
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v9i2.5455

Article Received: 09 December 2020 Revised: 22 December 2020 Accepted: 27 January 2021 Publication: 28 February 2021

__

1

IJRITCC | February 2021, Available @ http://www.ijritcc.org

Software Testing Methodologies: A Information

Review

Prof. Sapana Desai

Masters of Computer Applications Department

Sarvajanik College of Engineering and Technology

Surat, India

sapana.desai@scet.ac.in

Prof. Prashant Keswani

Masters of Computer Applications Department

Sarvajanik College of Engineering and Technology

Surat, India

prashant.keswanii@scet.ac.in

Abstract—In today’s Complex era, the need for simplest software application has increased massively. The quality of such a

handy application along with adequate testing is the biggest challenge one can face. Software Testing is an integral part of any

software development which has to be followed right from the sapling phase of development. This paper focuses on testing

methodologies which are used prior along with testing techniques for quality assurance and best of the quality.

Keywords-Quality, Software Testing, Software Development, Methodologies, Techniques, Optimization of Testing.

I. INTRODUCTION

Software testing is an activity to identify the discremination

between system actual behaviour vs expected behaviour. It

mainly focuses on number of verification & validation

methodologies which helps to identify the functional as well as

non functional deviation of system behaviour from its expected

behaviour. Thereafter, the result shows the difference between

what the system is performing and what is ideal behaviour of

the system. Testing of any software includes identifying bugs,

faults, errors or any missing functionalities which are part of the

system being developed. The goal of the testing process is to

deliver bug free products along with measurable quality.

Software Testing can also be considered as a risk-based activity.

Main objective of testing is to minimize the pool of input data

being tested, identifying test cases, and visualizing risks

involved. [1].

Figure 1 shows the crucial relationship between the cost of

testing with errors which are being found. It clearly states that

cost will rise substantially in either of functionality testing or

non functionality testing. The decision of what to test and what

to reduce is crucial as it may lead to a missing number of bugs

which are important in terms of software testing aspect. The

objective of testing is to perform an ideal amount of testing to

cut down the extra testing efforts.[1]. As per figure 1, software

testing is the main component of quality assurance. Testing

importance is well understood by example of software being

used in different ranges including flight control[2] to locate and

launch rockets.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v9i2.5455

Article Received: 09 December 2020 Revised: 22 December 2020 Accepted: 27 January 2021 Publication: 28 February 2021

__

2

IJRITCC | February 2021, Available @ http://www.ijritcc.org

Figure 1. Software testing efforts (Courtesy [1])

Testing levels & steps vary from person to person & product to

product.The three basic steps in the software testing are Unit

testing, Integration testing and System testing which is being

tested either by software developer or software tester. The

testing mentioned above steps are inclusive in the Software

Development Lifecycle (SDLC). The primary role of diving the

entire software into modules is to make it testable. This is

termed as Unit Testing. Integration testing is the second step in

software testing. AFter Unit, all the modules are combined to

test how well the modules are working once it is being

combined. Lastly, the entire system is being tested to identify &

locate errors if any. Apart from this, testing makes sures that

integrated units do not affect or disturb the working of other

modules. However, a large complex software application

testing is highly time consuming as it involves more modules

and deliverables. The difficult part is to test and check every

scenario with all the possible combinations, which leads to an

alarming need for an optimized software process.[6]. Testing

cycle is mainly composed of several phases, from Test Planning

to the analysis of Test Results. Test Plan is the first phase in

testing which plans all the activities along with types of testing

involved which are to be conducted in the whole testing process.

The second phase of testing is development of phases where

tests are being developed followed by testing life cycle which

combines test cases & test scenarios. The outcome of this is

termed as Test resorts which is being analysed in the last stage

of testing termed as Test result analysis. In the last phase defect

analysis is done by a developer who has developed the software

or system ,this step can also be handled along with the client as

it helps not only in the better understanding of which tests can

be ignored but also it will help in identifying what to fix and

how to simplify the product [7].

II. CURRENT TESTING METHODOLOGIES

Generating test cases is the primary process of testing life cycle.

For test case generation, many techniques are used majorly

falling in either black box or white box category. Effective

software testing method is white box as it tests the functional

part of the product along with internal building of any

application. To design test cases, using white box testing,

programming knowledge is primitive. White box testing many

times refers to glass box or structural box testing. White box

testing can be used in all levels of unit, integration & system

testing. One other types of testing is security testing which deals

with data protection & maintains intended working of any

software or application. White box testing is capable of

checking & testing internal logic of application, all the

independent paths, logical decisions. Every declared loop is

checked at boundaries and data structures which are internal are

also examined. Moreover, white box testing is a complex testing

as it requires programming knowledge for testing any particular

module.[9][10]

Balck box testing involves checking the functionality of an

application without worrying about internal working of the

application. This technique can be applicable at all levels of

testing in the software development life cycle. The main focus

of black box testing is to run the test cases in a such a way that

covers all the functional deviations. Black box test cases are

focused & run with all the possible minimum , maximum and

null values. Black box testing strategies are highly appreciated

all around the globe and used widely for testing purposes.

 Figure 2:Software Testing Techniques [8]

The combination of White box testing and Black box testing is

known as Grey Box Testing. Grey box testing has an advantage

of both the testing techniques. This testing technique serves the

need of knowing the internal structure of the application by the

tester, and makes the testing more efficient. This idea is further

extended in Figure 2 ,referenced from author J. Irena [8].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v9i2.5455

Article Received: 09 December 2020 Revised: 22 December 2020 Accepted: 27 January 2021 Publication: 28 February 2021

__

3

IJRITCC | February 2021, Available @ http://www.ijritcc.org

A. Software Testing Life Cycle (STLC)

In Figure 3, the STLC steps, stages and phases a software

undergoes during the testing process has been shown. .

Although, no fixed standard of STLC is followed. It varies from

application to application[11].

In the first phase of STLC, the software requirements have been

reviewed by the Quality Assurance team which helps in

understanding the basic requirements which are being

constructed. In case of conflict, the assurance team coordinates

with the development team to understand the mismatch to

resolve the conflict. Most important phase of STLC is Test

Planning where the testing strategy is being defined. This phase

works with plan preparation whose deliverable is known as Test

Plan. Test plan is a required document which is being biased to

the functional testing of application[11].

Test cases are being developed in the Test designing phase.

Suitable test cases are being created by the QA team either

manually or automated. Test case takes inputs as a set of data,

conditions to execute along with expected results. The defined

set of test data needs to be picked in such a way that it generates

results which is an expected output along with incorrect data

that should produce errors. Usually this is done to verify

conditions that are performed by applications[11].

Test Execution phase incorporates test case execution which is

based on a test plan that was generated prior to test execution

phase. If the functionality successfully passes the execution

phase without any bug report, the test is said to be passed or else

it is failed. The outcome of this activity is Bug Report or Defect

Report.

After the execution of test cases generated results are known as

Test Report. If found any bug report which is being forwarded

to the development team for correction & modification[11].

B. Software Release Life Cycle

Software testing life cycle is being followed by Software

Release Life Cycle. This includes Alpha & Beta testing

combinely known as User Acceptance Testing.

In Alpha Testing, application is being tested at developers end

and can be done via white box technique or grey box technique.

Alpha release is either at integration or system level testing

which is being followed in black box testing. The alpha testing

concludes with a feature which basically means no more

features are being added or modified [13][14].

Beta testing is done after Alpha testing where testing is carried

out at users side along with user and developer. Beta testing is

also termed as Formal Acceptance Testing. The software or

application is The application or software is released to a

specific interested group of users for the testing purpose.

Generally beta versions of the applications are given to

authorised audiences for further suggestions and feedback for

improvements. This beta version audiences are termed as Beta

Testers and application under testing is known as Prototype of

application. Hence, the final version of the software gets

released after the Beta Testing [15] [16].

A. III. ENHANCEMENT IN TESTING

PROCESSES

Combinational criteria is used in Test Suite priority. Aim

behind prioritising test cases is to converter logs with their

sessions followed by XML file format. This approach uses

algorithms that are helpful in identifying test cases. In addition

to this, empirical studies should be used to analyse effectiveness

of particular applications[17]. C-PUT tool is used to format web

application logs into test suites which are further developed to

XML, which is then used for functional priority of tests.

An continuous research is going on how to prioritise techniques

which can be used to find the fault detection ratio[18][19]. The

GA (genetic algorithms) are used for automation of test cases &

generating test reports. This dynamic approach is necessary for

future advancements. Testing based on Genetic Algorithm, is

useful for test data generation which is capable of managing

data along with inlined focus on program complexity[20].

B. Test Automation

a) The main objective of test automation is to intensify

the testing process, which matches the actual results with

expected results and checks for mismatch. Automation of the

testing process is less time consuming as compared to time

invested in manual testing. In SDLC, test automation is being

inlined right from the requirement gathering phase till testing

phase. Automation has reduced the time required for manual

testing. It has marginally cut down the efforts, shortcomings.

One major type of testing is Regression testing, which will

consume a lot of time if done manually. Regression testing

works for checking of features which are being fixed after

reported with bugs. This type of testing is necessary as many a

time newly developed features have implication on previously

made features and leads to bugs. For such a purpose, automation

testing makes it faster and effective. Automation also helps in

identifying issues in primary stages, which save hops of

modification in energy & cost invested during development

stages.

Testing framework sets the environment automation testing.

This framework helps in execution of tests, identifying format

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v9i2.5455

Article Received: 09 December 2020 Revised: 22 December 2020 Accepted: 27 January 2021 Publication: 28 February 2021

__

4

IJRITCC | February 2021, Available @ http://www.ijritcc.org

for expectations for result reports. The remarkable testing

framework feature is, framework is application

independent[21]. Test Framework includes Hybrid, Modular,

Keyword & Data Driven. The modular testing framework

works on the principle of abstraction which creates different

scripts for different modules of software application. Division

based on Modular makes it scalable and easily maintainable for

test suites. Availability of any function in the library makes ease

of driver or stub creation. The major disadvantage of this

framework is that it has embedded data , modification in one

data set leads to modification in the entire test suite. Data-driven

is a test automation framework which stores test data in a table

or spread spreadsheet format. Input data can be stored in a single

or multiple data sources like XML, csv, xls, xlsx and databases

in a data driven test automation framework. This kind of

Framework reduces the number of test scripts as well as

minimises the amount of code desired for the generation of test

cases, giving more flexibility in fixation of errors or bugs.

Directives are keyword driven framework utilities. This type of

framework can be used to elaborate expectations functions by

software applications. This is an extended version of Data

driven testing where directives are kept in separate files. It

encapsulated all the functionalities of data driven testing. Main

advantage is reusability. The disadvantage of data driven

testing is complexity that makes test cases lengthy and complex.

So, a hybrid test framework is a better approach which

combines the advantages of the rest of the framework.

a. B. Testing Frameworks in the Agile

The lifecycle which is agile is a revolution in software testing

as it adds speed to test cycles by allowing modifications on

iteration basis. At the end , an agile environment which allows

rapid changes in requirements followed by a testing framework

makes maintenance of automated test cases little hasty. In

Agile, testing frameworks doesn't fit so well, as it adds

difficulties in achieving maximum code coverage &

Functionality coverage.

b. C. Test Driven Development (TDD)

This technique uses automated unit tests which are used for the

delivering design of software & minimized the dependencies &

coupling. When testers test with conventional methods to find

bugs, there are chances to find one or many, but with TDD most

of the uncovered errors are answered which adds up system

stability. This is a time saving approach which was earlier being

wasted in debugging[21].

Behaviour Driven Development (BDD) is an enhancement of

Test-Driven Development which focuses on the behaviour

pattern of system over implementation aspects. So, it gives you

a better vision of what system should do for better efficiency.

Thus, BDD follows Test Driven Development which includes

Acceptance Testing. User Acceptance Testing is also a

synonym for this type of testing is performed by a special group

of users or customers[22].

This lines up a question of matching the testing approach with

application under development. Not all testing methodologies

are being used or suitable for all the applications being

developed. For instance, testing e-commerce applications is

different with testing any network measuring application.

Prioritization metrics adds the tests based on HTTP requests

within the test case. Frequency based prioritisation enhances

the testing process such that the test cases that encompasses

most used pages are selected for execution before those test

cases that utilise less frequent ones [25][26].

C. IV. TESTING METRICS

B. Prioritization Metrics

Test Metrics is important as it enhances the effectiveness of the

testing process. It indicates the correctness & efficiency of

metrics. It also highlights the areas where improvisation is

needed. Test Metrics serves as an umbrella activity which

suggests constant improvements throughout the STLC[23] [24].

Testing metrics pins the quality areas which are primary for

process improvement and are bifurcated in Process Quality

Metrics & Product Quality.

This lines up a question of matching the testing approach with

application under development. Not all testing methodologies

are being used or suitable for all the applications being

developed. For instance, testing e-commerce applications is

different with testing any network measuring application.

Prioritization metrics adds the tests based on HTTP requests

within the test case. Frequency based prioritisation enhances

the testing process such that the test cases that encompasses

most used pages are selected for execution before those test

cases that utilise less frequent ones [25][26].

C. Process Quality Metrics

The most important part is the process which has a capability to

produce an outcome which has a high quality with a cost

effective manner. This is the prime reason for organizations to

have a focal point on the process improvement where metrics

turn up. Process efficiency is used to measure process quality

which includes measuring the test process curve which shows

progress of Testing Phase by test plan[27][28].

In testing, cost is the main concern in phase & component wise.

The objective behind testing metrics is to recognize parts which

are important for intensive testing. Average Defect Response

time metric is one more metric which shows average

verification time by the testing team. Average Defect Response

Time indicates operational efficiency. It measures average time

taken by the testing team for identifying & responding time.

Defect Removal Efficiency, Requirement Volatility Index,Test

coverage failed and executed test cases being major categories

of it ensuring an overall enhanced Testing Process.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 9 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v9i2.5455

Article Received: 09 December 2020 Revised: 22 December 2020 Accepted: 27 January 2021 Publication: 28 February 2021

__

5

IJRITCC | February 2021, Available @ http://www.ijritcc.org

Requirement Traceability Matrix is useful for mapping every

test case with its specific requirement which enhances the

testing results and helps in achieving the better quality.

[23][24].

D. V. CONCLUSION

In the software development lifecycle, software testing is

crucial as it defines the final delivery status of the product.

If it's delayed at the SDLC, it becomes time consuming and

more costly in terms of bugs. Testing methodologies can be

manual or automated depending on the nature & work of the

software application being developed. Test Metrics can be

added and used throughout the testing process. It accelerates the

testing process in terms of time and final product delivery.

Use of simulation tools can immensely help the testers in

creating the similar environment in which the product is

destined to run, certain exception testing and methods for the

exception handling can be best determined. While testing the

product in the similar testing environment for which the product

is meant for, and that can be easily done by integrating the

simulation within the Testing process. Hence, the future work

in relevance with the testing process will be much more

technology dependent harnessing the simulation and automated

testing model based approach, not only expediting the testing

life cycle but also providing optimum bug prevention and

efficient quality assurance.

ACKNOWLEDGMENT

Being a faculty of Computer applications and pursuing research

work, through this testing methodologies comparisons & need

for the testing being used right from the first phase of Software

Development Life Cycle. Testing is the future and making it

dynamic and less time consuming keeping quality in mind is a

bigger challenge and which will be our next goal to address.

REFERENCES

[1] P. Ron. Software testing. Vol. 2. Indianapolis: Sam’s, 2001.

[2] S. Amland, "Risk-based testing:" Journal of Systems and

Software, vol. 53, no. 3, pp. 287–295, Sep. 2000.

[3] Redmill and Felix, “Theory and Practice of Risk-based

Testing”, Software Testing, Verification and Reliability,

Vol. 15, No. 1, March 2005.

[4] B. Agarwal et al., “Software engineering and testing”. Jones

& Bartlett Learning, 2010.

[5] K. Bogdan. “Automated software test data generation”.

Software Engineering, IEEE Transactions on 16.8 (1990):

870-879.

[6] Jacobson et al. The unified software development

process.Vol. 1. Reading: Addison-Wesley, 1999.

[7] Everett et al., “Software testing: testing across the entire

software development life cycle”. John Wiley & Sons,

2007.

[8] J.Irena. “Software Testing Methods and Techniques”,

2008,pp. 30-35.

[9] Guide to the Software Engineering Body of Knowledge,

Swebok, A project of the IEEE Computer Society

Professional Practices Committee, 2004.

[10] E. F. Miller, “Introduction to Software Testing

Technology”, Software Testing & Validation Techniques,

IEEE, 1981, pp. 4-16

[11] M. Shaw, “Prospects for an engineering discipline of

software,” IEEE Software, November 1990, pp.15-24

[12] D. Nicola et al. "A grey-box approach to the functional

testing of complex automatic train protection systems."

Dependable Computing-EDCC 5. Springer Berlin

Heidelberg, 2005. 305-317.

[13] J. A. Whittaker, “What is Software Testing? And Why Is

It So Hard?” IEEE Software, 2000, pp. 70-79.

[14] N. Jenkins, “A Software Testing Primer”, 2008, pp.3-15.

[15] Luo, Lu, and Carnegie, "Software Testing Techniques-

Technology Maturation and Research Strategies’, Institute

for Software Research International-Carnegie Mellon

University, Pittsburgh, Technical Report, 2010.

[16] M. S. Sharmila and E. Ramadevi. "Analysis of

performance testing on web application." International

Journal of Advanced Research in Computer and

Communication Engineering, 2014.

[17] S. Sampath and R. Bryce, Improving the effectiveness of

Test Suite Reduction for User-Session-Based Testing of

Web Applications, Elsevier Information and Software

Technology Journal, 2012.

[18] B. Pedersen and S. Manchester, Test Suite Prioritization

by Costbased Combinatorial Interaction Coverage

International Journal of Systems Assurance Engineering

and Management, SPRINGER, 2011.

[19] S. Sprenkle et al., "Applying Concept Analysis to User-

session based Testing of Web Applications", IEEE

Transactions on Software Engineering, Vol. 33, No. 10,

2007, pp. 643 - 658

[20] C. Michael, “Generating software test data by evolution,

Software Engineering”, IEEE Transaction, Volume: 27,

2001.

[21] A. Memon, “A Uniform Representation of Hybrid Criteria

for Regression Testing”, Transactions on Software

Engineering (TSE), 2013.

[22] R. W. Miller, “Acceptance testing”, 2001, Data retrieved

from(http://www.dsc.ufcg.edu.br/~jacques/cursos/map/rec

ursos/Testin g05.pdf)

[23] Infosys, “Metric model”, white paper, 2012. Data retrieved

from (http://www.infosys.com/engineering-

services/whitepapers/Documents/comprehensive-metrics-

model.pdf)

[24] B. Boehm, “Some Future Trends and Implications for

Systems and Software Engineering Processes”, 2005, pp.1-

11.

[25] R. Bryce, “Test Suite Prioritisation and Reduction by

Combinational based Criteria”, IEEE Computer Society”,

2014, pp.21-22.

[26] M. I. Babar, “Software Quality Enhancement for value

based systems through Stakeholders Quantification”, 2005,

pp.359-360. Data retrieved from

(http://www.jatit.org/volumes/Vol55No3/10Vol55No3.pdf)

[27] R. Ramler, S. Biffl, and P. Grünbacher, "Value-based

management of software testing," in Value-Based Software

Engineering. Springer Science Business Media, 2006, pp.

225– 244.

[28] D. Graham, "Requirements and testing: Seven missing-

link myths," Software, IEEE, vol. 19, 2002, pp. 15-17

http://www.ijritcc.org/

