum. To identify the resting state information flows, 

we generated PSI maps by computing PSI values between 

a reference seed time series and all GM voxels. All 

calculations were done in MATLAB R2007b (The 

MathWorks Inc., Natick MA), the script calculating PSI 

used in this study has been published previously.
29 

Because in resting state the hemodynamic response 

function only has a power in the low frequency band, we 

focus our analysis on the 0.009 - 0.1 Hz band. 

As the described above, the averaged BOLD response 

time course of voxels in reference region was considered 

as the time series i. Subsequently, the BOLD response 

time series of each single voxel in the functional volume 

was taken as the time series j and PSI(i, j) were 

computed. This measure is normalized by its standard 

deviation to to determine whether causal influence 

between I and j is significant. 

In general, if PSI(i, j) has a positive value, the information 

flows from the i voxel to the j voxel locations (from Ref-

Voxel), and if the PSI(i, j) has a negative value, the 

information flows from the j voxel to the i voxel (from 

Voxel-Ref). The PSI maps were computed for each ROI. 

To increase the frequency resolution and to estimate PSI in 

low frequency range, we concatenate multiple brain 

volumes across the subjects into a single data set. The 

order of the subject volumes was counterbalanced across 

the concatenated multiple brain volumes. We defined the 

GM common mask in MNI space, to compute the PSI 

between reference regions and brain voxels. 

Finally, second-level analysis (one sample t-test) was 

carried out, where PSI maps from several subjects are 

pooled and then thresholded, in order to determine the brain 

areas that show significant positive and negative PSI values.  

RESULTS  

Regions of interest  

The z-maps were computed from resting data for each 

subject then transformed to MNI common space. A t-test 

was performed on each pixel of these maps (using the 

data across all subjects) to produce a composite map of 

the statistical significance of resting state correlations 

with PCC. Figure 1 shows the group level statistical maps 

appear superimposed on the render template brain from 

the MRIcro software (http://www.mricro.com). To select 

and define the ROIs, we identified the regions that are 

most strongly positive correlation with the PCC (for 

regions, Brodmann Areas (BA) and coordinates, see 

Table 1). These ROIs were located in Medial Prefrontal 

Cortex (MPFC), Left Lateral Parietal Cortex (LLPC), and 

Right Lateral Parietal Cortex (RLPC). 

 

Figure 1: Group-level thresholded t-maps for positive 

correlations with the PCC. 
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Table 1: Brain regions that correlated positively with 

the PCC during resting. 

Regions Abbreviations BA Coordinates 

Posterior 

Cingulate 

Cortex 

PCC 23/30 -2,-46,28 

Medial 

Prefrontal 

Cortex 

(ventral) 

MPFC 10/11 5,55,-12 

Left Lateral 

Parietal 

Cortex 

LLPC 39 -47,-66,32 

Right 

Lateral 

Parietal 

Cortex 

RLPC 39 48,61,29 

Granger causality  

The technique of Granger Causality Mapping was 

developed to explore all regions in the brain that interact 

with a single selected reference region using 

autoregressive modelling of fMRI time series. The 

autoregressive order used for the computation of the 

influence measured was set to 5, as suggested by the 

order selection criteria. For each reference regions (PCC, 

MPFC, RLPC, and LLPC), we computed the bivariate 

Granger causality maps.  

 

Figure 2: The instantaneous influence maps for each 

region of interest. 

The resulting instantaneous influence maps (FV.R) are 

shown in figure 2 separately for each region of interest. 

The left side represents the reference regions and the right 

side represents the undirected instantaneous influence 

maps for each reference region. The instantaneous 

influence maps were entered into a second-level random-

effects analysis and thresholded at P<0.001 uncorrected, 

with an extent threshold of 10 voxels. The instantaneous 

influence term essentially quantifies partial correlation 

(functional connectivity) that cannot be assigned to 

influence in a certain direction purely from temporal 

information in the data. So the instantaneous influence 

term of the Granger causality can be seen to have no 

direction and may not provide clear evidence for 

interactions. 

 

Figure 3: Granger causality map of the regions 

influenced by the seed PCC, (a) PCC to voxel map 

(FR→V), (b) Voxel to PCC map (FV→R), and (c) 

influence difference map (dFV.R). 

Figure 3 shows three influence maps, (a) PCC to voxel 

map (FR→V ), p <0.005 uncorrected, showing voxels 

which are influenced by the activity in the PCC seed, (b) 

Voxel to PCC map (FV→R), p <0.005 uncorrected, 

showing voxels whose activity influence the activation in 

the PCC seed, and (c) Influence difference map (dFV.R), p 

<0.05 uncorrected. The difference map demonstrate two 

directions: influence from the reference region PCC to 

GM voxels is shown in red-yellow color scale (red color 

indicate low, and yellow color represent high, values 

across subjects), and influence from GM voxels to the 

reference region PCC is shown in blue-green color scale 
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(blue colors indicate low, and green colors represent high, 

values across subjects).  

In the influence difference map (dFV.R = FR→V - FV→R) in 

figure 3(c), the regions RLPC (BA. 39), LLPC (BA. 39), 

calcarine (BA. 17), hippocampus (BA. 27), and ventral 

medial prefrontal cortex vMPFC (BA. 10) are showing 

the increases in influence values from the seed PCC. The 

regions that show increase in influence values into the 

PCC seed include: cuneus (BA. 18, NA), thalamus (BA. 

NA), cerebellum (BA. 18, 19), LLPC (BA. 39) and dorsal 

medial prefrontal cortex dMPFC (BA. 9, 32). 

 

Figure 4: Granger causality map of the regions 

influenced by the seed MPFC, (a) MPFC to voxel map 

(FR→V), (b) voxel to MPFC map (FV→R) and (c) 

influence difference map (dFV.R). 

In figure 4 we display three Granger causality sub-maps: 

(a) MPFC to voxel map, (b) Voxel to MPFC map, and (c) 

Influence difference map. From the influence difference 

map, we find that the significant causal influences from the 

MPFC seed to calcarine (BA. 17), cerebellum (BA. 18, 

19), RLPC (BA. 39), LLPC (BA. 39), precuneus (BA. 23), 

and thalamus (BA. NA). The regions show significant 

causal influences into the MPFC seed are PCC (BA. 23), 

hippocampus (BA. 27), cerebellum (BA. 18, 19), thalamus 

(BA. NA) and cuneus (BA. 18, NA). 

The significant causality was observed from the RLPC 

represented in figure 5, (a) RLPC to voxel map, p <0.005 

uncorrected, (b) Voxel to RLPC map, p <0.005 

uncorrected, and (c) Influence difference map, p <0.05 

uncorrected. We can note that, small significant causal 

influences for RLPC into GM voxels. The significant 

causal influences from GM voxels into RLPC seed are 

most pronounced than the significant causal influences 

from RLPC into GM voxels. 

In the RLPC influence difference map figure 5(c), shows 

the direction of causality form RLPC into calcarine (BA. 

17). The regions cuneus (BA. 18, NA), PCC(BA. 23), 

hippocampus (BA. 27), LLPC (BA. 39), dMPFC (BA. 

9,32), vMPFC (BA. 10), thalamus (BA. NA), and 

hippocampus (BA. 27) shows the direction of causality 

into RLPC seed.  

 
Figure 5: Granger causality map of the regions 

influenced by the seed RLPC, (a) RLPC to voxel map 

(FR→V), (b) voxel to RLPC map (FV→R) and (c) 

influence difference map (dFV.R). 

Figure 6 shows the LLPC to voxel maps, voxel to LLPC 

map, and influence difference map, thresholded at P 

<0.001 uncorrected. The influence difference map shows 

the significant causal influences from and into LLPC 

seed. We can note the significant causal influences from 

LLPC to the calcarine (BA. 17), RLPC (BA. 39), and 

vMPFC (BA. 10). The causal flow from PCC (BA. 23), 

thalamus (BA.NA), hippocampus (BA. 27), cuneus (BA. 

18, NA) and cerebellum (BA. 18, 19) into LLPC seed. 

To summarize, the significant causal influences for the 

two directions (in and out) between GM voxels and 

reference regions (PCC, MPFC, RLPC, and LLPC) are 

represented in figure 7. The blue arrows highlight the 

causal flow from the GM voxels into the reference 

regions, while the red arrows highlight the causal flow 

form reference regions into the voxels. 
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Slope phase index  

This section presents results of our experiments on 

estimating the directions of information flow between 

resting state activity regions. We applied the source PSI 

analysis to resting state fMRI data, PSI estimated in the 

range from 0.01Hz into 0.1 Hz. We computed the PSI 

between GM voxel and different four ROIs (PCC, MPFC, 

RLPC and LLPC). 

In our results, the positive PSI values indicate the 

direction of the information flow from the reference 

region into the GM voxels, while the negative PSI values 

indicate the direction of the information flow from the 

GM voxels into seed reference region.  

 

Figure 6: Granger causality map of the regions 

influenced by the seed LLPC, (a) LLPC to voxel map 

(FR→V), (b) voxel to LLPC map (FV→R) and (c) 

influence difference map (dFV.R). 

One sample t-tests in SPM8 were used to assess the 

statistical significance of each identified PSI pattern. For 

a particular pattern, PSI map was entered into a second-

level random-effects analysis and assessed statistically 

using a threshold of P <0.001 uncorrected and minimum 

cluster size of >10 contiguous voxels. 

The positive and negative PSI map between PCC and 

GM voxels are shown in figure 8. The red color scale 

refers to the voxels that have the positive PSI with the 

PCC ROI, while the blue color scale refers to the 

negative PSI value. All PSI maps were thresholded at P 

<0.001 uncorrected (one-sample t-test). 

 

 

Figure 7: The direction of the Granger causality 

influence between GM voxelsand (a) PCC, (b) MPFC, 

(c) RLPC and (d) LLPC. 

In these results, the different regions with positive and 

negative values are clearly detected, and the results 

suggest that there is an information inflow and 

information outflow between PCC and GM voxels. 

Figure 8 shows the information outflow from PCC 

reference region into vMPFC (BA. 10), hippocampus 

(BA. 27), cerebellum (BA. 18, 19), and precuneus (BA. 

23). On the other hand, this figure shows the information 

inflow from calcarine (BA. 17), RLPC (BA. 39), LLPC 

(BA. 39), dMPFC (BA. 9, 32), precuneus (BA. 23) and 

thalamus (BA. NA) into the PCC reference region. 

 

Figure 8: PSI map for PCC seed. 
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The information flow from the reference region MPFC 

and GM voxels are shown in figure 9. The positive and 

negative PSI values were thresholded at P <0.001 

uncorrected and with an extent threshold of 10 voxels. 

The regions of information inflow and information 

outflow between MPFC and GM voxels are clearly 

detected. Figure 9 shows the positive and negative flux 

between MPFC and GM voxels. As shown in this figure, 

the information outflow from MPFC into RLPC (BA. 

39), LLPC (BA. 39), thalamus (BA. NA), hippocampus 

(BA. 27) and cerebellum (BA. 18, 19). The information 

inflow regions are PCC (BA. 23), precuneus (BA. 23), 

calcarine (BA. 17), cuneus (BA. 18, NA).  

 

Figure 9: PSI map for MPFC seed. 

The results of mapping of PSI values between RLPC 

reference region and GM voxels are shown in figure 10. 

We can note that, the positive PSI regions are more 

pronounced than the negative PSI regions. Figure 10 

shows the direction for information outflow and 

information inflow between RLPC reference region and 

GM voxels. The positive PSI region which represent the 

information outflow are PCC (BA. 23), LLPC (BA. 39), 

precuneus (BA. 23), dMPFC (BA. 9, 32), cerebellum 

(BA. 18, 19), hippocampus (BA. 27), and thalamus (BA. 

NA). The regions of information inflow are vMPFC (BA. 

10), hippocampus (BA. 27), and thalamus (BA. NA). 

 

Figure 10: PSI map for RLPC seed. 

Results of second-level of PSI mapping between LLPC 

reference region and GM voxels are shown in figure 11. 

PSI map is statistically thresholded at P <0.001 

uncorrected for multiple comparisons and minimum 

cluster size of >10 contiguous voxels. Figure 11 showing 

voxels which are received information from LLPC, these 

regions include vMPFC (BA. 10), dMPFC (BA. 9, 32), 

hippocampus (BA. 27), and thalamus (BA. NA). The 

regions of information inflow are PCC (BA. 23), RLPC 

(BA. 39), and calcarine (BA. 17). 

 

Figure 11: PSI map for LLPC seed. 

 

Figure 12: The direction of the PSI information inflow 

(blue arrows) and outflow (red arrows) between GM 

voxels and (a) PCC, (b) MPFC, (c) RLPC and (d) 

LLPC. 
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Figure 12 shows the causal direction between the 

reference regions (PCC, MPFC, RLPC, and LLPC) and 

GM voxels. Red arrows highlight the direction of 

information flow from the reference regions seed into the 

voxels (positive PSI values) and the blue arrows highlight 

the direction of information flow from GM voxels into 

reference regions (negative PSI values). 

DISCUSSION 

In the present study, we introduced two different 

approaches to investigate the information flow between 

the resting state regions. The approaches are Granger 

causality and the slope phase index. The technique of 

Granger causality Mapping was developed to explore all 

regions in the brain that interact with a single selected 

reference region using autoregressive modeling of fMRI 

time series. Granger causality maps for four components: 

FR→V, FV→R, FV.R, and dFV.R = FR→V-FV→R were 

calculated by Matlab software.  

The newly Phase Slope Index (PSI) is a measure of how 

one time series depends on another, which gives an 

indication of information flow in complex systems. We 

applied the PSI analysis to resting state fMRI data to 

direction of information flow between DMN regions. The 

PSI computed between the average reference region time 

series and GM voxels time series. For each reference 

region, we created PSI maps and then performed a 

second-level random effects analysis to create the 

significant positive and negative PSI maps.  

We applied Granger causality and PSI mapping for four 

DMN reference regions are PCC, MPFC, RLPC, and 

LLPC. Based on our results, we can note that similar 

patterns can be seen for some reference regions (e.g. 

PCC) and a significant difference between the two 

approaches for other reference regions (e.g. RLPC). Now, 

we compare between two approaches for each reference 

region. 

For PCC seed, the results for Granger causality and PSI 

patterns are shown in figure 3 and figure 8. The direction 

of interactions between PCC seed and GM voxels in 

group level for Granger Causality and PSI are shown in 

figure 7(a) and figure 12(a). For Granger causality and 

PSI, PCC seed has a strong directional influence upon the 

vMPFC, hippocampus and LLPC. The brain regions, 

RLPC, LLPC, thalamus, cuneus, and dMPFC show 

significant influence on PCC seed for the two 

approaches. These results indicate that, the two 

approaches explore the same influence direction for PCC 

reference region and brain regions. On the other hand, we 

can note some difference between the two approaches. 

The bidirectional (inflow and outflow) influence between 

the PCC seed and brain regions dMPFC and RLPC is 

detected only by Granger causality. For PSI approach, we 

can note only inflow influence from dMPFC and RLPC 

into PCC seed is in agreement with the findings in the 

previous studies using various approaches.
28,27

 

For MPFC seed, the Granger causality and PSI mapping 

results are shown in Figure 4 and Figure 9. The direction 

of interactions between MPFC seed and GM voxels for 

Granger causality and PSI are shown in Figure 7(b) and 

Figure 12(b). The direction of influence from the MPFC 

seed into RLPC, LLPC, and thalamus are detected in PSI 

and Granger causality approaches. The influence from 

cuneus, LLPC, and PCC into MPFC seed are detected in 

the two approaches. The bidirectional influence between 

MPFC seed and thalamus and cerebellum are detected 

only in Granger causality mapping. The influence 

directions for hippocampus, precuneus, and calcarine 

with MPFC for PSI mapping reverse the directions for 

Granger causality mapping. 

For RLPC seed, the Granger causality and PSI mapping 

results are shown in Figure 5 and Figure 10. The 

direction of interactions between RLPC seed and GM 

voxels in group level for Granger causality and PSI are 

shown in Figure 7(c) and Figure 12(c). We can note the 

significant difference in the influence from RLPC seed 

into GM voxels between PSI and Granger causality 

approaches. In PSI and Granger causality, the same 

directions of influence from vMPFC, thalamus, and 

hippocampus into RLPC are detected in the two 

approaches. The influence of Granger causality is the 

reverse of PSI influence between RLPC and PCC, 

dMPFC, precuneus, cerebellum and LLPC regions. In 

general, based on our results the PSI mapping is more 

accurate than Granger causality mapping because the 

RLPC has been showing outflow information more than 

in flow information.
27

 

Finally, for LLPC seed the results for Granger causality 

and PSI patterns are shown in Figure 6 and Figure 11. 

The direction of interactions between PCC seed and GM 

voxels in group level for Granger Causality and PSI are 

shown in Figure 7(d) and Figure 12(d). The influence 

between the LLPC seed and vMPFC, PCC, and 

hippocampus are detected in PSI and Granger causality 

mapping. The influence of Granger causality is reverse 

PSI influence between LLPC seed and cuneus, thalamus, 

RLPC and calcarine. The influence between dMPFC, and 

hippocampus are detected only in PSI mapping. 

In this study, we compare pair wise Granger causality and 

PSI approaches and interpret results of both methods 

which apply on the same resting state fMRI data set. 

Granger causality based on multivariate autoregressive 

models has been used to analyse directions of information 

flow in multi-channel time series. On the other hand, PSI 

approach evaluates a slope of a phase of cross spectra 

between two fMRI time series and behaves better than 

Granger causality in noisy conditions. In some cases 

Granger causality gives fake albeit significant results. 

Granger causality has a tendency to detect causal 

connections even in the case when they are not present. 

PSI is insensitive to mixture of independent sources, 

gives meaningful results even if the phase spectrum is not 



Hassan Saleh IE. Int J Res Med Sci. 2014 Feb;2(1):47-58 

International Journal of Research in Medical Sciences | January-March 2014 | Vol 2 | Issue 1    Page 57 

linear, and properly weights contributions from different 

frequencies. 

The final fMRI signal arises from a complex chain of 

processes that we can classify into neuronal, 

physiological and physical processes,
33 

each of which 

contain some crucial parameters and variables and have 

been modelled in various ways. The problem is 

particularly important in fMRI time series: A certain area 

X can cause a response in another area Y through 

neuronal activity, but the hemodynamic responses in X 

might appear much later than those in Y. This would 

imply that Y Granger-caused X. On the other hand, it is 

important to eliminate spurious causalities that may 

appear when time series are both influenced by the other 

external sources that are not taken into account from the 

Granger causality analysis. 

It is well known that a pairwise evaluation for 

multivariate data has the limits that one cannot discern 

whether the influence between two time series is direct or 

is mediated by the other.
34 

The classical pairwise Granger 

causality approaches have been widely used in previous 

fMRI studies. However, the pairwise Granger causality 

mapping approaches do not clearly distinguish between 

direct causal influences between one brain region and 

another indirect influences from a third factor, also the 

multivariate causality relationships are difficult to 

interpret and compare across subjects in group analysis. 

This could lead to erroneous conclusions about the 

relationships between regions in fMRI studies.
27 

 

To conclude, the PSI based approach is non-parametric 

and has several advantages over parametric approaches 

such as multivariable autoregressive models, which are 

used to compute Granger causality, directed transfer 

functions, and partially directed coherence. We showed 

that the Granger causality and PSI mapping for fMRI 

resting state data set. The PSI approach proposed herein 

is effective, computationally efficient, and easy to 

interpret. We note that, PSI influence directions between 

reference regions and GM voxels were consistent more 

than Granger causality with the previous results.  
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