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Abstract —There is continuing interest in using Average Mutual Information (AMI) to quantify the pair-wise distance between 

dataset profiles. Among several algorithms used to find a numerical estimation of AMI, the histogram method is the most 

common since it provides simplicity and least cost. However, this algorithm is known to underestimate the computed entropies 

and to overestimate the resulting AMI.  Kernel Density Estimator (KDE)-based algorithms advanced to alleviate such systematic 

errors rely on bin-level smoothing. In the present work, we propose an alternative algorithm that uses smoothing on the 

probability distribution level. We consider several smoothing functions, both in the probability space and in its frequency space. 

An experimental approach is used to investigate the effect of such modification on the computation of both the entropy and the 

AMI. Results show that, to a significant extent, the present method is able to remove systematic errors in computing entropy and 

AMI. It is also shown that the present algorithm leads to better reconstruction of multivariate time series when AMI is used in 

conjunction with their independent components. 
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I. INTRODUCTION 

Currently, there is a growing interest in the methodologies 
for clustering multivariate datasets. In most clustering 
algorithms, reliance is mainly on some distance measure to 
quantify the pair-wise distance between dataset profiles. 
Usually, the efficiency of the clustering process depends not 
only on the clustering algorithm but also on the chosen distance 
measure [1].It is now recognized that the framework of 
information theory [2] can provide a more general measure of 
dependencies between variables in contrast to linear 
correlation, which utilizes only up to the second order statistics. 
In particular, the use of Mutual Information, or rather more 
common the Average Mutual Information (AMI), as a measure 
of distance between variables, is becoming increasingly 
popular [3, 4]. This is because AMI can provide a better and 
more general measure of dependencies between datasets. 
Examples of using AMI to measure such dependencies are 
given in [5, 6, 7]. 
 There exist several algorithms for computing a numerical 

estimation of the AMI [4]. As will be shown later, the most 

straightforward (and therefore the least cost) method is the 

widely used histogram method. This method is well known to 

underestimate the computed entropies due to systematic errors 

resulting from finite small sized samples of the dataset values 

The resulting effect on the computed AMI is that it is 

systematically overestimated [3]. 

 Other algorithms have been introduced to remove 

systematic errors characteristic of the histogram method. Of 

such algorithms, we mention those using adaptive partitioning 

[8] and the Kernel Density Estimator (KDE) algorithms [9]. 

Of particular interest is the KDE method that relies on 

smoothing rectangular bins by the use of a generalized weight 

or kernel function, usually a Gaussian one. Therefore, in effect 

the KDE is a smoothing method on the bin level. 

 In the present work, we consider an alternative algorithm 

for computing the entropy and AMI that is based on 

smoothing on the probability distribution level rather than on 

the bin level. Smoothing is applied to the Probability Mass 

Function (PMF) P(x) of a variable x, as well as the joint 

probability P(x,y) for two variables x and y resulting from the 

rectangular binning process. We consider several smoothing 

functions, both in the probability space and in its frequency 

space. An experimental approach is used to investigate the 

effect of such modification on the computation of both the 

entropy of a dataset and the AMI between two datasets. 

 The present paper is organized as follows: Section II 

introduces the concept of AMI and gives present experimental 

results of its estimation based on the histogram method. 

Section III introduces our methods for estimating AMI using 

probability distribution smoothing. Sections IV and V give 

experimental results on artificial datasets and the 

reconstruction of actual financial datasets, respectively.  

Finally, Section VI presents the summary and conclusion of 

our work. 

 

II. ESTIMATION OF AMI FROM FINITE DATASETS 

A. Entropy and Average Mutual Information 

 Consider a dataset of size N for a random variable X ={x1, 

x2,.., xN} to be partitioned into M possible states. For such a 

variable, the Shannon entropy is defined as: 

 

           

(1) 

 

where P(x) is the probability distribution of X. On the other 

hand, for two such datasets X, Y (for simplicity having equal 

sizes N), Mutual Information (MI) measures the information 

that X and Y share, i.e., it measures how much knowing one of 

these variables reduces uncertainty about the other. In this 

sense, mutual information is the average amount of decrease 

x X

H( X ) P( x )log P( x )


 
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of uncertainty of X by observing Y, i.e., it is the average 

information that Y gives about X. MI is defined through the 

Kullback-Leibler divergence D of the joint probability 

distribution to the product of its marginals:  

 

 

 (2) 

 

 

where P(x,y) is the joint probability distribution of X and Y and 

P(x) and P(y) are the marginal probability distributions. We 

notice here that the MI is in fact the Expectation relative to 

P(x,y) of the logarithm of P(x,y) / [(P(x) P(y)]. This indicates 

that I(X,Y) is a result of an averaging process and so we may 

also call it the Average Mutual Information (AMI). Moreover, 

the logarithm can have an arbitrary base and we will always 

use it to indicate log to the base 2. 

 In terms of the Shannon entropies, AMIcan also be 

expressed as: 

 

I(X,Y) = H(X) + H(Y) – H(X,Y)(3) 

 

where H(X,Y) is the joint entropy and H(X) and H(Y) are the 

marginal ones. 

 We mention here two important properties of AMI; the first 

is that it is symmetrical, i.e., I(X,Y) = I(Y,X), and the second is 

that I(X,Y) = 0 iff X, Y are independent. 

B. Histogram Method for Computing Entropy and AMI 

The most straightforward method for computing entropies 

H and AMI is to approximate the probabilities P(x), P(y) and 

P(x,y) using histograms. In this method, the dataset points are 

allocated to M fixed width bins. As a preprocessing step, it is 

usual to remove the effect of origin point by subtracting 

xminfrom all values of x in a dataset X. A normalization process 

may also be included so that xi [0,1]  i = 1,..,N, where N is 

the size of the dataset.As for the optimal number of bins, it has 

been recommended [10] to use M =Mopt = Nbins = 

(1+log2(N)+0.5). 

In the 1-D case with xi [0,1] and  M bins in the histogram, 

the fixed width of a bin will be x = 1/M so that bin centers 
will be located at: 
 

zk = (2k -1) / (2 M), k = 1..M(4) 
 
In this case, the frequency of values of X falling in a bin with 
center at zk will be: 

N

k k i

i 1

1
n( z ) ( | z x |)

2M




                      (5) 

 

where  (r) is the Heaviside function given by: 

1 r 0
( r )

0 r 0



 



                                        (6)            

Computationally, we can assign for each value xi a bin index ui 

= M xi +1so that 1 ≤ ui ≤ M. The frequency of Xvalues 
allocated to a bin k will then be: 

N

i

i 1

n( k ) ( k ,u ), k 1..M


                (7) 

where (i,j) is the Kronecker delta function given by: 
 
              
(8) 
 
 
The probability distribution P(x) can then be obtained by 
normalization such that: 

M

k 1

n( k ) 1.0


                                                    (9) 

 

Similarly, in the 2-D case with xi [0,1] and yi [0,1], and  M 
xM bins in the histogram, a pair (xi , yi) will be assigned bin 

indices ui = M xi +1, and vi = M yi +1 so that 1 ≤ ui ≤ M 
and  1 ≤ vi ≤ M. In this case, the frequency of values of X,Y 
allocated to a bin (k,j) will be: 

N

i i

i 1

n( k , j ) ( k ,u ) ( j,v ), k , j 1..M 


  (10) 

As in the 1-D case, the joint probability distribution P(x,y) is 
obtained by normalization of n (k,j).The marginal probability 
distributions P(x) and P(y) can then be obtained by summing 
on the rows and columns of P(x,y). 
 It should be noticed that the complexity of this 
straightforward histogram method is O(N + M) for computing 
entropy using equation (1) and O(N +M

 2
) for computing AMI 

using equation (2). 
 It is known that the histogram method is affected by 

systematic errors that tend to underestimate the entropies 

computed for finite datasets [3], particularly when their sizes 

are small. The entropy observed from the histograms is 

considered to be approximately given by: 

 

HobsH – (M-1) / (2N)                                 (11) 

 

where H is the correct entropy [3]. This approximation is 

supposed to be independent of the probability distribution 

concerned. It is also shown [3] that these systematic errors will 

result in an overestimation of the observed AMI such that: 

 

Iobs(X,Y) I(X,Y) + (M
2
 -2M+1) / (2N) (12) 

  
Here, I(X,Y) is the correct AMI and it is assumed that in the 

binning process, the same number of bins M is used for both 

datasets X and Y. 

C. Experimental Results for Entropy using the Histogram 

Method 

In order to verify the effects of the above mentioned 
systematic errors, we have conducted experiments to compute 
entropies H and AMI estimates using the straightforward 
histogram method. In the experiments for computing entropies, 
we used random numbers generated from a uniform 
distribution with dataset sizes N = {100,200,300,500,700, 1000, 
2000 and 5000}. The number of bins allocated for each size is 

given by M = (1+log2(N)+0.5). Since the dataset values are 
binned into M finite states with supposedly equal probabilities, 
the theoretical entropy corresponding to a given M is H(theor) 

x X y Y

I( X ,Y ) D( P( x, y )|| P( x )P( y ))

P( x, y )
            P( x, y )log

P( x )P( y ) 





1 if i j
( i, j )

0 if i j



 


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= log2 M. For each of the given dataset sizes, the experiment 
was repeated Nexp = 1000 times.  

Fig. 1 shows the results obtained for the difference between 
H(theor) and the observed entropy as a function of log10 (N).It 
can be seen from the figure that the systematic errors in entropy 
computing actually decrease with dataset size N.  

Fig. 2 shows the difference as a function of the quantity (M-
1)/(2 N).It can also be seen from Fig. 2 that the error in 
observed entropy exhibits a linear behavior with the increase in 
the ratio (M-1) / (2N) as given by the approximation (11). 
Actually our results give: 
 

Hobs = H – c(M-1) / (2N),   c = 1.4738 (13) 

 
 

 
Figure 1. Entropy error as a function of dataset size. 

 
 

 
 

Figure 2. Entropy error as a function of (M-1)/(2N). 

 
  
D. Experimental Results for AMI using the Histogram Method 

 To illustrate the impact of systematic binning errors on 

AMI, it is well known [e.g. 11] that if (X,Y) are bivariate 

normal, then the AMI between X and Y depends only on the 

correlation coefficient   between them.Specifically in this 

case, the theoretical AMI will be given by:  

 

I(X,Y) = -(1/2) log2 (1- 2
) (14) 

 

 We have generated bivariate random datasets from a 

standard normal distribution with different correlations . Fig. 

3 shows the results for the observed AMI obtained for sizes N 

= 100 and N = 5000 as compared with the theoretical one 

(equation(14))for different correlation values . It can be seen 

from this figure that the errors in AMI are quite significant for 

small dataset sizes where the AMI is significantly 

overestimated. However, for  large values dataset sizesN, the 

errors become acceptably small over the whole range of 

correlation values. 

 
 

Figure 3. AMI as a function of correlation coefficient 
 

E. Other Algorithms for Computing Entropy and AMI 

 In the literature, there exist several algorithms for 

computing entropy and AMI that are more efficient than the 

straightforward histogram method. Significant among these 

are  

algorithms that use adaptive partitioning and the Kernel 

Density Estimator (KDE) algorithms. As an example of the 

adaptive partitioning algorithms, we mention that in [8]. In 

such algorithms, the bin widths for the histogram classes are 

selected by an adaptive method. This produces a partition of 

the data to roughly balance the proportions in the different 

classes. 

 For the KDE algorithms, the approach aims at improving 

the estimate of the probability density P(x), and to be able to 

specify more sophisticated window shapes than the rectangular 

window for frequency counting [e.g. 12]. We may note here 

that the frequency distribution given by equation (5) uses the 

Heaviside function  (r) to produce rectangular windows. 

Such function can be replaced by some generalized kernel 

function K(r) that can provide smoothing of the bin shape. We 

mention here the algorithm in[12] that uses a kernel density 

estimator to estimate AMI. The kernel is a Gaussian that is 

standard normal in both the univariate and bivariate cases. In 

the 1-D case, a smoothed frequency count at a value z will be 

given by the estimator: 

 
2N

i

2
i 1

( z x )1
n( z ) exp( )

2h2 


            (15) 

 

where h is the window width. 

 In general, the KDE method relies on smoothing 

rectangular bins by the use of a generalized weight or kernel 
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function. Therefore, in effect, the KDE is a smoothing method 

on the bin level. More details on this method can be found in 

[9].  

III. COMPUTING ENTROPY AND AMI USING PROBABILITY 

DISTRIBUTION SMOOTHING 

 In the present work, we consider an alternative approach 

for computing the entropy and AMI that is based on 

smoothing on the probability distribution level rather than on 

the bin level. This method is applied to the Probability Mass 

Function (PMF) P(x) of a variable X, as well as the joint 

probability P(x,y) for two variables X and Y resulting from the 

rectangular binning process.  While there exist many 

smoothing methods to apply, we have chosen to adopt three 

smoothing methods that operate in the probability space or in 

its frequency space. These methods are described as follows: 

 

A. The Med Method:  

 This smoothing method is applied to the probability space 

and uses a 3-point moving median filter in the 1-D case for 

smoothing P(x) and a 3 x 3 median filter in the 2-D case for 

smoothing the joint probability P(x,y). In practice, the 2-D 

space of P(x,y) may contain a number of zeros. The advantage 

of this smoothing method is that it can retain the essential 

features of the probability distributions in the presence of 

zeroes in that probability space. It is also very efficient as its 

complexity is only O(M) in the 1-D case and O(M
2
) in the 2-D 

case, where M is the number of bins used. 

 

B. The DCT Method: 

 This smoothing method operates on the frequency space of 

the probability distributions by using a Discrete Cosine 

Transform (DCT). In this method, the probability distribution 

with M bins is used to obtain M DCT coefficients Ai , i = 1,.., 

M. The absolute values of these coefficients are sorted in 

descending order and a subset of k < M coefficients is selected 

such that their total energy does not exceed a certain 

percentage of the total energy in the M coefficients. The 

remaining M – k coefficients are removed (set to zero). The 

smoothed distribution is then obtained by using an inverse 

DCT. In the 2-D case, the process is done first along the rows 

then along the columns and an average is obtained to represent 

the final smoothed distribution. 

The DCT method is also very efficient as its complexity in the 

1-D case is only O(M log M) and O(M
2
 log M) in the 2-D case. 

 

C. The MP Method: 

 In this “Moment-Preserving” method, smoothing the 

probability distribution is achieved by deriving an 

approximation in the probability domain while preserving a 

finite number of geometric moments that are related to its 

Fourier domain. Moment-preserving values of the probability 

distribution are obtained at specific nodal points that are then 

joined to produce the final smoothed distribution by some high 

order interpolation method such as quadratic or spline 

interpolation. Details of this MP algorithm are given in our 

previous work [13]. 

 Although the MP method generally gives good smoothing 

results [13], it has the highest complexity compared to the 

other two methods mentioned above. This is because it has to 

compute probability values at nodal points followed by an 

interpolation process. 

IV. EXPERIMENTAL RESULTS FOR ARTIFICIAL DATASETS 

A. Entropy Estimation 

 We have conducted experiments to compute entropies 

using the histogram method with and without probability 

density smoothing. As an example of the effect of smoothing, 

Fig. 4 shows an example of the results obtained for datasets 

artificially generated from a uniform distribution when the 

DCT method is used for smoothing.  

 

 
 

Figure 4. Effect of DCT smoothing on entropy.  

 

The example shown uses a small dataset size N = 100 and 

a number of bins M = 13. The entropy error is observed to 

decrease by increasing the fraction of removed DCT energy 

and removal of only 6 – 8% of such energy diminishes the 

errors resulting from the histogram binning. 

 Fig.5 shows the ratio of observed entropy to the theoretical 

one for a uniform distribution as a function of dataset sizeN. 

The figure also shows a comparison of the smoothing effects 

resulting from using the three different smoothing methods 

described earlier.  

 
Figure 5. Comparison of smoothing methods for the entropy of a 

uniform distribution. 

 

 From Fig. 5, it can be seen that the DCT method gives the 

best results for the correction of entropy resulting from 

histogram binning. The Med method also gives acceptable 



International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 7 Issue: 9                                                                                                                                                       16 - 23 

______________________________________________________________________________________ 

20 
IJRITCC | September 2019, Available @ http://www.ijritcc.org  

_______________________________________________________________________________________ 

results but the MP method is not significantly effective. The 

MP method also suffers from limitations of the chosen bin 

sizes andfrom the relatively high complexity due to the 

computations of values of the probability distribution at the 

nodal points. Due to such limitations of the MP method, we 

have limited the experimentation toinclude only the Med and 

DCT methods. 

B. Estimation of AMI 

We have also conducted experiments to compute the AMI 

using the histogram method with and without probability 

density smoothing. In these experiments, we have used 

artificial independent datasets generated from uniform or 

normal distributions. For such independent datasets, the 

theoretical value of AMI should be zero. As an example of the 

effect of smoothing using the DCT method, Fig. 6 shows the 

smoothing effect on the error in computing AMI using a 

medium size datasets (N = 500) and M = 10 bins. 

 

 
Figure 6. Effect of DCT smoothing on the error in AMI. 

 

In Fig. 6, the “No DCT” line indicates the error in AMI 

when no smoothing is used, and as shown, the AMI is 

overestimated in this case. The results shown also indicate that 

the error significantly decreases with increasing the percentage 

of removed DCT energy. Moreover, the error in AMI 

diminishes to an acceptable degree by removing only between 

6% and 8% of the DCT energy. 

We have conducted further experiments using independent 

datasets to investigate the dependence of the error in AMI on 

the dataset size. In these experiments, the AMI error is 

computed with smoothing the probability densities using both 

the DCT and Med methods. Fig. 7a gives the observed error in 

AMI as a function of the dataset size Nfor independent 

uniformly distributed datasets. The number of bins allocated 

for each size is taken asM = (1+log2(N)+0.5). Fig. 7b shows 

similar results but for independent normally distributed 

datasets. In both Fig.7a and Fig. 7b, a comparison is made 

between the effects of using DCT and the Med smoothing 

methods on the AMI error.  

 

 
 

Figure 7a. Effect of DCT and MP smoothing on the error in AMI 

for Uniform distributions. 

 
 

Figure 7b. Effect of DCT and MP smoothing on the error in AMI 

for Normal distributions 
 

 The results obtained show that, although the AMI error 

generally decreases by increase of dataset size, probability 

density smoothing can remove a significant part of the error, 

particularly for small and medium dataset sizes. The results 

also indicate that the effects of DCT and Med smoothing 

methods are close in decreasing the error in the computed 

AMI. This is particularly evident in the case of independent 

normally distributed datasets. 

 In other experiments to show the effect of DCT and Med 

smoothing methods, we have generated bivariate random 

datasets (X,Y) with standard normal distributions and 

characterized by different values of correlation . For such 

datasets, the theoretical AMI will be as given before by 

equation (14).Fig. 8 shows the results for the observed AMI 

obtained for dataset size N = 500 with and without smoothing 

as compared with the theoretical one for different correlation 

values . 
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Figure 8. AMI as a function of correlation coefficient. 

 It can be seenfrom Fig. 8 that probability density 

smoothing significantly reduces the AMI errors resulting from 

histogram binning. Although the DCT method seems to be 

better in removing the error for small correlation values, we 

can also observe that it departs from the theoretical values at 

medium and high correlations. The reason seems to indicate 

that removal of some of the DCT energy will reduce the 

correlation effects in the joint probability distribution. On the 

other hand, we can observe that the Med method significantly 

reduces the errors in AMI over the greater part of the range of 

correlations.Preferred features in the Med method are that it 

has lower complexity and that it does not remove genuine 

correlations over most of the correlation values. 

V. AN APPLICATION: RECONSTRUCTION OF REAL TIME 

SERIES FROM INDEPENDENT COMPONENTS 

 As an application of the present methodology for 

computing AMI, we consider the problem of reconstructing 

real multivariate time series from their dominant Independent 

Components (IC’s). For this purpose, we have selected 4 

financial series representing the daily exchange rates of USD 

versus Canadian Dollar (CAD), Euro (EUR), Pound Sterling 

(GBP), and Japanese Yen (JPY).The data were collected from 

[14] and represents a size of N = 1148 days in the period from 

January 2, 2015 until July 31, 2019.  Fig. 9a shows these 4 

financial time series over the indicated time period. 

  
Figure 9a. Exchange Rate time series X.(USD versus X1: CAD, X2: 

EUR, X3: GBP, X4: JPY). 

 

 From the given series considered as a mixture X = {xi, i = 

1..4}, we have obtained the corresponding IC’s Y = {Yj, j = 

1..4} and the demixing matrix W such that an estimate of the 

original series is obtained as X* = W
-1

 Y. The ICA algorithm 

used for obtaining Y and W is described in detail in our 

previous work [15].  

 
Figure 9b. IC’s Y for Exchange Rate time series X. 

  

 

Basically, the algorithm uses a fixed-point iteration method to 

maximize the negentropy using a Newton iteration method as 

well as a tanh non-linearity.  The results obtained for the IC’s 

Y are shown in Fig. 9b. 

  

 The process of reconstructing time series xi from the 

estimated independent components Yj, j = 1…k can be done by 

summing their contributions in the order given by an optimal 

list Li. Such list represents the indices in descending order of 

their dominance of contribution to a given series xi. Following 

[15], the contribution may be expressed by the 3-D space: 

 

u(i,j,t) = W
-1

(i,j) Yj (t)(16) 
 
The reconstruction of series of xi by the first mmost dominant 

independent components in the list Li is obtained by summing 

the contributions of the individual component, i.e. 

1

ˆ ˆ ( , ) ( , , )
i

m
m m

L i i

s

x x L t u i s t


  (17) 

where (s) denotes the s
th

 index in list Li. 

  

 To determine the optimal list Lifor a given series xi, we 

have computed the ordered set of IC indices that maximizes 

the AMI between the contributions u(i,j,t) and the series xi. We 

have computed the AMI’s without (Algorithm A1) and with 

probability distribution smoothing (Algorithm A2) using the 

Med method outlined previously. As examples, Table (1) 

gives the results obtained for the USD/GBP and USD/JPY 

series. In the table, the optimal lists are given as obtained by 

algorithms A1 and A2 together with the percentage cumulative 

contributions of the IC’s from the lists to the reconstruction of 

the exchange rate time series. 
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TABLE 1. ORDERED LISTS (L) AND CUMULATIVE 
CONTRIBUTIONS (CC) OF IC’S (%)(X3: USD/GBP, X4: USD/JPY) 

 

X X3    X4    

L (A1) 1 2 3 4 2 4 3 1 

CC 5.9 69.3 91.2 100 12.9 53.7 84.6 100 

L (A2) 2 1 3 4 4 2 3 1 

CC 63.4 69.3 91.2 100 40.9 53.7 84.6 100 

 

 It can be seen from the above table that using AMI with 

smoothing has changed the order of the first two dominant 

IC’s in the lists leading to a significantly better reconstruction 

using the most dominant IC. In particular, using only the first 

dominant IC with Algorithm A1 leads to reconstruction Mean 

Square Errors (MSE) of 0.94 and 0.87 for the series X3 and 

X4, respectively.When probability density smoothing is used 

(Algorithm A2), the corresponding reconstruction MSE are 

reduced to only 0.37 and 0.59, respectively.   

 This is also illustrated in Fig.10, whichcompares between a 

part of the observed series X3: USD/GBP and the series 

reconstructed from the most dominant IC in the lists obtained 

by the two algorithms A1 and A2. It is clear from such 

comparison that using probability smoothing in computing the 

AMI will reduce the reconstruction errors and leads to a better 

contribution of the dominant IC to the reconstructed series. 

 

 
Figure 10. Observed X3 series and contributions of most dominant IC 
 

It should be noted that exact agreement (MSE  0) between 

observed and reconstructed series is obtained by using all IC’s 

in the list L as shown in Fig. 11. The figure compares the 

observed USA/GBP series with the reconstructed ones using 

the first one, the first two, first 3 and all IC’s in the ordered list 

determined by AMI computations using Algorithm A2. 

 
Figure 11. Reconstruction of exchange rate time series X3 

(USD/GBP), Solid line (Observed), dotted line (Reconstructed). 

It can be seen from Table (1) and Fig. 11 that the 
reconstruction of observed series with one or two dominant 
IC’s can preserve the general trends of the series. Quite 
acceptable matching can be realized with only the first 
dominant 3 IC’s in the lists (e.g. their contribution to the X3 
series is 91.2%). Of course, exact matching is achieved when 
all IC’s are used in the reconstruction process. 

VI. SUMMARY AND CONCLUSIONS 

 The histogram method is considered to be the most 

straightforward method for computing entropies and Average 

Mutual Information (AMI) between datasets. It is known that 

the histogram method is affected by systematic errors resulting 

from binning dataset variables using rectangular fixed width 

bins. Kernel Density Estimator (KDE)-based algorithms 

advanced to alleviate such systematic errors rely on bin-level 

smoothing. In the present work, we have introduced an 

alternative algorithm that uses smoothing on the probability 

distribution level. We considered several smoothing functions, 

both in the probability space and in its frequency space. An 

experimental approach is used to investigate the effect of such 

modification on the computation of both the entropy and the 

AMI. 

 In order to quantify the effects of the systematic errors 

resulting from the fixed bin width binning, we have conducted 

a set of experiments to compute entropies and AMI estimates 

using the straightforward histogram method. Using artificial 

datasets of different sizes generated from uniform and normal 

distributions, we obtained results to support the presence of 

such systematic errors resulting from the binning process. Our 

results show that the straightforward histogram method 

underestimates the values of entropy with an error that is 

linearly proportional to the ratio of number of used bins to the 

size of the dataset. Also, from experiments using artificial 

datasets with given correlation, we find that the AMI is 

overestimated particularly at small dataset sizes with low and 

medium correlation. 

 From experiments done using the present introduction of 

probability distribution smoothing, we compare between 

different smoothing functions and conclude that median filter 

smoothing gives best  efficiency in terms of the amount of 
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error reduction in entropy and AMI as well as complexity of 

computation. Results of our experiments show that probability 

density smoothing significantly reduces the AMI errors. 

Moreover, the results show that the median filter smoothing 

significantly reduces the errors in AMI over the greater part of 

the range of correlations. Preferred features in this method are 

its lower complexity and that it does not remove genuine 

correlations over most of the correlation values. 

 As an application of the present methodology for 

computing AMI, we considered the problem of reconstructing 

real multivariate time series from their dominant Independent 

Components (IC’s). For this purpose, we have selected 4 real 

financial series representing the daily exchange rates of USD 

versus other currencies. Present experiments to reconstruct 

these financial series from their computer IC’s show that 

significantly better reconstruction is obtained by using our 

algorithm with probability distribution smoothing. 
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