Interval Valued Fuzzy Ideals of Near-rings and its Anti- homomorphism

V. Vetrivel, P. Murugadas^{\dagger}

 * Department of Mathematics, Annamalai University, Annamalainagar-608002, India.
[†] Department of Mathematics, Govt. Arts and Science College, Karur-639005, India.

Abstract: Aim of this study is to investigate anti-homomorphic images and preimages of semiprime and primary ideals in interval valued fuzzy Near-rings. Further some results on f-invariant interval valued fuzzy ideal, f-invariant strongly primary interval valued fuzzy ideal and f-invariant semiprime interval valued fuzzy ideals of Near-rings are discussed.

2010 AMS Classification: 03E72, 08A72 and 13A15

Keywords: Semiprime, primary ideal and f-invariant.

1 Introduction

The notion of a fuzzy set was introduced by Zadeh [13] in 1965, utilizing which Rosenfeld [11] has defined fuzzy subgroups. In 1975, Zadeh [16] investigated the notion of interval valued fuzzy subsets (in short i-v fuzzy subsets) where the values of the membership functions are closed intervals of numbers instead of single numbers. Liu introduced the concept of a fuzzy ideal of a near-ring in [8]. The concepts of prime fuzzy ideals, primary fuzzy ideals for ring were introduced in [9]. In 1991, Abou-Zaid [1] also exposed some results in fuzzy subnear-rings and fuzzy ideals in

^{*}vetrivelmath@gmail.com

[†]bodi_muruga@yahoo.com

near-rings. Jun and Kim [4] and Davvaz [5] applied a few concepts of interval valued fuzzy subsets in near-rings. Sheikabdullah and Jeyaraman has discussed anti-homomorphic images and pre-images of prime fuzzy ideals and anti-homomorphic image of primary fuzzy ideals in a ring in [13].

The aim of this paper is to define and study i-v fuzzy primary ideals of a near ring N and investigate anti-homomorphic images and pre-images of semi-prime, strongly primary i-v fuzzy ideals.

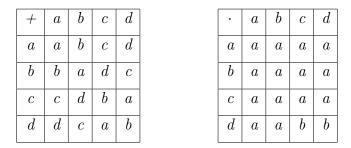
2 Preliminaries

Definition 2.1. [15] A non-empty set N with two binary operations + and . is called a near-ring if:

i. (N, +) is a group ii. (N, .) is a semigroup iii. x.(y + z) = x.y + x.z for all $x, y, z \in N$. We will use the word Near-ring to mean left near-ring.

Definition 2.2. [15] Let X be a non-empty universal set. A fuzzy subset μ of X is a function $\mu: X \to [0, 1]$.

Example 2.3. Let $N = \{a, b, c, d\}$ be the Klein's four group. Define addition and multiplication in N as follows.



Here (N, +, .) is a left near-ring. Define an interval valued fuzzy subset $\overline{\mu} : N \to D[0, 1]$ by

 $\overline{\mu}(a) = [0.7, 0.8], \ \overline{\mu}(b) = [0.5, 0.6], \ \overline{\mu}(c) = [0.3, 0.4] = \overline{\mu}(d).$ It can be verified that $\overline{\mu}$ is an i-v fuzzy ideal of N.

Definition 2.4. [15] An interval number \overline{a} on [0,1] is a closed subinterval of [0,1], that is, $\overline{a} = [a^-, a^+]$ such that $0 \le a^- \le a^+ \le 1$ where a^- and a^+ are the lower and upper end limits of \overline{a} respectively. The set of all closed subintervals of [0,1] is

denoted by D[0,1]. We also identify the interval [a,a] by the number $a \in [0,1]$. For any interval numbers $\overline{a}_i = [a_i^-, a_i^+], \overline{b}_i = [b_i^-, b_i^+] \in D[0,1], i \in I$, we define $\max^i \{\overline{a}_i, \overline{b}_i\} = [\max^i \{a_i^-, b_i^-\}, \max^i \{a_i^+, b_i^+\}],$ $\min^i \{\overline{a}_i, \overline{b}_i\} = [\min^i \{a_i^-, b_i^-\}, \min^i \{a_i^+, b_i^+\}],$ $\inf^i \overline{a}_i = \Big[\bigcap_{i \in I} a_i^-, \bigcap_{i \in I} a_i^+\Big], \sup^i \overline{a}_i = \Big[\bigcup_{i \in I} a_i^-, \bigcup_{i \in I} a_i^+\Big]$

In this notation $\overline{0} = [0,0]$ and $\overline{1} = [1,1]$. For any interval numbers $\overline{a} = [a^-, a^+]$ and $\overline{b} = [b^-, b^+]$ on [0,1], define

(1) $\overline{a} \leq \overline{b}$ if and only if $a^- \leq b^-$ and $a^+ \leq b^+$.

(2) $\overline{a} = \overline{b}$ if and only if $a^- = b^-$ and $a^+ = b^+$.

(3) $\overline{a} < \overline{b}$ if and only if $\overline{a} \leq \overline{b}$ and $\overline{a} \neq \overline{b}$

(4) $k\overline{a} = [ka^-, ka^+]$, whenever $0 \le k \le 1$.

Definition 2.5. [15] Let X be any set. A mapping $\overline{A} : X \to D[0,1]$ is called an interval-valued fuzzy subset (briefly, i-v fuzzy subset) of X where D[0,1] denotes the family of all closed subintervals of [0,1] and $\overline{A}(x) = [A^-(x), A^+(x)]$ for all $x \in X$, where A^- and A^+ are fuzzy subsets of X such that $A^-(x) \leq A^+(x)$ for all $x \in X$.

Note that $\overline{A}(x)$ is an interval (a closed subset of [0,1]) and not a number from the interval [0,1] as in the case of fuzzy subset.

Definition 2.6. [15] A mapping $min^i : D[0,1] \times D[0,1] \rightarrow D[0,1]$ defined by $min^i(\overline{a},\overline{b}) = [min\{a^-,b^-\}, min\{a^+,b^+\}]$ for all $\overline{a},\overline{b} \in D[0,1]$ is called an interval min-norm.

Definition 2.7. [15] A mapping $max^i : D[0,1] \times D[0,1] \rightarrow D[0,1]$ defined by $max^i(\overline{a},\overline{b}) = [max\{a^-,b^-\}, max\{a^+,b^+\}]$ for all $\overline{a},\overline{b} \in D[0,1]$ is called an interval max-norm.

Definition 2.8. [15] Let N be a near-ring. An i-v fuzzy set μ of N is called an i-v fuzzy subnear-ring of N if for all $x, y \in N$, (i) $\mu(x-y) \ge \min^i \{\mu(x), \ \mu(y)\},$ (ii) $\mu(xy) \ge \min^i \{\mu(x), \ \mu(y)\}.$

Definition 2.9. [15] An *i*-v fuzzy subset $\overline{\mu}$ of a Near-ring N is called an *i*-v fuzzy ideal of N if $\overline{\mu}$ is an *i*-v fuzzy sub near-ring of N and (*i*) $\overline{\mu}(x) = \overline{\mu}(y + x - y)$ (*ii*) $\overline{\mu}(xy) \ge \overline{\mu}(y)$ (*iii*) $\overline{\mu}((x + i)y - xy) \ge \overline{\mu}(i)$ for any $x, y, i \in N$ **Proposition 2.10.** [15] The anti-homomorphic image of an i-v fuzzy ideal of N is an i-v fuzzy ideal of N'.

Proposition 2.11. [15] The homomorphic pre-image of an i-v fuzzy ideal of N' is an i-v fuzzy ideal of N.

3 Main Results

Definition 3.1. An *i*-v fuzzy ideal $\overline{\mu}$ of a near-ring N is called an *i*-v prime fuzzy ideal if for any two *i*-v fuzzy ideals $\overline{\sigma}$ and $\overline{\theta}$ of N the condition $\overline{\sigma}\overline{\theta} \subseteq \overline{\mu}$ implies that $\overline{\sigma} \subseteq \overline{\mu}$ or $\overline{\theta} \subseteq \overline{\mu}$.

Definition 3.2. For an *i*-v fuzzy ideal $\overline{\mu}$ of a near-ring, the *i*-v fuzzy radical of $\overline{\mu}$, denoted by $\sqrt{\overline{\mu}}$, is defined by $\sqrt{\overline{\mu}} = \bigcap \{\overline{\sigma} : \overline{\sigma} \text{ is an } i\text{-v fuzzy prime ideal of } N, \ \overline{\sigma} \subseteq \overline{\mu}, \ \overline{\sigma}_* \subseteq \overline{\mu}_* \}$. We denote $\overline{\mu}_* = \{x \in N : \overline{\mu}(x) = \overline{\mu}(0)\}$

Definition 3.3. An *i*-v fuzzy ideal $\overline{\mu}$ of a near-ring N is known as *i*-v fuzzy primary ideal if $\overline{\sigma}\overline{\theta} \subseteq \overline{\mu}$, then either $\overline{\sigma} \subseteq \overline{\mu}$ or $\overline{\theta} \subseteq \sqrt{\overline{\mu}}$.

Definition 3.4. An *i*-v fuzzy ideal $\overline{\mu}$ if a near-ring N is called *i*-v strongly primary fuzzy ideal of a near-ring N if $\overline{\mu}$ is an *i*-v primary fuzzy ideal and $(\sqrt{\overline{\mu}})^n \subseteq \overline{\mu}$ for some $n \in N$.

Definition 3.5. An *i*-v fuzzy ideal $\overline{\mu}$ of a near-ring N is called *i*-v semi-prime if for any *i*-v fuzzy ideal $\overline{\sigma}$ of N, $\overline{\sigma}^2 \subseteq \overline{\mu}$, then $\overline{\sigma} \subseteq \overline{\mu}$.

Definition 3.6. Let X and Y be two non-empty sets, $f : X \to Y$, $\overline{\mu}$ and $\overline{\sigma}$ be an *i-v* fuzzy subsets of X and Y respectively then $f(\overline{\mu})$, the image of $\overline{\mu}$ under f is an *i-v* fuzzy subset of Y denoted by

$$f(\overline{\mu})(y) = \begin{cases} \sup^{i}(x) : f(x) = y & \text{if } f^{-1}(y) \neq \phi, \\ 0 & \text{if } f^{-1}(y) = \phi. \end{cases}$$

And $f^{-1}(\overline{\sigma})$, the pre-image of $\overline{\sigma}$ under f is an i-v fuzzy subset of X defined by $f^{-1}(\overline{\sigma})(x) = \overline{\sigma}(f(x)) \ \forall x \in X$.

Definition 3.7. If $\overline{\lambda}$ is an *i*-v fuzzy subset of N, then $\overline{\lambda}$ is said to have the sup property if for every subset Y of N, there exists $y_0 \in Y$ such that $\overline{\lambda}(y_0) = \{\overline{\lambda}(y) | y \in Y\}$.

Definition 3.8. Let I be a non-empty i-v fuzzy subset of N. Define a function \overline{C}_I : $N \to D[0,1]$ by

$$\overline{C}_I(x) = \begin{cases} \overline{1} & \text{if } x \in I, \\ \overline{0} & \text{otherwise} \end{cases}$$

for all $x \in N$. Clearly \overline{C}_I is an i-v fuzzy subset of N. \overline{C}_I is called the i-v characteristic function of I. If the replace I by N, \overline{C}_N is the i-v characteristic function of N.

Definition 3.9. Let N and N' be two near-rings, a mapping $f : N \to N'$ is called an *i*-v fuzzy homomorphism if $f(\overline{\mu} + \overline{\sigma}) = f(\overline{\mu}) + f(\overline{\sigma})$ and $f(\overline{\mu} \ \overline{\sigma}) = f(\overline{\mu})f(\overline{\sigma})$ where $\overline{\mu}$ and $\overline{\sigma}$ are *i*-v fuzzy ideals of N.

Definition 3.10. Let N and N' be two near-rings, a mapping $f : N \to N'$ is called an *i*-v fuzzy anti-homomorphism if $f(\overline{\mu} + \overline{\sigma}) = f(\overline{\mu}) + f(\overline{\sigma})$ and $f(\overline{\mu} \ \overline{\sigma}) = f(\overline{\sigma}) \ f(\overline{\mu})$ where $\overline{\mu}$ and $\overline{\sigma}$ are *i*-v fuzzy ideals of N.

Definition 3.11. Let $f: N \to N'$. An *i*-v fuzzy subset $\overline{\mu}$ of a near-ring is called f invariant if

 $f(x) = f(y) \text{ implies } \overline{\mu}(x) = \overline{\mu}(y), \ x, y \in N.$

Definition 3.12. N is called a fuzzy multiplication near-ring if for any two i-v fuzzy ideals \overline{g} and \overline{h} of N such that $\overline{g} \subseteq \overline{h}$, there exists a fuzzy ideal \overline{f} of N such that $\overline{g} = \overline{h} \circ \overline{f}$.

Theorem 3.13. If \overline{h} is a prime *i*-*v* fuzzy ideal of a fuzzy multiplication near ring Nand \overline{g} is any *i*-*v* fuzzy ideal of N such that $\overline{h} \subseteq \overline{g}$, then $\overline{h} = \overline{h} \circ \overline{g}$ and $\overline{h} = \overline{g} \overset{\omega}{}$ or $\overline{h} = \overline{h} \circ \overline{g} \overset{\omega}{}$, where $\overline{g} \overset{\omega}{=} \cap \{\overline{g} \ ^{i} | i \in N \setminus \{0\}\}.$

Proof. Since $\overline{h} \subseteq \overline{g}$ and N is an i-v fuzzy multiplication near-ring, there exists an i-v fuzzy ideal \overline{k} of N such that $\overline{h} = \overline{g} \circ \overline{k}$. Then since \overline{h} is prime, $\overline{h} \supseteq \overline{k}$. Now $\overline{h} = \overline{g} \circ \overline{k} \subseteq \overline{k}$. Thus $\overline{h} = \overline{k}$ and hence $\overline{h} = \overline{g} \circ \overline{h}$. It now follows that $\overline{h} = \overline{g} \overset{\omega}{}$ or $\overline{h} = \overline{h} \circ \overline{g} \overset{\omega}{}$.

Theorem 3.14. If $\sqrt{\overline{f}}$ is an *i*-v prime fuzzy ideal, then \overline{f} is an *i*-v primary.

Proof. Let $\overline{g} \equiv \sqrt{\overline{f}}$. If $\overline{g} = \overline{C}_N$, then clearly \overline{f} is an i-v primary. Assume $\overline{g} \neq \overline{C}_N$. Suppose that f is not i-v primary. Then there exist i-v fuzzy points \overline{x}_r , \overline{y}_t such that $\overline{x}_r \circ \overline{y}_t \subseteq \overline{f}$, $\overline{x}_r \subseteq \overline{g}$, but $\overline{x}_r \not\subseteq \overline{f}$ and $\overline{y}_t^n \not\subseteq \overline{f}$ for all n > 0. Let $\overline{k} = \overline{f} \cup \overline{g} \circ (\overline{x}_r \circ \overline{C}_N)$. Clearly, \overline{k} is an i-v fuzzy ideal of N. Suppose $\overline{x}_r \subseteq \overline{k}$. Then since $\overline{x}_r \not\subseteq \overline{f}$, $\overline{x}_r \subseteq \overline{g} \circ (\overline{x}_r \circ \overline{C}_N)$. Thus $(\overline{g} \circ (\overline{x}_r \circ \overline{C}_N))(x) \ge r$, $\overline{\mathrm{or}} \lor \{g(a) \land (x_r \circ \overline{C}_N)(b) | x = ab\} \ge r$. Since \overline{f} has the sup property, \overline{g} also possesses the sup property. Hence there exists $z \in S$ such that $\overline{g}(z) \geq \overline{r}$ and x = zxs = xzs. Thus $\overline{f}(z^n) \geq \overline{r}$, for some n > 0. Now $x = xz^n s^n$ and since \overline{f} is an i-v fuzzy ideal, $\overline{f}(x) = \overline{f}(xz^n s^n) \geq \overline{f}(z^n) \geq \overline{r}$, i.e. $\overline{x}_r \subseteq \overline{f}$, a contradiction. Hence $\overline{x}_r \not\subseteq \overline{k}$. Now, $\overline{k} \cup \overline{x}_r \circ \overline{C}_N \subseteq \overline{g}$. Thus there exists an i-v fuzzy ideal \overline{h} of N such that $\overline{k} \cup \overline{x}_r \circ \overline{C}_N = \overline{g} \circ \overline{h}$. Again since $\overline{y}_t \not\subseteq \overline{g}, \ \overline{g} \subseteq \overline{g} \cup \overline{y}_t \circ \overline{C}_N$. Then by Theorem 3.13 $\overline{g} = \overline{g} \circ (\overline{g} \cup \overline{y}_t \circ \overline{C}_N)$. Now $\overline{k} \cup \overline{x}_r \circ \overline{C}_N = \overline{g} \circ \overline{h} = \overline{g} \circ (\overline{g} \cup \overline{y}_t \circ \overline{C}_N) \circ \overline{h} = \overline{g} \circ \overline{h} \circ (\overline{g} \cup \overline{y}_t \circ \overline{C}_N)$ (since N is commutative) $= (\overline{k} \cup \overline{x}_r \circ \overline{C}_N) \circ (\overline{g} \cup \overline{y}_t \circ \overline{C}_N) \subseteq \overline{k}$. Hence $\overline{x}_r \subseteq \overline{k}$, a contradiction. Therefore, \overline{f} is an i-v primary.

Corollary 3.15. Let \overline{f} be an *i*-*v* prime. Then for all positive integers n, \overline{f}^{n} is an *i*-*v* primary and its *i*-*v* fuzzy radical is \overline{f} .

Proof. We first prove that $\sqrt{\overline{f}^n} = \overline{f}$ for all n > 0. If n = 1, the result is obvious. Let n > 1. Then $\sqrt{\overline{f}^n(x)} = \vee\{\overline{f}^n(x^m)|m>0\} \ge \overline{f}^n(x^n) \ge \overline{f}(x)$ for all $x \in N$. Since \overline{f} is an i-v prime, $\overline{f}(x) = \sqrt{\overline{f}(x)} = \vee\{\overline{f}(x^m)|m>0\} \ge \{\overline{f}^n(x^m)|m>0\} \ge \{\overline{f}^n(x^m)|m>0\} = \sqrt{\overline{f}^n(x)}$ for all $x \in N$. Hence $\sqrt{\overline{f}^n} = \overline{f}$. The desired result follows from Theorem 3.14

Theorem 3.16. Let \overline{f} be an *i*-*v* prime fuzzy ideal and $\overline{f}^n \neq \overline{f}^{n+1}$ for all n > 0. Then \overline{f}^{ω} is an *i*-*v* prime fuzzy ideal.

Proof. Let $\overline{x}_l, \overline{y}_m$ an *i*-v fuzzy points such that $\overline{x}_l \not\subseteq \overline{f}^{\omega}$ and $\overline{y}_m \not\subseteq \overline{f}^{\omega}$. We show that $\overline{x}_l \circ \overline{y}_m \not\subseteq \overline{f}^{\omega}$. If $\overline{x}_l \not\subseteq \overline{f}, \overline{y}_m \not\subseteq \overline{f}$, then since \overline{f} is an *i*-v prime, $\overline{x}_l \circ \overline{y}_m \not\subseteq \overline{f}$ and so $\overline{x}_l \circ \overline{y}_m \not\subseteq f^{\omega}$. Suppose $\overline{x}_l \subseteq f, \overline{y}_m \not\subseteq \overline{f}$. Since $\overline{x}_l \not\subseteq f^{\omega}$, there exists a positive integer p such that $\overline{x}_l \subseteq \overline{f}^p, \overline{x}_l \not\subseteq \overline{f}^{p+1}$. Since by Corollary 3.15 \overline{f}^{P+1} is an *i*-v primary fuzzy ideal with *i*-v fuzzy radical $\overline{f}, \overline{x}_l \circ \overline{y}_m \not\subseteq \overline{f}^{p+1}$ and so $\overline{x}_l \circ \overline{y}_m \not\subseteq \overline{f}^{\omega}$. The case when $\overline{x}_l \not\subseteq \overline{f}, \overline{y}_m \subseteq \overline{f}$ is similar.

Finally, let $\overline{x}_l, \overline{y}_m \subseteq \overline{f}$ is bilinear. Finally, let $\overline{x}_l, \overline{y}_m \subseteq \overline{f}$. Then there exist positive integers q, r such that $\overline{x}_l \subseteq \overline{f}^q, \overline{x}_l \not\subseteq \overline{f}^{q+1}$ and $\overline{y}_m \subseteq \overline{f}^r, \overline{y}_m \not\subseteq \overline{f}^{r+1}$. Then $\overline{x}_l \circ \overline{C}_N \subseteq \overline{f}^q, \overline{y}_m \circ \overline{C}_N \subseteq \overline{f}^r$. Since N is an i-v fuzzy multiplication near ring, there exist i-v fuzzy ideals \overline{g}, h of N such that $\overline{x}_l \circ \overline{C}_N = \overline{f}^q \circ \overline{g}, \overline{y}_m \circ \overline{C}_N \equiv \overline{f}^r \circ \overline{h}, \overline{h}, \overline{g} \not\subseteq \overline{f}$. Now, if $\overline{x}_l \circ \overline{y}_m \subseteq \overline{f}^{q+r+1}$, then $f^{q+r} \circ \overline{h} \circ \overline{g} = (f^q \circ \overline{g})(\overline{f}^r \circ h) = \overline{x}_l \circ \overline{y}_m \circ \overline{C}_N \subseteq \overline{f}^{q+r+1}$. Since \overline{f}^{q+r+1} is an i-v primary fuzzy ideal with i-v fuzzy radical \overline{f} and $\overline{h} \circ \overline{g} \not\subseteq \overline{f}$ (since \overline{f} is an i-v prime), $\overline{f}^{q+r} \subseteq \overline{f}^{q+r+1}$. Also $\overline{f}^{q+r} \supseteq \overline{f}^{q+r+1}$. Thus $\overline{f}^{q+r} = \overline{f}^{q+r+1}$, a contradiction. Hence $\overline{x}_l \circ \overline{y}_m \not\subseteq \overline{f}^{q+r+1}$, i.e., $\overline{x}_l \circ \overline{y}_m \not\subseteq \overline{f}^{\omega}$. Thus \overline{f}^{ω} is an i-v prime fuzzy ideal.

Theorem 3.17. If \overline{f} is an *i*-v primary fuzzy ideal, then $\overline{f} = \overline{g}^n$ for some positive integer n, where $g = \sqrt{\overline{f}}$.

Proof. If $\overline{g} = \overline{C}_N$, then $\overline{f} = \overline{C}_N$. Assume $\overline{g} \neq \overline{C}_N$. Suppose $\overline{f} \subseteq \overline{g}^{\omega}$. Now \overline{g} is an i-v prime fuzzy ideal of N having the sup property. If $\overline{g}^n \neq \overline{g}^{n+1}$ for all n > 0, then by Theorem 3.16, \overline{g}^{ω} is an i-v prime. Thus $\overline{g} = \sqrt{\overline{f}} \subseteq \sqrt{\overline{g}^{\omega}} = \overline{g}^{\omega}$, a contradiction. Thus either $\overline{f} \subseteq \overline{g}^n = \overline{g}^{n+1}$ for some n > 0, or $\overline{f} \subseteq \overline{g}^n$, but $\overline{g} \not\subseteq \overline{g}^{n+1}$ for some n > 0. In the first case, let $\overline{x}_r \subseteq \overline{g}^n$. Then $\overline{x}_r \circ \overline{C}_N \subseteq \overline{g}^n$. Also, there exists an i-v fuzzy ideal \overline{h} of N such that $\overline{x}_r \circ \overline{C}_N = \overline{g}^n \circ \overline{h}$. Thus $\overline{x}_r \subseteq \overline{x}_r \circ \overline{C}_N = \overline{g}^n \circ \overline{h} = \overline{g}^{n+1} \circ \overline{h} = \overline{g} \circ (\overline{x}_r \circ \overline{C}_N)$. Then as in Theorem 3.14, it can be shown that $\overline{x}_r \subseteq \overline{f}$. Hence $\overline{f} = \overline{g}^n$.

In second case, there exists an i-v fuzzy ideal \overline{k} of N such that $\overline{f} = \overline{g}^n \circ \overline{k}, \overline{k} \not\subseteq \overline{g}$. Since \overline{f} is an i-v primary and $\overline{k} \not\subseteq \overline{g}, \overline{g}^n \not\subseteq \overline{f}$. Hence $\overline{f} = \overline{g}^n$.

Let $\overline{f}, \overline{g}$ be two i-v fuzzy ideals of N. Define the fuzzy subset $\overline{f} : \overline{g}$ of N as follows: $\overline{f} : \overline{g} = \bigcup \{\overline{h} | \overline{h} \text{ is an i-v fuzzy ideal of } N \text{ such that } \overline{h} \circ \overline{g} \subseteq \overline{f} \}.$ It follows easily that $\overline{f} : \overline{g}$ is an i-v fuzzy ideal of N.

Theorem 3.18. If \overline{f} is a proper prime *i*-*v* fuzzy ideal and \overline{g} is an *i*-*v* fuzzy ideal of *N* such that $\overline{g} \subseteq \overline{f}^n$ and $\overline{g} \not\subseteq \overline{f}^{n+1}$ for some n > 0, then $\overline{f}^n = \overline{g} : (\overline{y}_t \circ \overline{C}_N)$, where $\overline{y}_t \not\subseteq \overline{f}$.

Proof. Since $\overline{g} \subseteq \overline{f}^n$, there exists an i-v fuzzy ideal \overline{h} of N such that $\overline{g} = \overline{f}^n \circ \overline{h}, \overline{h} \not\subseteq \overline{f}$. Let $\overline{y}_t \subseteq \overline{h}, \overline{y}_t \not\subseteq f$. Then $\overline{y}_t \circ \overline{C}_N \subseteq \overline{h}$ and $\overline{f}^n \circ (\overline{y}_t \circ \overline{C}_N) \subseteq \overline{f}^n \circ \overline{h} = \overline{g}$. Thus $\overline{f}^n \subseteq g : (\overline{y}_t \circ \overline{C}_N)$. Now let k be any i-v fuzzy ideal of N such that $\overline{k} \circ (\overline{y}_t \circ \overline{C}_N) \subseteq \overline{g}$. Then $\underline{k} \circ (\overline{y}_t) \circ \overline{C}_N \subseteq \overline{f}^n$. Now since by Corollary 3.15, \overline{f}^n is i-v primary with fuzzy radical f and $\overline{y}_t \circ \overline{C}_N \not\subseteq f, k \subseteq \overline{f}^n$. Therefore, $\overline{g} : (\overline{y}_t \circ \overline{C}_N) \subseteq \overline{f}^n$ and hence $\overline{f}^n = \overline{g} : (\overline{y}_t \circ \overline{C}_N)$.

Proposition 3.19. Let $f : N \to N'$ be a surjective near-ring anti-homomorphism and $\overline{\mu}'$ is an *i*-v fuzzy prime ideal of N', then $f^{-1}(\overline{\mu}')$ is an *i*-v fuzzy prime ideal of N.

Proof. Let $\overline{\mu}$ and $\overline{\sigma}$ be two i-v fuzzy ideals of N such that $\overline{\mu} \ \overline{\sigma} \subseteq f^{-1}(\overline{\mu}')$ $\Rightarrow f(\overline{\mu} \ \overline{\sigma} \subseteq \overline{\mu}')$ $\Rightarrow f(\overline{\sigma}) f(\overline{\mu}) \subseteq \overline{\mu}'$ Since $\overline{\mu}'$ is an i-v fuzzy prime ideal of N' $\Rightarrow f(\overline{\sigma}) \subseteq \overline{\mu}'$ or $f(\overline{\mu}) \subseteq \overline{\mu}'$ $\Rightarrow \overline{\sigma} \subseteq f^{-1}(\overline{\mu}')$ or $\overline{\mu} \subseteq f^{-1}(\overline{\mu}')$ Therefore $f^{-1}(\overline{\mu}')$ is an i-v fuzzy prime ideal of N.

Proposition 3.20. Let $f : N \to N'$ be a surjective near ring anti- homomorphism and $\overline{\mu}'$ is an i-v primary fuzzy ideal of N', then $f^{-1}(\overline{\mu}')$ is an i-v primary fuzzy ideal of N. Proof. Let $\overline{\mu}$ and $\overline{\sigma}$ be two i-v fuzzy ideals of N. Such that $\overline{\mu\sigma} \subseteq \overline{f}^{-1}(\overline{\mu}')$ and $\overline{\sigma} \not\subseteq f^{-1}(\overline{\mu}')$ $\Rightarrow f(\overline{\mu\sigma}) \subseteq \overline{\mu}'$ and $f(\overline{\sigma}) \not\subseteq \overline{\mu}'$ $\Rightarrow f(\overline{\sigma})f(\overline{\mu}) \subseteq \overline{\mu}'$ and $f(\overline{\sigma}) \not\subseteq \overline{\mu}'$ $\Rightarrow f(\overline{\mu}) \subseteq \sqrt{\overline{\mu}'}$ (Since $\overline{\mu}'$ is an i-v primary fuzzy ideal) $\Rightarrow \overline{\mu} \subseteq f^{-1}\sqrt{\overline{\mu}'}$ $\Rightarrow \overline{\mu} \subseteq \sqrt{f^{-1}(\overline{\mu}')}$ Therefore $f^{-1}(\overline{\mu}')$ is an i-v primary fuzzy ideal of N.

Lemma 3.21. If $\overline{\mu}$ is an *i*-*v* primary fuzzy ideal of a near-ring N, then $\sqrt{\overline{\mu}}$ is an *i*-*v* prime fuzzy ideal of N.

Proof. Let $\overline{\sigma}$ and $\overline{\theta}$ be two i-v fuzzy ideals of N such that $\overline{\sigma} \ \overline{\theta} \subseteq \sqrt{\overline{\mu}}$ and $\overline{\sigma} \not\subseteq \sqrt{\overline{\mu}}$ $\Rightarrow \overline{\sigma} \ \overline{\theta} \subseteq \overline{\mu}$ and $\overline{\sigma} \not\subseteq \overline{\mu}$. Since $\overline{\mu}$ is an i-v primary fuzzy ideal, $\overline{\theta} \subseteq \sqrt{\overline{\mu}}$. Therefore $\sqrt{\overline{\mu}}$ is an i-v prime fuzzy ideal of N.

Proposition 3.22. Let $f : N \to N'$ be a surjective near-ring anti-homomorphism. If $\overline{\mu}$ is an f-invariant i-v fuzzy ideal of N and $\overline{\mu}$, an i-v fuzzy primary ideal of N, then $f(\overline{\mu})$ is an i-v fuzzy primary ideal of N'.

Proof. Let $\overline{\sigma}'$ and $\overline{\theta}'$ be two i-v fuzzy ideals of N' such that $\overline{\sigma}'\overline{\theta}' \subseteq f(\overline{\mu})$ and $\overline{\sigma}' \not\subseteq f(\overline{\mu})$ $\Rightarrow f^{-1}(\overline{\sigma}'\overline{\theta}') \subseteq f^{-1}f(\overline{\mu})$ $\Rightarrow f^{-1}(\overline{\sigma}'\overline{\theta}') \subseteq \overline{\mu}$ and $f^{-1}(\overline{\sigma}' \subseteq \overline{\mu})$ $f^{-1}(\overline{\sigma}')f^{-1}(\overline{\theta}') \subseteq \overline{\mu}$ and $f^{-1}(\overline{\sigma}') \not\subseteq \overline{\mu}$ $\Rightarrow f^{-1}(\overline{\theta}') \subseteq \sqrt{\overline{\mu}}$ (Since $\overline{\mu}$ is an i-v primary fuzzy ideal) $\Rightarrow \overline{\theta}' \subseteq \sqrt{f(\overline{\mu})}$. Therefore $f(\overline{\mu})$ is an i-v fuzzy primary ideal of N'.

Proposition 3.23. For a surjective near-ring anti-homomorphism $f : N \to N'$, if $\overline{\mu}$ is an *f*-invariant *i*-*v* strongly primary fuzzy ideal of N then $f(\overline{\mu})$ is an *i*-*v* strongly primary fuzzy ideal of N'.

Proof. Let $\overline{\mu}$ be an f - invariant i-v strongly primary fuzzy ideal of N. $\Rightarrow \overline{\mu}$ is an i-v primary fuzzy ideal and $(\sqrt{\overline{\mu}})^n \subset \overline{\mu}$ for some $n \in N$ $\Rightarrow f(\overline{\mu})$ is an i-v primary fuzzy ideal of N'. Since $f(\overline{\mu})$ is an i-v primary fuzzy ideal of N', $\sqrt{f(\overline{\mu})}$ is an i-v prime fuzzy ideal of N'. (By Lemma 3.21) Since $\sqrt{f(\overline{\mu})} = \wedge \{f(\overline{\sigma}), f(\overline{\sigma}) \text{ is an i-v fuzzy prime ideal of } N', f(\overline{\sigma}) \subseteq f(\overline{\mu}) \}$. Therefore $(\sqrt{f(\overline{\mu})}^n \subset f(\overline{\mu}) \text{ for some } N \in N.$ Hence $f(\overline{\mu})$ is an i-v strongly primary fuzzy ideal of N'.

Proposition 3.24. For a surjective near-ring homomorphism $f : N \to N'$, if $\overline{\mu}$ is an *i*-v semi prime fuzzy ideal of N', then $f^{-1}(\overline{\mu}')$ is an *i*-v semi prime fuzzy ideal of N.

Proof. Given $\overline{\mu}'$ is an i-v semi prime fuzzy ideal of N'. $\Rightarrow \overline{\mu}'$ is an i-v fuzzy ideal of N' and $\overline{\mu}^2(x) = \overline{\mu}(x)$ for all $x \in N$. $\Rightarrow f^{-1}(\overline{\mu}')$ is an i-v fuzzy ideal of N. Let $f^{-1}(\overline{\mu}') = \overline{\mu} \Rightarrow (\overline{\mu}') = f(\overline{\mu})$ Now $\overline{\mu}' = \overline{\mu}'\overline{\mu}' = f(\overline{\mu}) f(\overline{\mu}) = f(\overline{\mu} \ \overline{\mu}) = f(\overline{\mu}^2)$ $\Rightarrow \overline{\mu}^2 = f^{-1}(\overline{\mu}') = \overline{\mu} \Rightarrow [f^{-1}(\overline{\mu}')]^2(x) = f^{-1}(\overline{\mu}')(x)$ for all $x \in N$.

Conclusion

In this article it is shown that for an i-v primary fuzzy ideal of a near ring $N, \sqrt{\overline{\mu}}$ is an i-v prime fuzzy ideal. Further it has been proved for a f-invariant and i-v fuzzy primary ideal $\overline{\mu}$ of $N, f(\overline{\mu})$ is also an i-v fuzzy primary ideal.

References

- S. Abou-zaid, on fuzzy sub near-rings and ideals, Fuzzy Sets Systems, 44, (1991), 139-146.
- [2] Seung Dongn Kim and HeeSik Kim, On fuzzy ideals of Near-Rings, Bull. Korean math. Soc. 33 (4) (1996), pp. 593-601.
- [3] R. Gilmer, Multiplicative ideal theory, Marcel Dekker. New York, 1972. MR0427289(55 No.323)
- [4] Jun. Y.B and Kim.K.H, interval valued fuzzy R-subgroups of nearrings, Indian Journal of Pure and , Applied Mathematics, 33 (1) (2002) 71-80.
- [5] B. Davvaz, *Fuzzy ideals of near-rings with interval valued membership functions*, journals of Sciences, Islamic republic of Iran, 12 (2001), No. 2, 171-175.
- [6] R. Kumar, Fuzzy subgroups, fuzzy ideals and fuzzy cosets: some properties, Fuzzy Sets and Systems, 48 (1992), 267-274.
- [7] T.Kuraoka and N. Kuroki, On fuzzy quotient rings induced by fuzzy ideals, Fuzzy Sets and System, 47 (1992), 381-386.

- [8] W. Liu, Operations on fuzzy ideals, Fuzzy Sets and Systems, 8 (1983), 31-41.
- [9] D.S. Malik and J.N. Moderson, *Fuzzy maximal, radical and primary ideals of a ring*, Information Sciences, 53 (1991), 237-250.
- [10] T.K. Mukherjee and M.K Sen, On fuzzy ideals of a ring, Fuzzy Sets and Systems, 21 (1987), 99-104.
- [11] A. Rosenfeld, *Fuzzy groups*, Journal of Mathematical Analysis and Application, 35 (1971), 512-517.
- [12] Tariq Shah and Muhammad Sayeed, On fuzzy ideals in Rings and Antihomomorphism, International Mathematical Forum, Vol.7(16), (2002), 753-759.
- [13] A. Sheikabdullah and K. Jeyaraman, Anti-Homomorphisms in Fuzzy Ideals of Rings, Int.J. Contemp. Math. Sciences, Vol.5, 55 (2010), 2717-2721.
- [14] T. Shah and M. Saeed, Fuzzy ideals in Laskerian rings, 65, 1 (2013), 74-81
- [15] N. Thillaigovindan, V.Chinnadurai and S. Kadalarasi, Interval valued Fuzzy ideal of Near-rings, J. Fuzzy Math. 23 (2) (2015) 471-484.
- [16] L.A. Zadeh, *Fuzzy Sets*, Inform. and Control, 8 (1965), 338-353.