ET-Hollow Module and ET-Lifting Module

Firas sh. Fandi¹, ¹ Mathematics Department College of Education for Pure Sciences, University Of Anbar, Ramadi, Iraq Frisshker1978@gmail.com Sahira M. Yaseen² ² Mathematics Department College of Science University of Baghdad, Iraq Sahira.mahmood@gmail.com

Abstract: Let M be a R-module , where R be a commutative ring with identity,

In this paper, we defined a new types of module namely "ET-hollow(ET-holl.) and ET-lifting(ET-lift.) modules". An R-module M is called ET-holl. module, if for all sub-module H of M then $H \ll_{ET} M$. An R-module M is called An R-module M is called ET-lifting module, if for all $H \le M$, there exists $X \le_{\bigoplus} M$ and $L \ll_{ET} M$, such that H=X+L. We give many characterizations of ET-holl. and ET-lifting modules, Also we give the relation between T-hollow and ET-holl. and ET-holl. and ET-holl. and ET-holl. and ET-holl. and ET-holl. and ET-holl.

Key Words: T-small sub-module, ET-small sub-module, e-hollow module, T-hollow module, ET-hollow module, T-lifting module, ET-lifting module

1. Introduction

Throughout this paper, M be an R-module; where R be any a commutative ring and R with unity, a proper sub-module H of M is called small(H \ll M), if for all X \leq M, such that M=H+X then M=X[1]. A sub-module H of M is called essential of M, if H \cap B=0, \forall B \leq M, then B=0[2]. A sub-module H of M is e-small (H \ll_e M), if for every sub-module B of M such that H+B=M, then B=M[3]. Let T \leq M, A sub-module H of M is said to be "T-small sub-module of M", if for all K \leq M such that T \subseteq H+K, then T \subseteq K [4]. Recalled a module M is e-hollow module, if for all proper sub-module H of M is e-small of M[5]. M is e-lifting module if for all sub-module H of M, there exists K \leq M such that $\frac{H}{K} \ll_e \frac{M}{K}$ [6]. In[7] we defined ET-small sub-module of M, Let T \leq M and A sub-module H of M is "ET-small sub-module of M", if for all K \leq_e M such that T \subseteq H+K, then T \subseteq K, and we give some properties of ET-small sub-module of M. Clearly. Every T-small sub-module of M is ET-small sub-module of M is e-module and Let T, N₁ and N₂ \leq M. Then N₁ \ll_{ET} M and N₂ \ll_{ET} M if and only if N₁+N₂ \ll_{ET} M. assume that T,H and L are sub-module M such that T \leq N and H \leq L \leq M and L \ll_e M, if H \ll_{ET} M then H \ll_{ET} L, and there are many of other properties of ET-small [7].

In this work, we give the concept of ET-holl. module and ET-lifting module. An module M is called ET-holl. module, if $\forall H \leq M$ then $H \ll_{ET} M$. An R-module M is called ET-lifting module, if for all $H \leq M$, there exists $X \leq_{\bigoplus} M$ and $L \ll_{ET} M$ such that H = X + L. Also We give many properties of ET-holl. module and ET-lifting module.

In section 1, we defined ET-holl. module with we give some properties of ET-holl. module. Every T-hollow module is ET-holl. module, but the converse is not true, but if M be a non-zero module and T =M. thus M is ET-holl. module iff M is e-holl. *module*. Let $T \le M$. If M *is* ET-holl. module, then every essential sub-module K of M such that T \subseteq K, then K is a T-hollow module. Let (T \neq 0) be an essential sub-module of a module M, if M is ET-holl. module, then T is indecomposable. there are some of other properties of ET-holl. module.

In section 2, we defined ET-lifting module with we give some properties of ET-lifting module. Also, we list many of their important properties. Also we give the relation between T-hollow and ET-holl. and relation between T-lifting modules and ET-lifting modules.

Section 1: ET-hollow module

In section this, we defined ET-holl. module and we give many properties of ET-holl. module.

Definition 1.1:Let T be a sub-module of $(M \neq 0)$ module. We say that M is a ET-holl. module if for every sub-module H of M is a ET-small sub-module of M.

Remark and Example 1.2:

1. Consider Z_6 as Z-module .Let $T=\{\underline{0,3}\}$, then Z_6 is ET-holl. since the only essential sub-module of Z_6 . Then the sub-modules $H=\{0\}$, $\{0,3\}$, $\{0,2,4\}$ and Z_6 , then $T \subseteq H+Z_6$. Implies that $T \subseteq Z_6$, then for every sub-module H of Z_6 is a ET-small sub-module of Z_6 .

2. Every ($M \neq 0$) T-hollow module is ET-holl. module, but the converse is not true, for example Consider Z_4 as Z-module. let $T=\{\underline{0},\underline{2}\}$ and $B=\{\underline{0},\underline{2}\}$, then B is not T- small sub-module of Z_4 , since $T \subseteq B+\{0\}$, but $T \not\subseteq \{0\}$. So Z_4 is not T-hollow module . but Z_4 is ET-holl. module. Since for every sub-module H of M is a ET-small sub-module of M, since H = $\{0\},\{0,2\}$ and Z_4 are sub-modules of Z_4 then $T \subseteq H+X$, $\forall X \leq_e Z_4$, but the only essential sub-modules of Z_4 are $\{0,2\}$ and $T \subseteq \{0,2\}$ and $T \subseteq Z_4$. So every sub-module H of Z_4 is ET-small sub-module of Z_4 . Then Z_4 is ET-hollow module.

3. Let $(M \neq 0)$ be an uniform module and let T = M, so M is holl. module iff M is ET-holl. *module*.

4. Let $(M \neq 0)$ be an module and T = M. so M is ET-holl. module iff M is e-holl. *module*.

5. Let $(M \neq 0)$ be an module and T = 0, hence M is ET-holl. *module*. by remark (1.2-3) [7].

Proof 3: Assume that $(M \neq 0)$ be an uniform module such that T = M and M is hollow module to prove M is ETholl. module . suppose that $H \leq M$ to prove $H \ll_{ET} M$, let $T \subseteq H + X$, for every essential sub-module X of M, to prove $T \subseteq X$, since T = M so $M \subseteq H + X$ and $H + X \subseteq M$ therefor M = H + X, but M is hollow module then $H \ll M$, so M=X implies that T=X therefor $T \subseteq X$ then $H \ll_{ET} M$. thus M is ET-holl. module. Conversely let M is ET-holl. module, to show M is ET-holl. module . let $H \leq M$, to show $H \ll M$, so M=H+X then $T \subseteq H+X$, $\forall X \leq M$, but M is uniform module then $X \leq_e M$, since M is ET-holl. module, then $H \ll_{ET} M$, therefor $T \subseteq X$ then $M \subseteq X$ and $X \subseteq M$, thus M=X, implies that $H \ll M$, then M is hollow module.

4. Let M is hollow module and T =M and M is hollow module to prove M is e-hollow module . let $H \le M$ to show $H \ll_e M$, let M = H + B, for every essential sub-module B of M, to prove B = M, since T =M so T= H + B therefor T \subseteq H+B, but M is ET-holl. module, then $H \ll_{ET} M$, so T \subseteq B thus $M \subseteq B$ and $B \subseteq M$ then B = M, hence $H \ll_e M$. then M is e-hollow module. Conversely let M is e-hollow module, to show M is ET-hollow module . let $H \le M$, to prove $H \ll_{ET} M$, let $T \subseteq H + A$, $\forall A \le_e M$, since T =M so $M \subseteq H + A$ and $H + A \subseteq M$ thus M = H + A, since M is e-hollow module then $H \ll_e M$, therefor A=M, then T=A therefor T $\subseteq A$, thus $H \ll_{ET} M$ then M is ET-hollow module.

Proposition 1.3: Let T be sub-module of a non -zero module M .If M is ET-holl. module, then every essential submodule H of M such that $T \subseteq H$, then H is a T-hollow module.

Proof:- Let H be an essential sub-module of M such that $T \subseteq H$. to prove H is a ET-holl. module. so Let L be a submodule of H, show to $L \ll_{ET} H$, Since $H \leq M$ and M be an ET-holl. module, then $L \ll_{ET} M$. Then, by (1. 4) [7]. then $L \ll_{ET} H$. Thus H is a T-hollow module.

Proposition 1.4: Let T be a non-zero essential sub-module of a module M .If M is ET-holl. module .Then T is indecomposable.

Proof:- Let M be an ET-holl. module and T is decomposable, then $T = H \bigoplus X$, for some H and X are non-trivial submodules of T. Therefore $T \nsubseteq H$. since $X \le T = (H \bigoplus X) \le_e M$, then $X \le_e M$, since M is ET-holl. module and $T \subseteq \subseteq H \bigoplus X$, then $H \ll_{ET} M$. therefore $T \subseteq X$ and $X \subseteq T$, hence T = X which is a contradiction .Then T is indecomposable .

Proposition 1.5: let $f: M \rightarrow N$ be an epimorphism , where M and N are a non -zero modules, if M be an ET-holl. module, Then N is Ef(T)-hollow module .

Proof:- Let M is an ET-holl. module and let $f: M \rightarrow N$ be an epimorphism .To prove N is Ef (T)-hollow module. Let H be a sub-module of N, to prove $H \ll_{Ef(T)} N$, since f be an epimorphism , there exist $K \leq M$ such that f(K) = H, But M

is ET-holl. module, then $K \ll_{ET} M$, and by lemma (1.8)[7], we get $f(k) \ll_{Ef(T)} N$, implies that $H \ll_{Ef(T)} N$. then N is Ef(T)-hollow module.

Proposition 1.6: Let T and H be sub-modules of a module M such that $H \subseteq T$. $H \leq_c M$. If $H \ll_{ET} M$, $\frac{M}{H}$ be any $E(\frac{T}{H})$ - holl. module, hence M is ET-holl.

Proof:- Let $H \ll_{ET} M$ and $\frac{M}{H}$ is $E(\frac{T}{H})$ -holl. module. To prove M is ET-holl. let B be a sub-module of M, To prove $B \ll_{ET} M$, let $T \subseteq B+L$, $\forall L \leq_e M$. Then $\frac{T}{H} \subseteq \frac{B+L}{H}$ and hence $\frac{T}{H} \subseteq \frac{B+H}{H} + \frac{L+H}{H}$. since $(L \leq L+H \leq M \text{ and } L \leq_e M \text{ then } L+H \leq_e M$ and since $H \leq_c M$ then $\frac{L+H}{H} \leq_e \frac{M}{H}$), but $\frac{M}{H}$ is $E(\frac{T}{H})$ -hollow module, therefore $\frac{B+H}{H} \ll_{E(\frac{T}{H})} \frac{M}{H}$, hence $\frac{T}{H} \subseteq \frac{L+H}{H}$, Thus $T \subseteq L+H$. Since $H \ll_{ET} M$, then $T \subseteq L$. hence M is ET-holl. module.

Proposition 1.7: Let M be a module and H and T are sub-modules of M, such that $H \leq T$ and $H \leq_e M$. If M is ET-holl. Module, and $\frac{T}{H}$ is non-zero *finitely generated*; hence T be a finitely generated.

Proof: Let $\frac{T}{H} = R(x_1+H)+R(x_2+H)+...+R(x_n+H)=(Rx_1+H)+(Rx_2+H)+...+(Rx_n+H)$ where $x_i \in T$, for all i = 1,...,n. then $Rx_1+Rx_2+...+Rx_n \subseteq T$. To prove $T \subseteq Rx_1+Rx_2+...+Rx_n$, let $a \in T$. Then $a + H \in \frac{T}{H}$, then there exist $r_1,...,r_n \in R$, such that $a + H = r_1$ $(x_1+H) + r_2(x_2+H) +...+r_n(x_n+H) = (r_1x_1 + r_2x_2 +...+r_nx_n) + H$. Hence $a = (r_1x_1 + r_2x_2 +...+r_nx_n) + h$, for some $h \in H$. Therefore $T = (Rx_1 + Rx_2 +...+Rx_n) + H$. Since $H \lneq T$, since M is ET-holl. module, so $H \ll_{ET} M$. So $T \subseteq Rx_1 + Rx_2 + ...+Rx_n$.

Section 2: ET-lifting module

In section this, we defined ET-lift. module with we give many properties of ET-lifting module.

Definition 2.1:- suppose T is sub-module of a module M. M is said to be a ET-lifting module, if every sub-module H of M, there exists a direct summand K of M and $L \ll_{ET} M$ such that H=K+L.

Remark and Example 2.2:

1. Z_4 as Z-module is $E(Z_4)$ -lifting module.

2.Let M be a module and T=M .Then M is ET-lifting module if and only if M is e-lifting module.

Proof:- Let T=M and M is E(T)-lifting module, to prove M is e-lifting module. Let H be sub-module of M, hence there exist $B \leq_{\oplus} M$ and $A \ll_{ET} M$ such that H=B+A. By the modular law H=H $\cap M$ =H $\cap (B \oplus B^{\circ})$ =B $\oplus (H \cap B^{\circ})$. Take A=H $\cap B^{\circ}$ and hence $A \ll_{e} M$, by [(1.2-4)[7]. Thus M is e-lift. module. For the converse, suppose that M is ET-lifting module and let H be sub-module of M, then H=B \oplus L, where B $\leq_{\oplus} M$ and A $\ll_{e} M$. by [(1.2-4))[7]. hence H $\ll_{ET} M$. then M is E(T)-lift. module.

3. every T-lifting module is ET-lift. module. But the converse is not true, for the example consider Z_8 as Z-module and let $T=\{\underline{0},\underline{4}\}$ then Z_8 is not T-lifting module, To prove that , suppose that is not and let $H=\{\underline{0},\underline{4}\}$, then there exists $K \leq_{\bigoplus} Z_8$ and $L\ll_T Z_8$ such that H=K+L. Since Z_8 indecomposable, then K=0 and $H=\{\underline{0},\underline{4}\}$. But $H=L=\{\underline{0},\underline{4}\}$ is not T-small sub-module in Z_8 . implies that Z_8 is not T-lifting module. But H=L is ET-small sub-module in Z_8 [7], then Z_8 is an ET-lifting module.

Remark 2.3: assume that M be a semisimple module. So M is ET-lifting module, for all sub-module T of M.

Proof:- Let M is an semisimple module and H be sub-module of M. Thus H=H+0, where H \leq_{\oplus} M and $0 \ll_{ET}$ M. Then M is ET-lifting module.

Remark 2.4: Let M be an ET-lifting module .Then for all sub-module B of M such that T⊆ B is also ET-lifting.

Proof:- let M is ET-lifting and B be a sub-module of M such that $T\subseteq B$. To prove B is ET-lifting, let H is a sub-module of B .thus $H \subseteq M$ and since M is ET-lifting, then H=K+L, where $K \leq_{\oplus} M$ and $L \ll_{ET} M$ and since $K \leq B \leq M$ and $K \leq_{\oplus} M$ then $K \leq_{\oplus} B$ [2]. Since $T\subseteq B$, then $L \ll_{ET} B$, by (1.4)[7].Thus B is ET-lifting.

Recall that a sub-module H of a module M is called ((projective invariant)), if for every $P=P^2 \in End$ (M), $P(H) \leq H$, see [8].

Proposition 2.5: Let T be a submodule of a module M .Consider the following statements:

1. For each submodule X of M, there exists a decomposition $M=K \oplus K$ such that $K \subseteq H$ and $(H \cap K) \ll_{ET} M$.

2. M is ET-lifting module.

Then **1=2**

2=1 If for all ET-small sub-module of M is projective invariant.

Proof: (1=2) Let H be a sub-module of M, there exists a decomposition $M=K \oplus K$ ` such that $K \subseteq H$ and $(H \cap K`) \ll_{ET} M$. Now $H=H \cap M=H \cap (K \oplus K`) = K \oplus (H \cap K`)$, by the Modular Law and let $L=(H \cap K`)$, then H=K+L. Thus M is ET-lifting module.

(2=1) Let M is ET-lifting module and for every ET-small sub-module of M is (projective invariant). Let H be submodule of M, Then H=K+L, where $K \leq_{\bigoplus} M$ and $L \ll_{ET} M$. to prove $H \cap K^{\times} \ll_{ET} M$. H=H $\cap M$ = $H \cap (K \oplus K^{\times}) = K \oplus (H \cap K^{\times})$, by the Modular Law . Let P: $M \rightarrow K^{\times}$ be the projection map . P(L)=P(K+L)=P(H)=P(K \oplus (H \cap K^{\times}))=P(H \cap K^{\times})=H \cap K^{\times}. Since L is ET-small in M, then by our assumption L is projective invariant . So P(L)=H $\cap K^{\times} \leq L$. Thus $H \cap K^{\times} \ll_{ET} M$, by (1.8) [7].

Theorem 2.6: Let T be sub-module of a module M .Then the following statements are equivalent:

1. For all sub-module H of M, there exists a decomposition $M=K \bigoplus K$, $K \subseteq H$ and $H \cap K \ll_{ET} M$.

2. For all sub-module H of M, there exists $\beta \in End$ (M) such that $\beta^2 = \beta$, β (M) \subseteq H and (1- β)(H) \ll_{ET} M.

Proof: (1=2) Let H be sub-module of M. Then there exists a decomposition $M=K\oplus K$ ` such that $K\subseteq H$ and $H\cap K`\ll_{ET} M$. Let $\beta : M \rightarrow K$ be the projection map. Clearly that $\beta^2 = \beta$ and $M=K\oplus K`=\beta(M)\oplus (1-\beta(M))$, since α is onto then $\beta(M)=K\subseteq H$. Now $(1-\beta)(H)=H\cap (1-\beta)(M)=H\cap K`$ but $H\cap K`\ll_{ET} M$. then $(1-\beta)(H)\ll_{ET} M$.

(2=1) Let H be sub-module of M. Then there exists $\beta \in End$ (M) such that $\beta^2 = \beta$, $\beta(M) \subseteq H$ and $(1-\beta)(H) \ll_{ET} M$. Clearly that $M = \beta(M) \oplus (1-\beta)(M)$, then $M = (K \oplus K^{`})$. Let $D = \beta(M)$ and $D^{`}=(1-\beta)(M)$. Then $H \cap K^{`}=H \cap (1-\beta)(M)$. To prove $H \cap (1-\beta)(M)=(1-\beta)(H)$, let $a=(1-\beta)(b) \in (H \cap (1-\beta)(M))$. Since $(1-\beta)^2=(1-\beta)$, then $a=(1-\beta^2(b)=(1-\beta)((1-\beta)(b))=(1-\beta)(a) \in (1-\beta)(H)$. (H). Now let $a=(1-\beta)(b) \in (1-\beta)(H)$, $b \in H$, then $a \in (1-\beta)(M)$. $a=(1-\beta)(b) \in H$. Thus $a \in H \cap (1-\beta)(M)$. Now $(1-\beta)(H)=H \cap (1-\beta)(M)=H \cap K^{`}$, But $(1-\beta)(X) \ll_{ET} M$, then $H \cap K^{`} \ll_{ET} M$.

Proposition 2.7: let M be ET-lifting module and let B be a sub-module of M such that for every direct summand K of M, $\frac{K+B}{B}$ is direct summand of $\frac{M}{B}$, then $\frac{M}{B}$ is E($\frac{T+B}{B}$)-lifting module.

Proof:- Let $\frac{H}{B}$ is a sub-module of $\frac{M}{B}$. but M is ET-lifting, so H=K+L, $\forall K \leq_{\bigoplus} M$ and $L \ll_{ET} M$. Hence $\frac{H}{B} = \frac{K+L}{B} = \frac{K+B}{B} + \frac{L+B}{B}$. By our assumption, $\frac{K+B}{B} \leq_{\bigoplus} \frac{M}{B}$. To prove $\frac{L+B}{B} \ll_{E(\frac{T+B}{B})} \frac{M}{B}$. Let $\frac{Z}{B} \leq_{e} \frac{M}{B}$ such that $\frac{T+B}{B} \subseteq \frac{H+B}{B} + \frac{Z}{B} = \frac{H+B+Z}{B}$, then $T \subseteq T+B \subseteq H+(B+Z)$. (Since $\frac{Z}{B} \leq_{e} \frac{M}{B}$ then $Z \leq_{e} M$ and $Z \leq B+Z \leq M$, then $B+Z \leq_{e} M$). Since $L \ll_{ET} M$, then $T \subseteq B+Z$ and hence $\frac{T+B}{B} \subseteq \frac{Z+B}{B} = \frac{Z}{B}$. Thus $\frac{M}{B}$ is $E(\frac{T+B}{B})$ -lifting module.

Recall that M is called a (distributive module) if for every sub-modules A, B and C of M, $A+(B\cap C)=(A+B)\cap(A+C)$ and $A\cap(B+C)=(A\cap B)+(A\cap C)$, see[9]. module and A be a sub-module of M. Then $\frac{M}{B}$ is $\frac{T+B}{B}$ -lifting module.

Proof: Let K be a direct summand of M .Then M=K \oplus K', for some sub-module K' of M .Hence $\frac{M}{B} = \frac{K+K'}{B} = \frac{K+B}{B} + \frac{K'+B}{B}$. Since M is distributive, then $(K+B)\cap(K'+B)=((K+B)\cap K')+((K+B)\cap B) = (K\cap K') + (B\cap K')+(K\cap B)+B = B$.Hence $\frac{M}{B} = \frac{K+B}{B} \oplus \frac{K'+B}{B}$. Thus, by (2.8), then $\frac{M}{B}$ is E($\frac{T+B}{B}$)-lifting module.

Proposition 2.9: Let $M=M_1 \bigoplus M_2$ be a module such that $R=A_{nn}(M_1) + A_{nn}(M_2)$. If M_1 is ET_1 -lifting and M_2 is ET_2 -lifting, then $M=M_1 \bigoplus M_2$ is $E(T_1 \bigoplus T_2)$ -lifting module.

Proof:- Let H be sub-module of a module M. Since $R=A_{nn}$ (M_1)+ A_{nn} (M_2), then then $H=H_1 \bigoplus H_2$, where $H_1 \le M_1$ and $H_2 \le M_2$ [10]. But M_1 is ET_1 -lifting and M_2 is ET_2 -ifting ,then $H_1=K_1+L_1$ and $H_2=K_2+L_2$, where $K_1 \le M_1$ and $L_1 \ll_{ET} M_1$, $K_2 = M_2$ (10).

 $\leq_{\bigoplus} M_2$ and $L_2 \ll_{ET} M_2$. Then $H = H_1 \bigoplus H_2 = (K_1 + L_1) \bigoplus (K_2 + L_2) = (K_1 \bigoplus K_2) + (L_1 \bigoplus L_2)$.to prove $(K_1 \bigoplus K_2)$ is a direct summand of M. since $K_1 \leq_{\bigoplus} M_1$ then there exist $A_1 \leq M_1$ and $A_2 \leq M_2$ such that $M_1 = K_1 + A_1$ and $M_2 = K_2 + A_2$, then $M_1 + M_2 = (K_1 + A_1) + (K_2 + A_2) = (K_1 + K_2) + (A_1 + A_2)$ and $(K_1 + K_2) = 0$, then $(K_1 + K_2) \leq_{\bigoplus} (M_1 + M_2) = M$ By Proposition (2.12) in [7], then $(L_1 \oplus L_2) \ll_{E(T \oplus T_2)} M$. Thus $M = (M_1 \oplus M_2)$ is $E(T_1 \oplus T_2)$ -lifting module.

Proposition 2.10:- Let $M = \bigoplus_{i \in I} M_i$ be a" *fully stable module*"; and $T = \bigoplus_{i \in I} T_i$, where $T_i \le M_i$. If M_i is ET_i -lifting, for each *i* $\in I$, then M is a ET-lifting module.

Proof: Let B be sub-module of M .For each $i \in I$, let $f_i : M \to M_i$ be the projection map .To prove $B = \bigoplus_{i \in I} (B \cap M_i)$.Let $y \in B$, then $y \in \bigoplus_{i \in I} M_i$ and hence $y = \sum_{i \in I} y_i$, for $y_i \in M_i$ and $y_i \neq 0$ for at most a finite number of $i \in I$. Since M is fully stable, then $\pi_i(y) \in B$ and hence $f_i(y) \in B \cap M_i$. Now $f_i(y) = \pi_i (\sum_{i \in I} y_i) = y_i$. So $y_i \in B \cap M_i$ and hence $y = \sum_{i \in I} y_i \in \bigoplus_{i \in I} (B \cap M_i)$. Thus $B \subseteq \bigoplus_{i \in I} (B \cap M_i)$. Thus $B = \bigoplus_{i \in I} (B \cap M_i)$. Since $B \cap M_i \subseteq M_i$ and M_i is ET_i -lifting ,then $B \cap M_i = K_i + L_i$, where $K_i \leq \bigoplus M_i$ and $L_i \ll_{ETi} M_i$. Then $\bigoplus_{i \in I} (B \cap M_i) = \bigoplus_{i \in I} (K_i + L_i) = \bigoplus_{i \in I} K_i + \bigoplus_{i \in I} L_i$. One can easily show that $\bigoplus_{i \in I} K_i \leq \bigoplus_{i \in I} M_i$. By Proposition (2.13) in [7], then $\bigoplus_{i \in I} L_i \ll_{E \oplus_{i \in I} T_i} M$. Then M is ET-lifting module.

References

- [1] Fleury, p.,(1974),"Hollow Module and Local Endomorphism Rings", Pac.J.Math., 53, 379-385.
- [2] F. Kasch, Modules and Rings, Academic Press, Inc- London, 1982.
- [3] X. Zhou and X. R. Zhang, "Small-Essential Submodules and Morita Duality", SoutheastAsian Bulletin of Mathematics, 35, 1051-1062, 2011
- [4] R. Beyranvand and F. Moradi, "small submodule with respect to an arbitrary submodule", Journal of Algebra and Related Topcs Vol.3, No2, (2015),P43-51.
- [5] I.M.A.Hadi, S.H.Aidi, "On e-Small Submodules", Ibn Al-Haitham Journal for Pure and Applied Science, 2015.
- [6] K.R.Goodearl, "Ring Theory, Nonsingular Rings and Modules", Marcel Dekkel, 1976.
- [7] F.SH. Fandi and S.M. Yaseen," on essential (T-samll) submodule", Second international conference for applied and pure mathematics, 2019.
- [8] R. Wisbauer, "Foundations of module and ring theory, Gordon and Breach", Philadelphia, 1991...
- [9] V. Erdogdu, Distributive Modules, Can. Math. Ball 30(1987), (248-254).
- [10] M. S. Abass, "on fully stable modules", ph.D. Thesis, University of Baghdad, (1991).