ET-Hollow Module and ET-Lifting Module

Firas sh. Fandi ${ }^{1}$,
${ }^{1}$ Mathematics Department College of Education for Pure Sciences, University Of Anbar, Ramadi, Iraq Frisshker1978@gmail.com

Sahira M. Yaseen ${ }^{2}$
${ }^{2}$ Mathematics Department College of Science University of Baghdad, Iraq
Sahira.mahmood@gmail.com

Abstract

Let M be a R-module, where R be a commutative ring with identity, In this paper, we defined a new types of module namely "ET-hollow(ET-holl.) and ET-lifting(ET-lift.) modules". An R-module M is called ETholl. module, if for all sub-module H of M then $H \ll_{E T} M$. An R-module M is called $A n R$-module M is called $E T$-lifting module, if for all $H \leq M$, there exists $\mathrm{X} \leq_{\oplus} \mathrm{M}$ and $\mathrm{L} \ll_{E T} \mathrm{M}$, such that $\mathrm{H}=\mathrm{X}+\mathrm{L}$. We give many characterizations of $E T$-holl. and $E T$-lifting modules, Also we give the relation between T-hollow and ET-holl. and relation between T-lifting modules and ET-lift. modules.

Key Words: T-small sub-module, ET-small sub-module, e-hollow module, T-hollow module,ET-hollow module, T-lifting module, ET-lifting module

1. Introduction

Throughout this paper, M be an R-module; where R be any a commutative ring and R with unity, a proper sub-module H of M is called small $(H \ll M)$, if for all $X \leq M$, such that $M=H+X$ then $M=X[1]$. A sub-module H of M is called essential of M, if $H \cap B=0, \forall B \leq M$, then $B=0[2]$. A sub-module H of M is e-small $\left(H \ll{ }_{e} M\right)$, if for every submodule B of M such that $\mathrm{H}+\mathrm{B}=\mathrm{M}$, then $\mathrm{B}=\mathrm{M}[3]$. Let $\mathrm{T} \leq M, \mathrm{~A}$ sub-module H of M is said to be " T -small sub-module of M ", if for all $K \leq M$ such that $T \subseteq H+K$, then $T \subseteq K[4]$. Recalled a module M is e-hollow module, if for all proper sub-module H of M is e-small of $M[5]$. M is e-lifting module if for all sub-module H of M, there exists $K \leq M$ such that $\frac{H}{K} \lll \frac{M}{K}[6]$. In[7] we defined ET-small sub-module of M , Let $\mathrm{T} \leq \mathrm{M}$ and A sub-module H of M is "ET-small submodule of $\mathrm{M}^{\prime \prime}$, if for all $\mathrm{K} \leq_{e} \mathrm{M}$ such that $\mathrm{T} \subseteq \mathrm{H}+\mathrm{K}$, then $\mathrm{T} \subseteq \mathrm{K}$, and we give some properties of ET-small sub-module of M, Clearly. Every T-small sub-module of M is ET-small sub-module of M but the converse is not true. Let M be an R-module and Let T, N_{1} and $N_{2} \leq M$, Then $N_{1} \ll_{E T} M$ and $N_{2} \ll_{E T} M$ if and only if $N_{1}+N_{2} \lll E T M$. assume that T, H and L are sub-modules of any R -module M such that $\mathrm{T} \leq \mathrm{N}$ and $\mathrm{H} \leq \mathrm{L} \leq \mathrm{M}$ and $\mathrm{L} \ll_{e} \mathrm{M}$, if $\mathrm{H} \ll_{E T} M$ then $\mathrm{H} \ll_{E T} \mathrm{~L}$, and there are many of other properties of ET-small [7].

In this work, we give the concept of ET-holl. module and ET-lifting module. An module M is called ET-holl. module, if $\forall \mathrm{H} \leq \mathrm{M}$ then $\mathrm{H} \ll_{E T} \mathrm{M}$. An R -module M is called ET-lifting module, if for all $\mathrm{H} \leq \mathrm{M}$, there exists X $\leq_{\oplus} \mathrm{M}$ and $\mathrm{L} \ll_{E T} \mathrm{M}$ such that $\mathrm{H}=\mathrm{X}+\mathrm{L}$. Also We give many properties of ET-holl. module and ET-lifting module.

In section 1, we defined ET-holl. module with we give some properties of ET-holl. module. Every T-hollow module is ET-holl. module, but the converse is not true, but if M be a non-zero module and $\mathrm{T}=\mathrm{M}$. thus M is ET -holl. module iff M is e-holl. module. Let $\mathrm{T} \leq M$.If M is ET-holl. module, then every essential sub-module K of M such that $T \subseteq K$, then K is a T-hollow module. Let $(T \neq 0)$ be an essential sub-module of a module M, if M is ET-holl. module, then T is indecomposable. there are some of other properties of ET-holl. module.

In section 2, we defined ET-lifting module with we give some properties of ET-lifting module. Also, we list many of their important properties. Also we give the relation between T-hollow and ET-holl. and relation between T-lifting modules and ET-lifting modules.

Section 1: ET-hollow module

In section this, we defined ET-holl. module and we give many properties of ET-holl. module.
Definition 1.1:Let T be a sub-module of $(M \neq 0)$ module. We say that M is a ET-holl. module if for every sub-module H of M is a ET-small sub-module of M.

Remark and Example 1.2:

1. Consider Z_{6} as Z-module .Let $T=\{\underline{0}, \underline{3}\}$, then Z_{6} is $E T$-holl. since the only essential sub-module of Z_{6}. Then the submodules $H=\{0\},\{0,3\},\{0,2,4\}$ and Z_{6}, then $T \subseteq H+Z_{6}$. Implies that $T \subseteq Z_{6}$, then for every sub-module H of Z_{6} is a ETsmall sub-module of Z_{6}.
2. Every $(M \neq 0)$ T-hollow module is ET-holl. module, but the converse is not true, for example Consider Z_{4} as Z module. let $T=\{\underline{0}, \underline{2}\}$ and $B=\{\underline{0}, \underline{2}\}$, then B is not T - small sub-module of Z_{4}, since $T \subseteq B+\{0\}$, but $T \nsubseteq\{0\}$. So Z_{4} is not T hollow module . but Z_{4} is ET-holl. module. Since for every sub-module H of M is a ET-small sub-module of M, since H $=\{0\},\{0,2\}$ and Z_{4} are sub-modules of Z_{4} then $T \subseteq H+X, \forall X \leq_{e} Z_{4}$, but the only essential sub-modules of Z_{4} are $\{0,2\}$ and Z_{4} since $T \subseteq\{0,2\}$ and $T \subseteq Z_{4}$. So every sub-module H of Z_{4} is ET-small sub-module of Z_{4}. Then Z_{4} is ET-hollow module.
3. Let $(M \neq 0)$ be an uniform module and let $T=M$, so M is holl. module iff M is ET-holl. module.
4. Let $(M \neq 0)$ be an module and $T=M$. so M is $E T$-holl. module iff M is e-holl. module.
5. Let $(M \neq 0)$ be an module and $T=0$, hence M is ET-holl. module. by remark (1.2-3) [7].

Proof 3: Assume that $(\mathrm{M} \neq 0)$ be an uniform module such that $\mathrm{T}=\mathrm{M}$ and M is hollow module to prove M is ETholl. module. suppose that $H \leq M$ to prove $H \ll_{E T} M$, let $T \subseteq H+X$, for every essential sub-module X of M, to prove $T \subseteq X$, since $T=M$ so $M \subseteq H+X$ and $H+X \subseteq M$ therefor $M=H+X$, but M is hollow module then $H \ll M$, so $\mathrm{M}=\mathrm{X}$ implies that $\mathrm{T}=\mathrm{X}$ therefor $\mathrm{T} \subseteq \mathrm{X}$ then $\mathrm{H}<_{E T} \mathrm{M}$. thus M is ET -holl. module. Conversely let M is ET-holl. module, to show M is ET-holl. module. let $H \leq M$, to show $H \ll M$, so $M=H+X$ then $T \subseteq H+X, \forall X \leq M$, but M is uniform module then $\mathrm{X} \leq_{e} \mathrm{M}$, since M is ET-holl. module, then $\mathrm{H}<_{E T} \mathrm{M}$, therefor $\mathrm{T} \subseteq \mathrm{X}$ then $\mathrm{M} \subseteq \mathrm{X}$ and $\mathrm{X} \subseteq \mathrm{M}$, thus $M=X$, implies that $H \ll M$, then M is hollow module.
4. Let M is hollow module and $T=M$ and M is hollow module to prove M is e-hollow module. let $H \leq M$ to show $H \ll{ }_{e} M$, let $M=H+B$, for every essential sub-module B of M, to prove $B=M$, since $T=M$ so $T=H+B$ therefor T $\subseteq H+B$, but M is $E T$-holl. module, then $H \ll_{E T} M$, so $T \subseteq B$ thus $M \subseteq B$ and $B \subseteq M$ then $B=M$, hence $H \lll<M$. then M is e-hollow module. Conversely let M is e-hollow module, to show M is ET-hollow module. let $H \leq M$, to prove H $<_{E T} M$, let $T \subseteq H+A, \forall A \leq_{e} M$, since $T=M$ so $M \subseteq H+A$ and $H+A \subseteq M$ thus $M=H+A$, since M is e-hollow module then $\mathrm{H} \ll_{e} \mathrm{M}$, therefor $\mathrm{A}=\mathrm{M}$, then $\mathrm{T}=\mathrm{A}$ therefor $\mathrm{T} \subseteq \mathrm{A}$, thus $\mathrm{H} \ll_{E T} \mathrm{M}$ then M is ET-hollow module.
Proposition 1.3: Let T be sub-module of a non -zero module M.If M is ET-holl. module, then every essential submodule H of M such that $\mathrm{T} \subseteq \mathrm{H}$, then H is a T -hollow module.
Proof:- Let H be an essential sub-module of M such that $T \subseteq H$. to prove H is a ET-holl. module. so Let L be a submodule of H, show to $L \ll_{E T} H$, since $H \leq M$ and M be an ET-holl. module, then $L \lll_{E T} M$.Then, by (1. 4) [7]. then $\mathrm{L} \ll_{E T} \mathrm{H}$. Thus H is a T-hollow module .
Proposition 1.4: Let T be a non-zero essential sub-module of a module M.If M is $E T$-holl. module .Then T is indecomposable.
Proof:- Let M be an ET-holl. module and T is decomposable, then $T=H \oplus X$, for some H and X are non-trivial submodules of T. Therefore $T \nsubseteq H$. since $X \leq T=(H \oplus X) \leq{ }_{e} M$, then $X \leq{ }_{e} M$, since M is ET-holl. module and $T \subseteq \subseteq \subseteq X$, then $\mathrm{H} \ll{ }_{E T} \mathrm{M}$. therefore $T \subseteq X$ and $X \subseteq T$, hence $T=X$ which is a contradiction .Then T is indecomposable.
Proposition 1.5: let $f: M \rightarrow N$ be an epimorphism, where M and N are a non -zero modules, if M be an ET-holl. module, Then N is $\mathrm{Ef}(\mathrm{T})$-hollow module.
Proof:- Let M is an ET-holl. module and let $f: \mathrm{M} \rightarrow \mathrm{N}$ be an epimorphism. To prove N is $\mathrm{Ef}(\mathrm{T})$-hollow module. Let H be a sub-module of N, to prove $\mathrm{H} \ll_{E f(T)} \mathrm{N}$, since f be an epimorphism, there exist $K \leq M$ such that $f(K)=H$, But M
is ET-holl. module, then $\mathrm{K}<_{E T} \mathrm{M}$, and by lemma (1.8)[7], we get $\mathrm{f}(\mathrm{k}) \lll E f(T)^{\mathrm{N}}$, implies that $\mathrm{H} \ll_{E f(T)} \mathrm{N}$. then N is Ef(T)-hollow module.
Proposition 1.6: Let T and H be sub-modules of a module M such that $H \subseteq T . H \leq_{c} M$. If $H \ll_{E T} M$, $\frac{M}{H}$ be any $\mathrm{E}\left(\frac{T}{H}\right)$ - holl. module, hence M is ET-holl.
Proof:- Let $\mathrm{H} \ll_{E T} \mathrm{M}$ and $\frac{M}{H}$ is $\mathrm{E}\left(\frac{T}{H}\right)$-holl. module. To prove M is ET -holl. let B be a sub-module of M , To prove $\mathrm{B} \ll_{E T} \mathrm{M}$, let $\mathrm{T} \subseteq \mathrm{B}+\mathrm{L}, \forall \mathrm{L} \leq_{e} \mathrm{M}$. Then $\frac{T}{H} \subseteq \frac{B+L}{H}$ and hence $\frac{T}{H} \subseteq \frac{B+H}{H}+\frac{L+H}{H}$. since $\left(\mathrm{L} \leq \mathrm{L}+\mathrm{H} \leq \mathrm{M}\right.$ and $\mathrm{L} \leq{ }_{e} \mathrm{M}$ then $\mathrm{L}+\mathrm{H} \leq_{e} \mathrm{M}$ and since $\mathrm{H} \leq_{c} \mathrm{M}$ then $\frac{L+H}{H} \leq_{e} \frac{M}{H}$), but $\frac{M}{H}$ is $\mathrm{E}\left(\frac{T}{H}\right)$-hollow module, therefore $\frac{B+H}{H}<_{E\left(\frac{T}{H}\right)} \frac{M}{H}$, hence $\frac{T}{H} \subseteq$ $\frac{L+H}{H}$, Thus $T \subseteq L+H$. Since $H \ll_{E T} M$, then $T \subseteq L$. hence M is ET-holl. module.

Proposition 1.7: Let M be a module and H and T are sub-modules of M, such that $H \leq T$ and $H \leq{ }_{e} M$. If M is ET-holl. Module, and $\frac{T}{H}$ is non-zero finitely generated; hence T be a finitely generated.
Proof: Let $\frac{T}{H}=R\left(x_{1}+\mathrm{H}\right)+R\left(x_{2}+\mathrm{H}\right)+\ldots+R\left(x_{n}+\mathrm{H}\right)=\left(R x_{1}+\mathrm{H}\right)+\left(R x_{2}+\mathrm{H}\right)+\ldots+\left(R x_{n}+\mathrm{H}\right)$ where $x_{i} \in \mathrm{~T}$, for all $i=1, \ldots, n$. then $R x_{1}+$ $R x_{2}+\ldots+R x_{n} \subseteq \mathrm{~T}$. To prove $\mathrm{T} \subseteq R x_{1}+R x_{2}+\ldots+R x_{n}$, let $\mathrm{a} \in \mathrm{T}$. Then $a+\mathrm{H} \in \frac{T}{H}$, then there exist $r_{1}, \ldots, r_{n} \in \mathrm{R}$, such that $\mathrm{a}+\mathrm{H}=r_{1}$ $\left(x_{1}+\mathrm{H}\right)+r_{2}\left(x_{2}+\mathrm{H}\right)+\ldots+r_{n}\left(x_{n}+\mathrm{H}\right)=\left(r_{1} x_{1}+r_{2} x_{2}+\ldots+r_{n} x_{n}\right)+\mathrm{H}$. Hence $\mathrm{a}=\left(r_{1} x_{1}+r_{2} x_{2}+\ldots+r_{n} x_{n}\right)+h$,for some $h \in \mathrm{H}$.Therefore $\mathrm{T}=\left(R x_{1}+R x_{2}+\ldots+R x_{n}\right)+\mathrm{H}$. Since $\mathrm{H} \leq \mathrm{T}$, since M is ET-holl. module, so $\mathrm{H} \ll_{E T} \mathrm{M}$. So $\mathrm{T} \subseteq R x_{1}+R x_{2}+\ldots+$ $R x_{n}$. hence $\mathrm{T}=\left(R x_{1}+R x_{2}+\ldots+R x_{n}\right)$.

Section 2: ET-lifting module

In section this, we defined ET-lift. module with we give many properties of ET-lifting module.
Definition 2.1:- suppose T is sub-module of a module M. M is said to be a ET-lifting module, if every sub-module H of M, there exists a direct summand K of M and $L \ll_{E T} M$ such that $H=K+L$.

Remark and Example 2.2:

1. Z_{4} as Z-module is $E\left(Z_{4}\right)$-lifting module.
2. Let M be a module and $T=M$. Then M is ET-lifting module if and only if M is e-lifting module.

Proof:- Let $T=M$ and M is $E(T)$-lifting module, to prove M is e-lifting module. Let H be sub-module of M, hence there exist $B \leq_{\oplus} M$ and $A \ll_{E T} M$ such that $\mathrm{H}=\mathrm{B}+\mathrm{A}$. By the modular law $\mathrm{H}=\mathrm{H} \cap \mathrm{M}=\mathrm{H} \cap\left(\mathrm{B} \oplus \mathrm{B}^{`}\right)=\mathrm{B} \oplus\left(\mathrm{H} \cap \mathrm{B}^{\prime}\right)$. Take $\mathrm{A}=\mathrm{H} \cap \mathrm{B}^{`}$ and hence $A \ll{ }_{e} M$, by [(1.2-4)[7]. Thus M is e-lift. module. For the converse, suppose that M is ET-lifting module and let H be sub-module of M, then $H=B \oplus L$, where $B \leq_{\oplus} M$ and $A \ll_{e} M$. by [(1.2-4))[7]. hence $H \lll_{E T} M$. then M is $E(T)$ lift. module.
3. every T-lifting module is ET-lift. module. But the converse is not true, for the example consider Z_{8} as Z-module and let $\mathrm{T}=\{\underline{0}, \underline{4}\}$ then Z_{8} is not T-lifting module, To prove that, suppose that is not and let $\mathrm{H}=\{\underline{0}, \underline{4}\}$, then there exists $K \leq_{\oplus} Z_{8}$ and $\mathrm{L}<_{T} Z_{8}$ such that $\mathrm{H}=\mathrm{K}+\mathrm{L}$. Since Z_{8} indecomposable, then $\mathrm{K}=0$ and $\mathrm{H}=\{\underline{0}, \underline{4}\}$. But $\mathrm{H}=\mathrm{L}=\{\underline{0}, \underline{4}\}$ is not T -small sub-module in Z_{8}.implies that Z_{8} is not T-lifting module. But $\mathrm{H}=\mathrm{L}$ is ET-small sub-module in Z_{8} [7], then Z_{8} is an ETlifting module.
Remark 2.3: assume that M be a semisimple module. So M is ET -lifting module, for all sub-module T of M.
Proof:- Let M is an semisimple module and H be sub-module of M . Thus $\mathrm{H}=\mathrm{H}+0$, where $\mathrm{H} \leq \oplus \mathrm{M}$ and $0 \ll_{E T} \mathrm{M}$.Then M is ET-lifting module.
Remark 2.4: Let M be an $E T$-lifting module. Then for all sub-module B of M such that $T \subseteq B$ is also $E T$-lifting. Proof:- let M is ET-lifting and B be a sub-module of M such that $T \subseteq B$. To prove B is ET-lifting, let H is a sub-module of B .thus $H \subseteq M$ and since M is ET-lifting, then $\mathrm{H}=\mathrm{K}+\mathrm{L}$, where $\mathrm{K} \leq_{\oplus} \mathrm{M}$ and $\mathrm{L} \ll_{E T} \mathrm{M}$ and since $\mathrm{K} \leq \mathrm{B} \leq \mathrm{M}$ and $\mathrm{K} \leq \oplus \mathrm{M}$ then $K \leq{ }_{\oplus} \mathrm{B}$ [2]. Since $T \subseteq B$, then $\mathrm{L} \ll_{E T} \mathrm{~B}$, by (1.4)[7]. Thus B is ET-lifting .

Recall that a sub-module H of a module M is called ((projective invariant)), if for every $P=P^{2} \in E n d(M), P(H) \leq H$, see [8].
Proposition 2.5: Let T be a submodule of a module M.Consider the following statements:

1. For each submodule X of M, there exists a decomposition $M=K \bigoplus K^{`}$ such that $K \subseteq H$ and $\left(H \cap K^{`}\right) \ll_{E T} M$.
2. M is ET-lifting module.

Then $\mathbf{1 = 2}$
2=1 If for all ET-small sub-module of M is projective invariant.
Proof: $(1=2)$ Let H be a sub-module of M, there exists a decomposition $M=K \oplus K^{`}$ such that $K \subseteq H$ and $\left(H \cap K^{`}\right) \ll_{E T} M$. Now $\mathrm{H}=\mathrm{H} \cap \mathrm{M}=\mathrm{H} \cap\left(\mathrm{K} \oplus \mathrm{K}^{\prime}\right)=\mathrm{K} \oplus\left(\mathrm{H} \cap \mathrm{K}^{\prime}\right)$, by the Modular Law and let $\mathrm{L}=\left(\mathrm{H} \cap \mathrm{K}^{\prime}\right)$, then $\mathrm{H}=\mathrm{K}+\mathrm{L}$. Thus M is ET-lifting module.
(2 $=\mathbf{4}$) Let M is ET-lifting module and for every ET-small sub-module of M is (projective invariant) . Let H be submodule of M , Then $\mathrm{H}=\mathrm{K}+\mathrm{L}$, where $\mathrm{K} \leq_{\oplus} \mathrm{M}$ and $\mathrm{L}<_{E T} \mathrm{M}$. to prove $\mathrm{H} \cap K^{`} \lll E T \mathrm{M}$. $\mathrm{H}=\mathrm{H} \cap \mathrm{M}=\mathrm{H} \cap\left(\mathrm{K} \oplus K^{\prime}\right)=\mathrm{K} \oplus\left(\mathrm{H} \cap K^{\prime}\right)$, by the Modular Law . Let $\mathrm{P}: \mathrm{M} \rightarrow \mathrm{K}^{\prime}$ be the projection map. $\mathrm{P}(\mathrm{L})=\mathrm{P}(\mathrm{K}+\mathrm{L})=\mathrm{P}(\mathrm{H})=\mathrm{P}\left(\mathrm{K} \oplus\left(\mathrm{H} \cap \mathrm{K}^{\prime}\right)\right)=\mathrm{P}\left(\mathrm{H} \cap \mathrm{K}^{\prime}\right)=\mathrm{H} \cap \mathrm{K}^{\prime}$. Since L is $E T-$ small in M , then by our assumption L is projective invariant. So $\mathrm{P}(\mathrm{L})=\mathrm{H} \cap \mathrm{K}^{\prime} \leq \mathrm{L}$. Thus $\mathrm{H} \cap \mathrm{K}^{`} \ll_{E T} \mathrm{M}$, by (1.8) [7].
Theorem 2.6: Let T be sub-module of a module M . Then the following statements are equivalent:

1. For all sub-module H of M, there exists a decomposition $M=K \oplus K^{\prime}, K \subseteq H$ and $H \cap K^{`} \ll_{E T} M$.
2. For all sub-module H of M, there exists $\beta \in E n d(M)$ such that $\beta^{2}=\beta, \beta(M) \subseteq H$ and $(1-\beta)(H) \ll_{E T} M$.

Proof: (1-2) Let H be sub-module of M .Then there exists a decomposition $\mathrm{M}=\mathrm{K} \oplus \mathrm{K}^{\prime}$ such that $\mathrm{K} \subseteq \mathrm{H}$ and $\mathrm{H} \cap \mathrm{K}^{\prime} \ll{ }_{E T} \mathrm{M}$. Let $\beta: M \rightarrow K$ be the projection map .Clearly that $\beta^{2}=\beta$ and $\mathrm{M}=\mathrm{K} \oplus \mathrm{K}^{\prime}=\beta(\mathrm{M}) \oplus(1-\beta)(\mathrm{M})$, since α is onto then $\beta(\mathrm{M})=\mathrm{K} \subseteq \mathrm{H}$. Now $(1-\beta)(\mathrm{H})=\mathrm{H} \cap(1-\beta)(\mathrm{M})=\mathrm{H} \cap \mathrm{K}^{\prime}$ but $\mathrm{H} \cap \mathrm{K}^{\prime} \ll_{E T} \mathrm{M}$. then $(1-\beta)(\mathrm{H}) \ll_{E T} \mathrm{M}$.
(2月) Let H be sub-module of M . Then there exists $\beta \in E n d(M)$ such that $\left.\beta^{2}=\beta, \beta \mathrm{M}\right) \subseteq \mathrm{H}$ and $(1-\beta)(\mathrm{H}) \ll_{E T} \mathrm{M}$. Clearly that $\mathrm{M}=\beta(\mathrm{M}) \oplus(1-\beta)(\mathrm{M})$, then $\mathrm{M}=\left(\mathrm{K} \oplus \mathrm{K}^{\prime}\right)$. Let $\mathrm{D}=\beta(\mathrm{M})$ and $\mathrm{D}^{\prime}=(1-\beta)(\mathrm{M})$. Then $\mathrm{H} \cap \mathrm{K}^{\prime}=\mathrm{H} \cap(1-\beta)(\mathrm{M})$. To prove $\mathrm{H} \cap(1-$ $\beta)(M)=(1-\beta)(H)$, let $a=(1-\beta)(b) \in(H \cap(1-\beta)(M))$. Since $(1-\beta)^{2}=(1-\beta)$, then $\left.a=(1-\beta)^{2}(b)=(1-\beta)(1-\beta)(b)\right)=(1-\beta)(a) \in(1-\beta)$ (H). Now let $a=(1-\beta)(b) \in(1-\beta)(H), b \in H$, then $a \in(1-\beta)(M) . a=(1-\beta)(b)=b-\beta(b) \in H$.Thus $a \in H \cap(1-\beta)(M)$.
Now $(1-\beta)(\mathrm{H})=\mathrm{H} \cap(1-\beta)(\mathrm{M})=\mathrm{H} \cap K^{\prime}$, But $(1-\beta)(\mathrm{X})<_{E T} \mathrm{M}$, then $\mathrm{H} \cap K^{`} \ll_{E T} \mathrm{M}$
Proposition 2.7: let M be ET-lifting module and let B be a sub-module of M such that for every direct summand K of $\mathrm{M}, \frac{K+B}{B}$ is direct summand of $\frac{M}{B}$, then $\frac{M}{B}$ is $\mathrm{E}\left(\frac{T+B}{B}\right)$-lifting module.
Proof:- Let $\frac{H}{B}$ is a sub-module of $\frac{M}{B}$. but M is ET-lifting, so $\mathrm{H}=\mathrm{K}+\mathrm{L}, \forall \mathrm{K} \leq_{\oplus} \mathrm{M}$ and $\mathrm{L} \ll_{E T} \mathrm{M}$. Hence $\frac{H}{B}=\frac{K+L}{B}=\frac{K+B}{B}+\frac{L+B}{B}$.By our assumption, $\frac{K+B}{B} \leq_{\oplus} \frac{M}{B}$.To prove $\frac{L+B}{B} \lll E\left(\frac{T+B}{B}\right) \frac{M}{B}$. Let $\frac{Z}{B} \leq_{e} \frac{M}{B}$ such that $\frac{T+B}{B} \subseteq \frac{H+B}{B}+\frac{Z}{B}=\frac{H+B+Z}{B}$, then $\mathrm{T} \subseteq \mathrm{T}+\mathrm{B} \subseteq \mathrm{H}+(\mathrm{B}+\mathrm{Z})$. (Since $\frac{Z}{B} \leq_{e} \frac{M}{B}$ then $\mathrm{Z} \leq{ }_{e} \mathrm{M}$ and $\mathrm{Z} \leq \mathrm{B}+\mathrm{Z} \leq \mathrm{M}$, then $\mathrm{B}+\mathrm{Z} \leq{ }_{e} \mathrm{M}$). Since $\mathrm{L} \ll_{E T} \mathrm{M}$, then $\mathrm{T} \subseteq \mathrm{B}+\mathrm{Z}$ and hence $\frac{T+B}{B} \subseteq \frac{Z+B}{B}=\frac{Z}{B}$.

Thus $\frac{M}{B}$ is $\mathrm{E}\left(\frac{T+B}{B}\right)$-lifting module.
Recall that M is called a (distributive module) if for every sub-modules A, B and C of $M, A+(B \cap C)=(A+B) \cap(A+C)$ and $A \cap(B+C)=(A \cap B)+(A \cap C)$, see $[9]$.

Corollary2.8: suppose that M is ET -lifting, M is distributive module and A be a sub-module of M . Then $\frac{M}{B}$ is $\frac{T+B}{B}$-lifting module.
Proof: Let K be a direct summand of M .Then $\mathrm{M}=\mathrm{K} \bigoplus K^{\prime}$, for some sub-module K^{\prime} of M . Hence $\frac{M}{B}=\frac{K+K^{\prime}}{B}=\frac{K+B}{B}+\frac{K^{\prime}+B}{B}$. Since M is distributive, then $(\mathrm{K}+\mathrm{B}) \cap\left(\mathrm{K}^{`}+\mathrm{B}\right)=\left((\mathrm{K}+\mathrm{B}) \cap \mathrm{K}^{\prime}\right)+((\mathrm{K}+\mathrm{B}) \cap \mathrm{B})=\left(\mathrm{K} \cap \mathrm{K}^{\prime}\right)+\left(\mathrm{B} \cap \mathrm{K}^{\prime}\right)+(\mathrm{K} \cap \mathrm{B})+\mathrm{B}=\mathrm{B}$. Hence $\frac{M}{B}=\frac{K+B}{B} \bigoplus$ $\frac{K^{`}+B}{B}$.Thus, by (2.8), then $\frac{M}{B}$ is $\mathrm{E}\left(\frac{T+B}{B}\right)$-lifting module.
Proposition2.9: Let $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ be a module such that $\mathrm{R}=A_{n n}\left(\mathrm{M}_{1}\right)+A_{n n}\left(\mathrm{M}_{2}\right)$. If M_{1} is $E T_{1}$-lifting and M_{2} is $E T_{2}$-lifting, then $\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}$ is $\mathrm{E}\left(\mathrm{T}_{1} \oplus \mathrm{~T}_{2}\right)$-lifting module.
Proof:- Let H be sub-module of a module M. Since $R=A_{n n}\left(M_{1}\right)+A_{n n}\left(M_{2}\right)$, then then $H=H_{1} \oplus H_{2}$, where $H_{1} \leq M_{1}$ and $H_{2} \leq$ M_{2} [10]. But M_{1} is $E T_{1}$-lifting and M_{2} is $E T_{2}$-ifting , then $\mathrm{H}_{1}=\mathrm{K}_{1}+\mathrm{L}_{1}$ and $\mathrm{H}_{2}=\mathrm{K}_{2}+\mathrm{L}_{2}$, where $\mathrm{K}_{1} \leq{ }_{\oplus} \mathrm{M}_{1}$ and $\mathrm{L}_{1} \ll{ }_{E T} \mathrm{M}_{1}$, K_{2}
$\leq_{\oplus} \mathrm{M}_{2}$ and $\mathrm{L}_{2} \ll_{E T} \mathrm{M}_{2}$. Then $\mathrm{H}=\mathrm{H}_{1} \oplus \mathrm{H}_{2}=\left(\mathrm{K}_{1}+\mathrm{L}_{1}\right) \oplus\left(\mathrm{K}_{2}+\mathrm{L}_{2}\right)=\left(\mathrm{K}_{1} \oplus \mathrm{~K}_{2}\right)+\left(\mathrm{L}_{1} \oplus \mathrm{~L}_{2}\right)$.to prove $\left(\mathrm{K}_{1} \oplus \mathrm{~K}_{2}\right)$ is a direct summand of M. since $K_{1} \leq \oplus M_{1}$ then there exist $A_{1} \leq M_{1}$ and $A_{2} \leq M_{2}$ such that $M_{1}=K_{1}+A_{1}$ and $M_{2}=K_{2}+A_{2}$, then $M_{1}+M_{2}=\left(K_{1}+A_{1}\right)+$ $\left(K_{2}+A_{2}\right)=\left(K_{1}+K_{2}\right)+\left(A_{1}+A_{2}\right)$ and $\left(K_{1}+K_{2}\right) \cap\left(A_{1}+A_{2}\right)=0$, then $\left(K_{1}+K_{2}\right) \leq_{\oplus}\left(M_{1}+M 2\right)=M$ By Proposition (2.12) in [7], then($\left.L_{1} \oplus L_{2}\right) \ll_{E(T 1 \oplus T 2)} M$. Thus $M=\left(M_{1} \oplus M_{2}\right)$ is $E\left(T_{1} \oplus T_{2}\right)$-lifting module.
Proposition 2.10:- Let $M=\bigoplus_{i \in I} M_{i}$ be a" fully stable module" ; and $T=\bigoplus_{i \in I} T_{i}$, where $T_{i} \leq M_{i}$. If M_{i} is $E T_{i}$-lifting, for each $i \in I$, then M is a ET-lifting module .
Proof: Let B be sub-module of M. For each $i \in I$, let $f_{i}: M \rightarrow M_{i}$ be the projection map . To prove $B=\bigoplus_{i \in I}\left(B \cap M_{i}\right)$. Let $\mathrm{y} \in \mathrm{B}$, then $\mathrm{y} \in \bigoplus_{i \in I} \mathrm{M}_{\mathrm{i}}$ and hence $\mathrm{y}=\sum_{i \in I} \quad y_{i}$, for $\mathrm{y}_{\mathrm{i}} \in \mathrm{M}_{i}$ and $\mathrm{y}_{\mathrm{i}} \neq 0$ for at most a finite number of $i \in I$. Since M is fully stable, then $\pi_{i}(\mathrm{y}) \in \mathrm{B}$ and hence $\mathrm{f}_{i}(\mathrm{y}) \in \mathrm{B} \cap \mathrm{Mi}$. Now $\mathrm{f}_{i}(\mathrm{y})=\pi_{i}\left(\sum_{i \in I} \quad y_{i}\right)=\mathrm{y}_{i}$. So $\mathrm{y}_{\mathrm{i}} \in \mathrm{B} \cap \mathrm{Mi}$ and hence $\mathrm{y}=\sum_{i \in I} \quad y_{i} \in \bigoplus_{i \in I}\left(\mathrm{~B} \cap \mathrm{M}_{\mathrm{i}}\right)$. Thus $\mathrm{B} \subseteq \bigoplus_{i \in I}\left(\mathrm{~B} \cap \mathrm{M}_{\mathrm{i}}\right)$. Thus $\mathrm{B}=\bigoplus_{i \in I}\left(\mathrm{~B} \cap \mathrm{M}_{\mathrm{i}}\right)$. Since $\mathrm{B} \cap \mathrm{M}_{\mathrm{i}} \subseteq \mathrm{M}_{\mathrm{i}}$ and M_{i} is ET_{i} lifting , then $\mathrm{B} \cap \mathrm{M}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}}+\mathrm{L}_{\mathrm{i}}$, where $\mathrm{K}_{\mathrm{i}} \leq_{\oplus} \mathrm{M}_{\mathrm{i}}$ and $\mathrm{L}_{\mathrm{i}} \ll_{E \mathrm{ET}} \mathrm{M}_{\mathrm{i}}$. Then $\bigoplus_{i \in I}\left(\mathrm{~B}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}\right)=\bigoplus_{i \in I}\left(\mathrm{~K}_{\mathrm{i}}+\mathrm{L}_{\mathrm{i}}\right)=\bigoplus_{i \in I} \mathrm{~K}_{\mathrm{i}}+\bigoplus_{i \in I} \mathrm{~L}_{\mathrm{i}}$. One can easily show that $\bigoplus_{i \in I} \mathrm{~K}_{\mathrm{i}} \leq \bigoplus_{i \in I} \mathrm{M}_{\mathrm{i}}$. By Proposition (2.13) in [7], then $\bigoplus_{i \in I} \mathrm{Li} \ll_{E \oplus_{i \in I} T i} \mathrm{M}$. ThenM is ET-lifting module.

References

[1] Fleury, p.,(1974),"Hollow Module and Local Endomorphism Rings" , Pac.J.Math., 53, 379-385.
[2] F. Kasch, Modules and Rings, Academic Press, Inc- London, 1982.
[3] X. Zhou and X. R. Zhang, "Small-Essential Submodules and Morita Duality", SoutheastAsian Bulletin of Mathematics, 35, 1051-1062, 2011
[4] R. Beyranvand and F. Moradi, "small submodule with respect to an arbitrary submodule", Journal of Algebra and Related Topcs Vol.3, No2, (2015),P43-51.
[5] I.M.A.Hadi, S.H.Aidi, "On e-Small Submodules", Ibn Al-Haitham Journal for Pure and Applied Science, 2015.
[6] K.R.Goodearl, "Ring Theory, Nonsingular Rings and Modules", Marcel Dekkel,1976.
[7] F.SH. Fandi and S.M. Yaseen," on essential (T-samlI) submodule",Second international conference for applied and pure mathematics, 2019.
[8] R. Wisbauer, "Foundations of module and ring theory, Gordon and Breach", Philadelphia, 1991..
[9] V. Erdogdu, Distributive Modules, Can. Math. Ball 30(1987), (248-254).
[10] M. S. Abass, "on fully stable modules", ph.D. Thesis, University of Baghdad, (1991).

