
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6360 - 6365

__

6360

IJRITCC | November 2015, Available @ http://www.ijritcc.org

An Enhanced Bayesian Decision Tree Model for Defect Detection on Complex

SDLC Defect Data

Nageswara Rao Moparthi
 Research Scholar,

Dept.of Computer Science & Technology,

 Sri Krishnadevaraya University

Ananthapuram,India

Dr. N. Geethanjili
Associated professor,

Dept.of Computer Science & Technology,

Sri Krishnadevaraya University

Ananthapuram,India

Abstract— In this paper, we explore the multi-defect prediction model on complex metric data using hybrid Bayesian network.Traditional

software metrics are used to estimate the effect of defects for decision making. Extensive study has been carried out to find the defect patterns

using one or two software phase metrics.However, the effect of traditional models is influenced by redundant and irrelevant features.Also, as the

number of software metrics increases, then the relationship between the new metrics with the traditional metric becomes too complex for

decision making. In this proposed work, a preprocessed based hybrid Bayesian network was implemented to handle large number of metrics for

multi-defect decision patterns. Experimental results show that proposed model has high precision and low false positive rate compared to

traditional Bayesian models.

Keywords—Hybrid Model, Bayesian Model, Decision patterns,Defect data.

__*****___

I. INTRODUCTION

The defect is a flaw in the software program which can cause

it to fail to perform its functions. Defect prediction provides an

optimized way to find the vulnerabilities in the SDLC phases

which occurs due to manual or automatic errors.. As the

dependency of software programs increasing, software quality

is becoming more and more essential in present era. Software

defects such as failures and faults may affect the quality of

software which leads to customer dissatisfaction.Due to the

increasing of software constraints and modular complexity , it

is too difficult to produce a quality end product. Defects in

software may cause loss of money and time, so it is necessary

to predict bugs in advance for successful quality products and

decision makers. As a result, these bug reports present in

various bug tracking frameworks contains detailed

information about the bugs along with the severity level[1-3].

Generally faulty constraints that causes incorrect outputs are

represented as software bugs. These constraints can be defined

as a set of features which can be used to find the bugs.These

features influence the effectiveness of the bug prediction

model. Various types of classification and feature selection

models have been applied for software defect detection,

including decision trees, multiple regression, neural networks,

svm and naïve Bayes. However, these models have failed to

select the relevant defects for appropriate classifier. The

performance of software defect detection also decreases due to

the noise and large number defect features [4] [5].

The basic limitations of these traditional models are :

1) Unable to find the new patterns to the dynamic

features.

2) Fail to load the metric data with a large number of

instances.

3) The requirement specification of the project may be

wrong either due to missing features or values and

contradictory requirements. It may be not well

documented or too complex to analyze.

4) Metrics are not qualified enough for the project[6].

5) The software may not be tested enough or some bugs

might not be fixed during the testing time.

6) Bayesian network has the capability to find node

prediction and its relationship to other nodes in the

network. In the software development process, bugs

and their dependencies are too complex to predict due

to uncertain factors that lead to defects.

A Bayesian network is a directed acyclic graph with E edges

and V vertices. The set of variables in the Bayesian network

represents the joint probability distribution values, and each

vertex represents the variable and an edge represents the

association between the vertices. Let 1 2{ , ... }nV V V V be the

discrete or continuous random variables used in the Bayesian

network for defect prediction model. The probability

computation of iV is shown as P(/ ai xV) where a x

represents the parent nodes of iV .Then the joint probability

distribution of X can be given as

1 2Prob() Prob(, ...)nV V V V

1 2 2 3 1Prob(/ ,...).Prob(/ ,...)...Prob(/)Prob()n n n n nV V V V V V V V V

1

1

Prob(/ ,...)
n

i i n

i

V V V

Feature selection is a process of selecting a relevant attribute

subset of a large number of defect attributes. Feature selection

can be categorized as feature ranking and subset selection.

Defect feature ranking is evaluated on individual metrics and

ranks attributes according to their ranking measure. Feature

subset selection is used to select a subset of the features of the

original attributes set with high predictive measures.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6360 - 6365

__

6361

IJRITCC | November 2015, Available @ http://www.ijritcc.org

The rest of the paper is summarized as follows. The related

work of the different defect prediction models and feature

selection models in software defects are discussed in Section

II. In section III, we proposed a new filter based hybrid

Bayesian network model for defect prediction . In Section IV,

experimental results are evaluated on different software

defects datasets and finally, Section V describes about

conclusion and future scope.

II. Related Work

[1][2] formulated the defect prediction models to find the

stochastic process in terms of defect variables and find the

interval between the variable rate. They used non-

homogeneous poison process to formulate the number of

defects found during the defect dependency test. For each

defect find the poison process, P(t), the probability of finding

k defects by the time t and it is expressed in terms of the

Poisson distribution with mean m (t) as

Prob{P(t)=k}=m(t)
n
. e / !mt n

The exponential model is used to find the defect distribution in

the testing phase of SDLC,especially the regression testing and

integrated testing phases. The basic assumption is that,defect

occur at any stage in the testing phase or failure mode is the

best indication of the software reliability.

() (1)(.)tF t k e

Naïve bayes is a very effective classification technique to

predict the existence of defects based on the training samples.

A naïve Bayes model considers bug prediction as a binary

classifier i.e. it trains and predict predictor by analyzing

historical metric data.If the attribute types in the metric data

are mixed type , then it is difficult to predict the defects due to

missing values or uncertain data.

KNN method to judge the defect rate in software status and

events. They try to give the software defect rates using some

statistic techniques. With the data mining techniques more

mature and widely used, for analysis and mining the hidden

information in the software development repository become a

hot research topic. The usual ways which use data mining

techniques in this domain include Association Rules,

Classification and Prediction, Clustering. Classification means

to build defects prediction model by learning the already

existed defects data to predict the defects in future version of

software. [8] use this method to improve the efficiency and

quality of software development. Some other researches

include raised to predict the status and the number of

software defects. The current software defect prediction,

mainly uses the software metrics to predict the amount and

distribution of the software defects. The research method of

software defect classification, prediction is based on the

program properties of the historical software versions, to build

different prediction models and to forecast the defects in the

coming versions.

Dynamic analysis techniques can be categorized into three

independent layers. First layer is a systematic testing layer.

This layer is to execute target programs within policies. These

policies aim to reach error states effectively. Second layer is

an information extraction layer. The information on the

internal behaviors of the target programs is extracted to be

used for the program correctness checking. At third layer, the

monitors generate an abstract model of the target program

from the extracted information and then verify the abstract

model to detect possible errors in the program. Dynamic

analysis techniques, share the limitations of testing inherently.

Dynamic analysis cannot support complete analysis of target

programs since it uses monitored partial behavior of the target

programs. The other limitation is that dynamic analysis

techniques are difficult to be applied unless target programs

are complete. Dynamic analysis techniques require executable

environments and test cases[7-9].

In [3] importance of different software metrics with prediction

model.In this model, they implemented correlations and metric

occurrences in the bug prediction model by using different

algorithms and the number of bugs in each metric was

computed. [4] implemented object oriented metrics to

measure the object oriented software quality.It was found that

models which are built on coupling and complexity are more

precise and accurate than the models build on other metrics.

[5] , designed a model that describes the prediction of 90

releases in open source projects and other projects on

academics to perform clustering algorithm. They implemented

similarity cluster measures to group the metrics in the design

and implemented phases. Statistical tests are used to validate

the cluster in each group of metrics.[6] implemented the

principal component analysis to reduce the simple multi-

collinear complexity to un-correlated measures of orthogonal

complexity.

[6] Proposed a model to predict bugs and their levels with

high, medium and low severity faults and found that the high

severity faults are less accurate as compared to the traditional

models at different severities.

Regression technique is aimed to predict the quantity and

density of software defects. Classification technique is aimed

to determine whether software module (which can be a

package, code, file, or the like) has a higher defect risk or not.

Classification usually learns the data in earlier versions of the

same project or similar data of other projects to establish a

classification model. The model will be used to forecast the

software defects in the projects which need to be predicted. By

doing this, we can make more reasonable allocation of

resources and time, to improve the efficiency and quality of

software development[9-12].

Main Objectives of this paper:

 Remove noise in hybrid dataset using correlated

based normalization.

 Muli-Variate decision patterns for defects

relationship.

 Handle mixed data-type and uncertain decisions.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6360 - 6365

__

6362

IJRITCC | November 2015, Available @ http://www.ijritcc.org

Proposed Model

In this model, multi-phase metric data was given input to the

proposed model for preprocessing. In this framework as

shown in Fig 1, input software metric data with a large

number of attributes and values are given input to the filtering

technique. Filtering algorithm handles missing data and

normalized correlation computations for data transformation.

After the data transformation, output filtered data is used for

the hybrid Bayesian based ranking model to predict and rank

the features for pattern mining. Each pattern in the hybrid

model is evaluated using F-measure, FP, TP and accuracy of

performance evaluation. Finally, decision patterns relevant to

set of metrics are evaluated for defect prediction.

Algorithm1: Preprocessing Model

Input: MultiVariated Metrics

 Thres: Metric Threshold

Output: Filter Data

Procedure:

 Read metrics input data as D.

For each metric M[i] attribute in D

Do

For each instance I[j] in M[i]

Do

If(I[j]==null & M[i+1]!=null)

Then

I[j]=(Mean(M[i])+S.D(M[i]))/(2*Max{M[I],M[I+1]});

End if

If(I[j]==null & M[i+1]==null)

Then

I[j]=(Mean(M[i])+S.D(M[i]))/(2*Max{M[I],M[I-1]});

End if

End for

End for

For each pair of metrics M[i] and M[i+1]

Compute Normalization as

NM[i]= Normalize(M[1]);

NM[i+1]=Normalize(M[i+1)];

NML=addList(NM[i]);

NML=addList(NM[i+1]);

done

done

Sort normalized metrics list NML in ascending order.

For each pair of normalized metrics

Do

Compute Predictive correlation between the two metrics as

 Predictive Correlation PC=Corr(NML[i],NML[i+1])/

Prob(NML[i] / NML[i 1])
N

i i

 ;

If(PC>thres)

Then

D
’
 =addMetric(NML[i],NML[i+1],PC);

End if

Done

Algorithm 1, describes the hybrid preprocessing algorithm on

the hybrid metric dataset for noise and data transformation.

Algorithm reads the input data and checks the each instance

for missing values. If the instance value is missing, then it is

replaced with the equation (1) or equation (2). After replacing

the missing instances, each pair of metrics is normalized to

remove the un-certainty. Afterwards, compute the predictive

correlation between two metrics and check the condition with

the user defined threshold.

Algorithm-2: Hybrid Bayesian Ranking Based Pattern

Miner(HBRBPM)

Input : Filtered Data D
’

Output: Decision patterns

Procedure:

Step 1: Choose a pair of metrics with highest correlated

features.m1,m2 be the two metrics with the highest predictive

correlated measures.

 Step 2: Compute rank based attribute measure as follows

 Rank(m1)=
2 0.5*PC(m2,m1)

1 21 (log())*m m e

 Rank(m2)=
2 0.5*PC(m1, 2)

2 12 (log())* mm m e

 max{ 1, 2}

Step 3: ()if

 Then

 Create a node with (max{ 1, 2}) as root

Hybrid Metric

Data

Data Preprocess

Algorithm

Fill missing values,

Normalized Correlation

Apply Proposed

Model

Pattern Evaluation

Results

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6360 - 6365

__

6363

IJRITCC | November 2015, Available @ http://www.ijritcc.org

 Else

 Compute the predictive correlation and gain

computation between the other metrics.

 End if

Step 4: Repeat the steps 2,3 until all metrics

Step 5: Validate the test using F-measure and t-test.

Step 6: Extract rules from the tree.

Step 7: Display results.

Sample Data:

Data 2:

Data 3:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6360 - 6365

__

6364

IJRITCC | November 2015, Available @ http://www.ijritcc.org

Proposed Experimental Results:

lines_removed <= 542.4 -> filetype != documentation

 lines_removed < 678.0 -> filetype != documentation

 lines_added <= 1011.0 AND lines_removed < 135.6 ->

external != 1

 lines_added <= 404.4 -> filetype != documentation

 filetype != documentation AND lines_added <

606.5999999999999 -> lines_removed < 135.6

 lines_added <= 808.8 AND lines_added <=

606.5999999999999 -> external != 1

 lines_removed < 678.0 AND lines_removed <= 271.2 ->

lines_added <= 1011.0

 lines_removed < 135.6 AND lines_removed < 678.0 ->

lines_added <= 404.4

 lines_removed < 135.6 -> filetype != images

 filetype != i18n -> external != 1

 lines_added < 1011.0 AND lines_removed <= 135.6 ->

external != 1

 lines_added <= 404.4 -> filetype != images

 lines_added < 1011.0 AND external != 1 AND lines_removed

< 271.2 -> filetype != images

 lines_added < 1011.0 -> filetype != documentation

 lines_added <= 1011.0 AND lines_added < 808.8 -> filetype

!= images

 lines_added < 202.2 AND lines_removed <= 135.6 AND

lines_removed < 271.2 -> filetype != images

 lines_removed < 271.2 AND lines_removed < 135.6 ->

lines_added <= 404.4
 filetype != documentation AND lines_added <

606.5999999999999 -> lines_removed <= 135.6

RFC <= 862.0 -> Bug-count != false

 NOC <= 38.0 AND NPM <= 214.0 -> CBO <= 125.0

 NOC <= 38.0 -> Bug-count != false

 RFC >= 0.0 -> NOC <= 38.0

 RFC >= 0.0 -> WMC <= 351.0

 CBO <= 125.0 AND NPM <= 214.0 -> WMC <= 351.0

 LOC <= 5317.0 AND DIT >= 0.0 -> RFC >= 0.0

 NOC <= 38.0 -> WMC <= 351.0

 NOC <= 38.0 AND DIT >= 0.0 -> RFC <= 862.0

 DIT >= 0.0 AND NPM <= 214.0 -> WMC <= 351.0

 Bug-count != false -> CBO <= 125.0

 WMC <= 351.0 -> RFC >= 0.0

 DIT >= 0.0 AND RFC <= 862.0 -> Bug-count != false

 LOC <= 5317.0 AND NPM <= 214.0 -> WMC <= 351.0

 LOC <= 5317.0 -> CBO <= 125.0

 RFC >= 0.0 -> NPM <= 214.0

 Bug-count != false -> WMC <= 351.0

 NOC <= 38.0 AND RFC <= 862.0 -> NPM <= 214.0

 NOC <= 38.0 AND Bug-count != false -> DIT >= 0.0

 NOC <= 38.0 AND NPM <= 214.0 AND DIT >= 0.0 ->

RFC <= 862.0

 RFC <= 862.0 -> CBO <= 125.0

 DIT >= 0.0 -> LOC <= 5317.0

 NOC <= 38.0 -> LCOM >= 0.0

 NPM <= 214.0 AND WMC <= 351.0 -> RFC <= 862.0

 WMC <= 351.0 AND LCOM >= 0.0 -> RFC >= 0.0

 CBO <= 125.0 AND RFC >= 0.0 -> Bug-count != false

 RFC >= 0.0 AND NPM <= 214.0 -> CBO <= 125.0

 LCOM >= 0.0 AND NPM <= 214.0 -> Bug-count != false

 CBO <= 125.0 AND NPM <= 214.0 AND DIT >= 0.0 ->

RFC <= 862.0

 WMC <= 351.0 AND RFC >= 0.0 -> Bug-count != false

 LOC <= 5317.0 AND DIT >= 0.0 -> RFC <= 862.0

 lines_removed <= 135.6 AND lines_removed <= 678.0 ->

lines_added <= 404.4

 lines_added <= 404.4 AND lines_added <=

606.5999999999999 -> external != 1

 lines_removed <= 678.0 AND lines_removed <= 135.6 ->

filetype != i18n

 lines_removed <= 678.0 AND lines_removed <= 135.6 AND

external != 1 AND lines_added <= 202.2 -> filetype !=

documentation

 lines_removed < 135.6 -> external != 1

 lines_added <= 202.2 AND external != 1 AND lines_removed

< 271.2 -> filetype != images

 lines_removed < 542.4 AND lines_removed < 271.2 ->

lines_added < 606.5999999999999

 lines_added < 1011.0 -> lines_removed < 135.6

 lines_removed <= 678.0 AND lines_removed <= 135.6 AND

lines_removed < 271.2 -> filetype != images

 filetype != documentation -> lines_removed <= 678.0

 filetype != images AND filetype != unknown -> lines_added

<= 202.2

Performance Measures:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6360 - 6365

__

6365

IJRITCC | November 2015, Available @ http://www.ijritcc.org

Table 1: Uncertain data preprocessing

Datasize MissingValues FilterTime(secs)

#500 12 16

#1000 16 18

#1500 19 21

#2000 25 28

#5000 28 34

Table 1, describes the different data sizes and its missing

values and filter time

Fig 2: Comparison between datasize Vs Missing values and

Filter time

Table 2: Performance analysis of Proposed model with the

traditional models.

Datasi

ze

KNN Predictive

Bug

detection

Regression

Based

Bug prediction

HBRBPM

#500 0.87 0.85 0.798 0.96

#1000 0.91 0.867 0.814 0.9524

#1500 0.85 0.827 0.845 0.917

#2000 0.867 0.819 0.842 0.9713

#5000 0.891 0.84 0.86 0.939

Fig 3: Comparative analysis of proposed model with existing

models.

V.CONCLUSION

In this research work, we have used data in different software

life cycle phases for defect prediction.In this proposed

approach, we have performed robust preprocessing and defects

detection algorithm on the metrics data. This approach

effectively handles the uncertain data and transform the data

for defect detection. Finally, the proposed defect detection

model was applied to the transformed data to detect the metric

decision patterns. In future , this work can be extended to high

dimensional data with more than one project metrics.

REFERENCES

[1] G.Abaeia , A.Selamata , H.Fujitab , “An empirical study

based on semi-supervised hybrid self-organizing map for

software fault prediction”, Knowledge-Based Systems, vol.

74, (2015), pp. 28-39.

[2] R. Malhotra, “A systematic review of machine learning

techniques for software fault prediction”,Applied Soft

Computing, vol. 27, (2015), pp. 504-518.

[3] I. H. Laradji, M.Alshayeb, L.Ghouti, “Software defect

prediction using ensemble learning on selected features.

Information and Science Technology”, vol. 58, (2015), pp.

388-402.

[4] W. Zhang, Y. Yang, Q. Wang, “Using Bayesian Regression

and EM algorithm with missing handling for software effort

prediction”, Information and software technology, vol. 58,

(2015), pp. 58-70.

[5] P. He, B. Li, X. Liu, J. Chen, Y. Ma, “An empirical study

on software defect prediction with a simplified metric set”,

vol 59, (2015), pp. 170-190.

[6] V. Ajay Prakash, D. V. Ashoka, V. N. ManjunathAradya,

“Application of Data Mining Techniques for Defect

Detection and Classification”, Proceedings of the 3rd

International Conference on Frontiers of Intelligent

Computing: Theory and Applications (FICTA) 2014,

Advances in Intelligent Systems and Computing, vol. 327,

(2015), pp. 387-395

[7] A. Kaur and I. Kaur, “Empirical Evaluation of Machine

Learning Algorithms for Fault Prediction”, LectureNotes

on Software Engineering, vol. 2, no. 2, (2014).

[8] T. Menzies, J. Greenwald & A. Frank (2007) “Data mining

static code attributes to learn defect predictors”, IEEE

Transaction Software Engineering., Vol. 33, Issue 1, pp. 2-

13.

[9] R. Spiewak & K. McRitchie (2008) “Using software quality

methods to reduce cost and prevent defects”, Journal of

Software Engineering and Technology, pp. 23-27.

[10] D. Shiwei (2009) “Defect prevention and detection of DSP-

Software”, World Academy of Science, Engineering and

Technology, Vol. 3, Issue 10, pp. 406-409.

[11] P. Trivedi & S. Pachori (2010) “Modelling and analyzing

of software defect prevention using ODC”, International

Journal of Advanced Computer Science and Applications,

Vol. 1, No. 3, pp. 75- 77.

[12] T. R. G. Nair & V. Suma (2010) “The pattern of software

defects spanning across size complexity”, International

Journal of Software Engineering, Vol. 3, Issue 2, pp. 53-

70.

http://www.ijritcc.org/

