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Abstract— In this paper, we explore the multi-defect prediction model on complex metric data using hybrid Bayesian network.Traditional 

software metrics are used to estimate the effect of defects for decision making. Extensive study has been carried out to find the defect patterns 

using one or two software phase metrics.However, the effect of traditional models is influenced by redundant and irrelevant features.Also, as the 

number of software metrics increases, then the relationship between the new metrics  with the traditional metric becomes too complex for 

decision making. In this proposed work, a preprocessed based hybrid Bayesian network was implemented to handle large number of metrics for 

multi-defect decision patterns. Experimental results show that proposed model has high precision and low false positive rate compared to 

traditional Bayesian models. 
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I. INTRODUCTION  

 

The defect is a flaw in the software program which can cause 

it to fail to perform its functions. Defect prediction provides an 

optimized way to find the vulnerabilities in the SDLC phases 

which occurs due to manual or automatic errors.. As the 

dependency of software programs increasing, software quality 

is becoming more and more essential in present era. Software 

defects such as failures and faults may affect the quality of 

software which leads to customer dissatisfaction.Due to the 

increasing of software constraints and modular complexity , it 

is too difficult to produce a quality end product. Defects in 

software may cause loss of money and time, so it is necessary 

to predict bugs in advance for successful quality products and 

decision makers. As a result, these bug reports present in 

various bug tracking frameworks contains  detailed 

information about the bugs along with the severity level[1-3]. 

Generally faulty constraints that causes incorrect outputs are 

represented as software bugs. These constraints can be defined 

as a set of features which can be used to find the bugs.These 

features influence the effectiveness of the bug prediction 

model. Various types of classification and feature selection 

models have been applied for software defect detection, 

including decision trees, multiple regression, neural networks, 

svm and naïve Bayes. However, these models have failed to 

select the relevant defects for appropriate classifier. The 

performance of software defect detection also decreases due to 

the noise and large number defect features [4] [5]. 

 

The basic limitations of these traditional models are : 

 

1) Unable to find the new patterns to the dynamic 

features. 

2) Fail to  load the metric data with a large number of 

instances.  

3) The requirement specification of the project may be 

wrong either due to missing features or values and 

contradictory requirements. It may be not well 

documented or too complex to analyze. 

4) Metrics are not qualified enough for the project[6]. 

5) The software may not be tested enough or some bugs 

might not be fixed during the testing time. 

6) Bayesian network has the capability to find node 

prediction and its relationship to other nodes in the 

network. In the software development process, bugs 

and their dependencies are too complex to predict due 

to uncertain factors that lead to defects. 

A Bayesian network is a directed acyclic graph with E edges 

and V vertices. The set of variables in the Bayesian network 

represents the joint probability distribution values, and each 

vertex represents the variable and an edge represents the 

association between the vertices. Let 1 2{ , ... }nV V V V be the 

discrete or continuous random variables used in the Bayesian 

network for defect prediction model. The probability 

computation of iV  is shown as P( / ai xV ) where a x  

represents the parent nodes of iV .Then the joint probability 

distribution of X can be given as 

 

1 2Prob( ) Prob( , ... )nV V V V  

1 2 2 3 1Prob( / ,... ).Prob( / ,... )...Prob( / )Prob( )n n n n nV V V V V V V V V

 

1

1

Prob( / ,... )
n

i i n

i

V V V



  

 

Feature selection is a process of selecting a relevant attribute 

subset of a large number of defect attributes. Feature selection 

can be categorized as feature ranking and subset selection. 

Defect feature ranking is evaluated on individual metrics and 

ranks attributes according to their ranking measure. Feature 

subset selection is used to select a subset of the features of the 

original attributes set with high predictive measures. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                              ISSN: 2321-8169 

Volume: 3 Issue: 11                                                                                                                                                                                   6360 - 6365 

________________________________________________________________________________________________________ 

 
6361 

IJRITCC | November 2015, Available @ http://www.ijritcc.org                                                                 

_____________________________________________________________________________________ 

The rest of the  paper is summarized as follows. The  related 

work of the different defect prediction models and feature 

selection models in software defects are discussed in Section 

II. In section III, we proposed a new filter based hybrid 

Bayesian network model for defect prediction . In Section IV, 

experimental results are evaluated on different software 

defects datasets and finally, Section V describes about 

conclusion and future scope. 

 

II. Related Work 

[1][2] formulated the defect prediction models to find the 

stochastic process in terms of defect variables and find the 

interval between the variable rate. They used non-

homogeneous poison process to formulate the number  of 

defects found during the defect dependency test. For each 

defect find the poison process, P(t), the probability of finding 

k defects by the time t and it is expressed in terms of the 

Poisson distribution with mean m (t) as 

 

Prob{P(t)=k}=m(t)
n
. e / !mt n

 
 

The exponential model is used to find the defect distribution in 

the testing phase of SDLC,especially the regression testing and 

integrated testing phases. The basic assumption is that,defect 

occur at any stage in the testing phase or failure mode is the 

best indication of the software reliability. 

 

( ) ( 1)( . )tF t k e   
 

 

Naïve bayes is a very effective classification technique to 

predict the existence of defects based on the training samples. 

A naïve Bayes model considers bug prediction as a binary 

classifier i.e. it trains and predict predictor by analyzing 

historical metric data.If the attribute types in the metric data 

are mixed type , then it is difficult to predict the defects due to 

missing values or uncertain data. 

 

KNN method to judge the defect rate in software status and 

events. They try to give the software defect rates using some 

statistic techniques.  With the data mining techniques more 

mature and widely used, for analysis and mining the hidden 

information in the software development repository become a 

hot research topic. The usual ways which use data mining 

techniques in this domain include Association Rules, 

Classification and Prediction, Clustering. Classification means 

to build defects prediction model by learning the already 

existed defects data to predict the defects in future version of 

software. [8] use this method to improve the efficiency and 

quality of software development. Some other researches 

include  raised  to predict the status and the number of 

software defects. The current software defect prediction, 

mainly uses the software metrics to predict the amount and 

distribution of the software defects. The research method of 

software defect classification, prediction is based on the 

program properties of the historical software versions, to build 

different prediction models and to forecast the defects in the 

coming versions. 

 

Dynamic analysis techniques can be categorized into three 

independent layers. First layer is a systematic testing layer. 

This layer is to execute target programs within policies. These 

policies aim to reach error states effectively. Second layer is 

an information extraction layer. The information on the 

internal behaviors of the target programs is extracted to be 

used for the program correctness checking. At third layer, the 

monitors generate an abstract model of the target program 

from the extracted information and then verify the abstract 

model to detect possible errors in the program. Dynamic 

analysis techniques, share the limitations of testing inherently. 

Dynamic analysis cannot support complete analysis of target 

programs since it uses monitored partial behavior of the target 

programs. The other limitation is that dynamic analysis 

techniques are difficult to be applied unless target programs 

are complete. Dynamic analysis techniques require executable 

environments and test cases[7-9]. 

 

In [3] importance of different software metrics with prediction 

model.In this model, they implemented correlations and metric 

occurrences in the bug prediction model by using different 

algorithms and the number of bugs in each metric was 

computed. [4]  implemented object oriented metrics to 

measure the object oriented software quality.It was found that 

models which are built on coupling and complexity are more 

precise and accurate than the models build on other metrics. 

[5] , designed a model that describes the prediction of 90 

releases in open source  projects and other projects on 

academics to perform clustering algorithm. They implemented 

similarity cluster measures to group the metrics in the design 

and implemented phases. Statistical tests are used to validate 

the cluster in each group of metrics.[6] implemented  the 

principal component analysis to reduce the simple multi-

collinear complexity to un-correlated measures of orthogonal 

complexity. 

 

[6] Proposed a model to predict bugs and their levels with 

high, medium and low severity faults and found that the high 

severity faults are less accurate as compared to the traditional 

models at different severities. 

 

Regression technique is aimed to predict the quantity and 

density of software defects. Classification technique is aimed 

to determine whether software module (which can be a 

package, code, file, or the like) has a higher defect risk or not. 

Classification usually learns the data in earlier versions of the 

same project or similar data of other projects to establish a 

classification model. The model will be used to forecast the 

software defects in the projects which need to be predicted. By 

doing this, we can make more reasonable allocation of 

resources and time, to improve the efficiency and quality of 

software development[9-12]. 

 

Main Objectives of this paper: 

 

 Remove noise in hybrid dataset using correlated 

based normalization. 

 Muli-Variate decision patterns for defects 

relationship. 

 Handle mixed data-type and uncertain decisions. 
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Proposed Model 

In this model, multi-phase metric data was given input to the 

proposed model for preprocessing. In this framework  as 

shown in Fig 1,  input software metric data with a large 

number of attributes and values are given input to the filtering 

technique. Filtering algorithm handles missing data and 

normalized correlation computations for data transformation. 

After the data transformation, output filtered data is used for 

the hybrid Bayesian based  ranking model to predict and rank 

the features for pattern mining. Each pattern in the hybrid 

model is evaluated using F-measure, FP, TP and accuracy of 

performance evaluation. Finally, decision patterns relevant to 

set of metrics are evaluated for defect prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm1: Preprocessing Model 

 

Input: MultiVariated Metrics 

 Thres: Metric Threshold 

Output: Filter Data 

Procedure: 

 Read metrics input data as D. 

For each metric M[i] attribute in D 

Do 

For each instance I[j] in M[i] 

Do 

If(I[j]==null & M[i+1]!=null) 

Then 

I[j]=(Mean(M[i])+S.D(M[i]))/(2*Max{M[I],M[I+1]}); 

End if 

If(I[j]==null & M[i+1]==null) 

Then 

I[j]=(Mean(M[i])+S.D(M[i]))/(2*Max{M[I],M[I-1]}); 

End if 

End for 

End for 

For each pair of metrics M[i] and M[i+1] 

Compute Normalization as 

NM[i]= Normalize(M[1]); 

NM[i+1]=Normalize(M[i+1)]; 

NML=addList(NM[i]); 

NML=addList(NM[i+1]); 

done 

done 

Sort normalized metrics list NML in ascending order. 

 

For each pair of normalized metrics 

Do 

Compute Predictive correlation between the two metrics as 

 Predictive Correlation PC=Corr(NML[i],NML[i+1])/ 

Prob(NML[i] / NML[i 1])
N

i i

 ; 

If( PC>thres) 

Then 

D
’
 =addMetric(NML[i],NML[i+1],PC); 

End if 

Done  

 

Algorithm 1, describes the hybrid preprocessing algorithm on 

the hybrid metric dataset for noise and data transformation. 

Algorithm reads the input data and checks the each instance 

for missing values. If the instance value is missing, then it is 

replaced with the equation (1) or equation (2). After replacing 

the missing instances, each pair of metrics is normalized to 

remove the un-certainty. Afterwards, compute the predictive 

correlation between two metrics and check the condition with 

the user defined threshold. 

 

Algorithm-2: Hybrid Bayesian Ranking Based Pattern 

Miner(HBRBPM) 

 

Input : Filtered Data D
’ 

Output: Decision patterns 

Procedure: 

 

Step 1: Choose a pair of metrics with highest correlated 

features.m1,m2 be the two metrics with the  highest predictive 

correlated measures. 

 

 Step 2: Compute rank based attribute measure as follows 

  Rank(m1)= 
2 0.5*PC(m2,m1)

1 21 ( log( ))*m m e    

              Rank(m2)= 
2 0.5*PC(m1, 2)

2 12 ( log( ))* mm m e    

 max{ 1, 2}  
 

 

Step 3: ( )if    

  Then 

 Create a node with (max{ 1, 2})    as root 

Hybrid Metric 

Data 

Data Preprocess 

Algorithm 

Fill missing values, 

Normalized Correlation 

Apply Proposed 

Model 

Pattern Evaluation 

Results 
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 Else 

 

 Compute the predictive correlation and gain 

computation between the other metrics. 

 

 End if 

 

Step 4:  Repeat the steps 2,3 until all metrics 

Step 5: Validate the test using F-measure and t-test. 

Step 6: Extract rules from the tree. 

Step 7: Display results. 

 

 

 

 

 

Sample Data: 

 
 

Data 2: 

 

 

 
 

Data 3: 
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Proposed Experimental Results: 

 

lines_removed <= 542.4  ->  filetype != documentation  

 lines_removed < 678.0  ->  filetype != documentation  

 lines_added <= 1011.0 AND lines_removed < 135.6  ->  

external != 1  

 lines_added <= 404.4  ->  filetype != documentation  

 filetype != documentation AND lines_added < 

606.5999999999999  ->  lines_removed < 135.6  

 lines_added <= 808.8 AND lines_added <= 

606.5999999999999  ->  external != 1  

 lines_removed < 678.0 AND lines_removed <= 271.2  ->  

lines_added <= 1011.0  

 lines_removed < 135.6 AND lines_removed < 678.0  ->  

lines_added <= 404.4  

 lines_removed < 135.6  ->  filetype != images  

 filetype != i18n  ->  external != 1  

 lines_added < 1011.0 AND lines_removed <= 135.6  ->  

external != 1  

 lines_added <= 404.4  ->  filetype != images  

 lines_added < 1011.0 AND external != 1 AND lines_removed 

< 271.2  ->  filetype != images  

 lines_added < 1011.0  ->  filetype != documentation  

 lines_added <= 1011.0 AND lines_added < 808.8  ->  filetype 

!= images  

 lines_added < 202.2 AND lines_removed <= 135.6 AND 

lines_removed < 271.2  ->  filetype != images  

 lines_removed < 271.2 AND lines_removed < 135.6  ->  

lines_added <= 404.4  
 filetype != documentation AND lines_added < 

606.5999999999999  ->  lines_removed <= 135.6  

RFC <= 862.0  ->  Bug-count != false  

 NOC <= 38.0 AND NPM <= 214.0  ->  CBO <= 125.0  

 NOC <= 38.0  ->  Bug-count != false  

 RFC >= 0.0  ->  NOC <= 38.0  

 RFC >= 0.0  ->  WMC <= 351.0  

 CBO <= 125.0 AND NPM <= 214.0  ->  WMC <= 351.0  

 LOC <= 5317.0 AND DIT >= 0.0  ->  RFC >= 0.0  

 NOC <= 38.0  ->  WMC <= 351.0  

 NOC <= 38.0 AND DIT >= 0.0  ->  RFC <= 862.0  

 DIT >= 0.0 AND NPM <= 214.0  ->  WMC <= 351.0  

 Bug-count != false  ->  CBO <= 125.0  

 WMC <= 351.0  ->  RFC >= 0.0  

 DIT >= 0.0 AND RFC <= 862.0  ->  Bug-count != false  

 LOC <= 5317.0 AND NPM <= 214.0  ->  WMC <= 351.0  

 LOC <= 5317.0  ->  CBO <= 125.0  

 RFC >= 0.0  ->  NPM <= 214.0  

 Bug-count != false  ->  WMC <= 351.0  

 NOC <= 38.0 AND RFC <= 862.0  ->  NPM <= 214.0  

 NOC <= 38.0 AND Bug-count != false  ->  DIT >= 0.0  

 NOC <= 38.0 AND NPM <= 214.0 AND DIT >= 0.0  ->  

RFC <= 862.0  

 RFC <= 862.0  ->  CBO <= 125.0  

 DIT >= 0.0  ->  LOC <= 5317.0  

 NOC <= 38.0  ->  LCOM >= 0.0  

 NPM <= 214.0 AND WMC <= 351.0  ->  RFC <= 862.0  

 WMC <= 351.0 AND LCOM >= 0.0  ->  RFC >= 0.0  

 CBO <= 125.0 AND RFC >= 0.0  ->  Bug-count != false  

 RFC >= 0.0 AND NPM <= 214.0  ->  CBO <= 125.0  

 LCOM >= 0.0 AND NPM <= 214.0  ->  Bug-count != false  

 CBO <= 125.0 AND NPM <= 214.0 AND DIT >= 0.0  ->  

RFC <= 862.0  

 WMC <= 351.0 AND RFC >= 0.0  ->  Bug-count != false  

 LOC <= 5317.0 AND DIT >= 0.0  ->  RFC <= 862.0 

 lines_removed <= 135.6 AND lines_removed <= 678.0  ->  

lines_added <= 404.4  

 lines_added <= 404.4 AND lines_added <= 

606.5999999999999  ->  external != 1  

 lines_removed <= 678.0 AND lines_removed <= 135.6  ->  

filetype != i18n  

 lines_removed <= 678.0 AND lines_removed <= 135.6 AND 

external != 1 AND lines_added <= 202.2  ->  filetype != 

documentation  

 lines_removed < 135.6  ->  external != 1  

 lines_added <= 202.2 AND external != 1 AND lines_removed 

< 271.2  ->  filetype != images  

 lines_removed < 542.4 AND lines_removed < 271.2  ->  

lines_added < 606.5999999999999  

 lines_added < 1011.0  ->  lines_removed < 135.6  

 lines_removed <= 678.0 AND lines_removed <= 135.6 AND 

lines_removed < 271.2  ->  filetype != images  

 filetype != documentation  ->  lines_removed <= 678.0  

 filetype != images AND filetype != unknown  ->  lines_added 

<= 202.2 

 

Performance Measures: 
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Table 1: Uncertain data preprocessing 

 

Datasize MissingValues FilterTime(secs) 

#500 12 16 

#1000 16 18 

#1500 19 21 

#2000 25 28 

#5000 28 34 

 

Table 1, describes the different data sizes and its missing 

values and filter time 

 

 
 

Fig 2: Comparison between datasize Vs Missing values and 

Filter time 

 

Table 2: Performance analysis of Proposed model with the 

traditional models. 

 

Datasi

ze 

KNN Predictive 

Bug  

detection 

Regression 

Based  

Bug prediction 

HBRBPM 

#500 0.87 0.85 0.798 0.96 

#1000 0.91 0.867 0.814 0.9524 

#1500 0.85 0.827 0.845 0.917 

#2000 0.867 0.819 0.842 0.9713 

#5000 0.891 0.84 0.86 0.939 

 
Fig 3: Comparative analysis of proposed model with existing 

models. 

 

V.CONCLUSION 

 

In this research work, we have used data in different software 

life cycle phases for defect prediction.In this proposed 

approach, we have performed robust preprocessing and defects 

detection algorithm on the metrics data. This approach 

effectively handles the  uncertain data and transform the data 

for defect detection. Finally, the proposed defect detection 

model was applied to the transformed data to detect the metric 

decision patterns. In future , this work can be extended to high 

dimensional data with more than one project metrics. 
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