
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6262 - 6265

__

6262

IJRITCC | November 2015, Available @ http://www.ijritcc.org

Hadoop Distributed file system, Hive and Its Applications: A Survey

Mr. Prashant R. Mahajan

Department of Computer Engineering,

DGOI,FOE, Daund

Savitribai Phule Pune University,

Pune. India

prashant.it18@gmail.com

Prof. Amrit Priyadarshi

Department of Computer Engineering

DGOI, FOE, Daund

Savitribai Phule Pune University,

Pune, India

amritpriyadarshi@gmail.com

Abstract: Business intelligence is growing area across the industry and data getting collected and analyzed in rapid way due to which legacy

warehousing tools has become very costly. Hadoop is framework which is open source and stores data and runs applications on cluster of

normal i.e commodity hardware. Hadoop provides large amount of processing power and storage for various kinds of data. It is able to handle

concurrent tasks or jobs. HDFS (Hadoop Distributed File System) is a distributed file system which can provide high performance data access

across Hadoop cluster of servers. Due to Managing pools of big data and supporting big data analytics application HDFS has become a strong

tool. Developer has to write custom programs in map reduce programming model which are difficult to maintain and reuse. Hive is open source

solution built on top of hadoop which is used as data ware house. Hive supports HiveQL which is SQL-like language, which are compiled into

mapreduce jobs to be executed on Hadoop.

__*****___

1. Introduction

As HDFS is deployed on normal low cost (Commodity)

hardware so server failure is common.

Hadoop file system is designed to be fault tolerant and it

facilitates fast transfer of data between computer nodes. It

also continues running even if node fails, which decreases

the risk of sudden great damage/failure, even if nodes failing

are large in numbers. For allowing parallel processing,

HDFS breaks the information into small pieces and

distributes them across computer nods in the cluster. This

file system also provides the facility to copy each piece of

data multiple time on different nodes making sure at least

one copy should get placed on different rack that the others.

Because of which when node fails it continues processing by

finding same copy within cluster.

Fig1. Hadoop System

Apache Foundation provides the framework which includes

four main modules: Hadoop Common utilities and libraries

which are used by other modules. HDFS (Hadoop

Distributed File System) is Java based system which stores

the data on cluster of machines. MapReduce is a custom

software development model which enables parallel data

processing. YARN is resource management framework

which is used for scheduling and handling resource requests

from distributed applications that runs on top od hadoop.

(YARN is an acronym for Yet another Resource

Negotiator.)

Fig2. HDFS Architecture

There are some other software components which runs on

top on Hadoop and have became a top level apache project

which includes Hive – a SQL like query language and a

data warehousing which presents data in the form of tables.

Hive programming is similar to database programming.

HBase is the nonrelational database which runs on top of

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6262 - 6265

__

6263

IJRITCC | November 2015, Available @ http://www.ijritcc.org

hadoop. HBase serves as input and output of maproduce

jobs. Pig is a platform for manipulation data stored in

HDFS. Pig is a dataflow language. Pig contains MapReduce

compiler and high level Pig Latin language. It provides a

simple way to perform data extarctions, transformation,and

loading (ETL).

2. Related Work

The HiveQL(Hive query language) consist of a subset of

SQL and there are extensions that are useful in hadoop

environment. Traditional SQL features like from clause

subqueries, various types of joins – inner, left outer, right

outer and outer joins, Cartesian products, group bys and

aggregations, union all , it also supports create table as

select and many useful functions on primitive and complex

types make the language very SQL like. Actually many

features of HQL are exactly same as SQL. So it becomes so

easy for anyone familiar with SQL to start working with

Hive command line interface and begin querying the system

right away. Show tables and describe are the useful

metadata browsing capabilities also present and so are

explain plan capabilities to inspect query plans. There are

some limitations e.g. only equality predicates are supported

in a join predicate and the joins have to be specified using

the syntax such as

SELECT b1.c1 as c1, a1.b1 as c2

FROM t1 JOIN t2 ON (b1.a2 = a2.b2);

instead of the more traditional

SELECT b1.c1 as c1, a1.b1 as c2

FROM t1, t2

WHERE t1.a2 = t2.b2;

Hive currently does not support inserting into an existing

table or data partition and all inserts overwrite the existing

data. Another limitation is in how inserts are done.

Accordingly, we make this explicit in our syntax as follows:

INSERT OVERWRITE TABLE s1

SELECT * FROM s2;

Most of the time these problems are never been the

restrictions. There is rarely seen a case where the query

cannot be written as an equi-join and since most of the data

is loaded into warehouse daily or hourly, Simply loading the

data into a new partition of the table for that day or hour.

However, there is a case that with more frequent loads the

number of partitions can become very large and may require

implementing INSERT INTO semantics. The absence of

UPDATE , INSERT INTO and DELETE in Hive allows to

use very simple way to deal with writer ,reader concurrency

without implementing any type of locking protocols.

Although these restrictions are there, HiveQL also has

extensions which supports analyzing map-reduce program in

any programming language of user’s choice. Because of this

it becomes easy for users to write a complex logic in

MapReduce programs which can be used in Hive queries

easily.

3. Storage features and File Formats

Conside the example that test_table gets mapped to

<root_directory>/test_table in hdfs. Here root_directory is

specified by the warehouse root directory parameter in hive-

site.xml. By default this parameter's value is set to

/user/hive/warehouse. Table metadata associates the data in

a table to hdfs directories, while the tables are logical data

units in Hive. The primary data units and their mappings in

the hdfs name space are as follows:

• Partitions – A partition of the table is stored in a

subdirectory within a table's directory.

• Tables – A table is stored in a directory in hdfs.

• Buckets – A bucket is stored in a file within the partition's

or table's directory depending on whether the table is a

partitioned table or not.

A table can be expressed as partitioned or non-partitioned.

A partitioned table is created by specifying the

PARTITIONED BY clause in the CREATE TABLE

statement.

CREATE TABLE Test(d1 string, d2 int) PARTITIONED

BY (ds string, hrint);

In above example the partitioned table shall be stored in

/user/hive/warehouse/Test directory in HDFS. A partition

exists for every distinct value of ds and hr specified by the

user .We should note that the columns on which partitioning

is done are not part of the table data and the partitioned

column values are encoded in the directory path of that

partition and they are also stored in the table metadata. A

new partition can be created through an ALTER statement

or INSERT through an statement that adds a partition to the

table. Both the following statements

ALTER TABLE Test ADD PARTITION

(ds='2009-02-02', hr=11);

INSERT OVERWRITE TABLE

Test PARTITION (ds='2009-01-01', hr=12)

SELECT * FROM Test;

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6262 - 6265

__

6264

IJRITCC | November 2015, Available @ http://www.ijritcc.org

Above statements adds a new partition to the table Test. The

INSERT statement also populates the partition with data

from table Test, whereas the alter table creates an empty

partition. Both these statements end up creating the

corresponding directories in the table’s HDFS directory.

While evaluating query the Hive compiler is able to use this

information to find the directories that need to be scanned

for data.

Hadoop files can be stored in different formats. From a

fileformat in Hadoop we can determine how records are

stored in a file. Text files are stored in the TextInputFormat

and binary files can be stored asSequenceFileInputFormat.

The format can be specified when the table is created. Users

are able to implement their own file formats in Hadoop.

Hive does not have any restrictions on the type of file input

formats that the data is stored in. Hive also provides an

RCFileInputFormat which is able to store the data in a

column oriented manner. column orientation can give high

performance improvements while queries that do not access

all the columns of the table. Users can add their own file

formats and associate them to a table.as

4. System Architecture and Components

Fig.3. Hive System Architecture.

An external client such as thrift, odbc or jdbc interfaces can

be used to submit HiveQL statement via the CLI, the web

UI or The driver first passes the query to the compiler where

it gets typically parse, type checked and semantic analysis

phases, using the metadata stored in the Metastore. The

compiler used to generates a logical plan which is then

optimized through a simple rule based optimizer. Finally an

optimized plan in the form of a map-reduce tasks and

HDFS tasks is generated. The execution engine will be

executing these tasks in the order of their dependencies,

using Hadoop.

Metastore is very critical for Hive. Without the system

catalog it is not possible to impose a structure on hadoop

files. The Metastore is acting as the system catalog for

Hive. It stores all the information about the tables, their

partitions, the schemas, the columns and their types, the

table locations etc. The execution plan can be generated by

using metadata stored in the Metastore. Similar to compilers

in traditional databases, the Hive compiler processes

HiveQL statements in the following steps:

Parse, Type checking and semantic Analysis, Optimization.

Finally execution of the tasks is done in the order of their

dependencies. if all of its prerequisites have been executed

then each dependent task is only executed. The final results

are stored in a temporary location. At the end of the entire

query, the final data is moved to the desired location in case

of DMLs. In the case of queries the data is served as such

from the temporary location. First serialization takes place

of a map/reduce task ,its part of the plan into a plan.xml file.

This file is then added to the job cache for the task and

instances of ExecMapper and ExecReducers are using

Hadoop. Each of these classes deserializes the plan.xml and

executes the relevant parts.

4. Applications

a. As Reporting tool

Hive can be used for creating a reports using

HiveQL on top of the hadoop distributed file system. HQL

scripts runs on top HDFS to extract data and provides

reports. Scripts can be scheduled using oozie to run on any

particular time as per the business requirement.

b. Data Warehouse

Hive is a data warehouse structure which is build on top

of Hadoop which is used for ad-hoc querying, data

summarization, analysis. Hive supports indexing to provide

acceleration. Hive support plain text, RCFiles, HBase as

different storage types, and others. As Hive stores metadata

in an RDBMS so it reduces significant time to perform the

semantic check during the query execution.

5. Conclusion

HDFS and Hive are very important and advance tools that

can be effectively used for reporting and as data warehouse.

Using HDFS and Hive , we can save much time and money

as Hadoop infrastructure is open source.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6262 - 6265

__

6265

IJRITCC | November 2015, Available @ http://www.ijritcc.org

Acknowledgement

I express great many thanks to Prof. Amrit Priyadarshi and

Prof. Sachin S. Bere for their great effort of supervising and

leading me, to accomplish this fine work. To college and

department staff, they were a great source of support and

encouragement. To my friends and family, for their warm,

kind encourages and loves. To every person who gave me

something too light along my pathway. I thanks for

believing in me.

References

[1] Apache Hadoop. Available at

http://wiki.apache.org/hadoop.

[2] Facebook Lexicon at http://www.facebook.com/lexicon.

[3] Hive wiki at http://www.apache.org/hadoop/hive.

[4] Hadoop Map-Reduce Tutorial at

http://hadoop.apache.org/common/docs/current/mapred_t

utorial.html.

[5] Hadoop HDFS User Guide at

http://hadoop.apache.org/common/docs/current/hdfs_use

r_guide.html.

[6] 6] Mysql list partitioning at

http://dev.mysql.com/doc/refman/5.1/en/partitioning-

list.html.

[7] Apache Thrift. Available at

http://incubator.apache.org/thrift.

[8] DataNucleus .Available at http://www.datanucleus.org.

[9] A. Pavlo et. al. A Comparison of Approaches to Large-

Scale Data Analysis. In Proc. of ACM SIGMOD, 2009.

[10] Hive Performance Benchmark. Available at

http://issues.apache.org/jira/browse/HIVE-396

[11] TPC-H Benchmark. Available at http://www.tpc.org/tpch

[12] Running TPC-H queries on Hive. Available at

http://issues.apache.org/jira/browse/HIVE-600

[13] Vinod, P. Suri P, “Maintaining a Binary Search Tree

Dynamically. Proceedings of the 10th International

Conference on Information Visualization”, London, UK,

2006.

[14] J. Derryberry, D. D. Sleator, and C. C. Wang, “A

lowerbound framework for binary search trees with

rotations”, Carnegie Mellon University, 2005.

Authors

Mr. Prashant R. Mahajan received his B.E. degree in

I.T from University of Pune in 2011. He has 3.5 years of

experience of working with MNCs in Pune and Mumbai. He is

currently working toward the M.E. Degree in Computer

Engineering from University of Pune. His research interests lies in

Data Mining, Software Engineering and Business Process

Management.

Mr. Amrit Priyadarshi received his B.E. degree in

Electronics Engineering and MTech in Computer Science and

Engineering. He has 10 years of experience as Assistant professor

and he is currently perusing his Phd Degree.

http://www.ijritcc.org/

