
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6215 - 6219

__

6215
IJRITCC | November 2015, Available @ http://www.ijritcc.org

A Survey of Evaluation Techniques for Android Anti-Malware using

Transformation Attacks

Omkar Yeshvekar, Snehal Zende, Deepti Walvekar, Namrata Wabale, and Akash Korde

Student, D. Y. Patil College of Engineering, Akurdi, Pune

Mrs. M. Saravanapriya, Mrs. Nilam S. Patil
Assistant Professor, D. Y. Patil College of Engineering, Akurdi, Pune

Abstract—Android an open-source operating system mainly used for mobile phones have become increasingly popular. Studies
suggest that mobile malware threats have recently become a real concern and the impact of malware is getting worse. 2014 saw an
astounding 75 percent increase in the Android mobile malware. It is therefore imperative to evaluate the resistance and robustness
of anti-malware products for android against various malware. To evaluate existing anti-malware, a systematic framework called
DroidChameleon is developed with several common transformation techniques. This survey examines the effectiveness and
robustness of popular antimalware tools and compare them against one another aiding in the decision making process involved
with developing a secure system.

Index Terms - Android, Malware, Anti-malware, Transforma-tion

__*****___

I. INTRODUCTION
Malware had a tremendous impact on the world as we know

the rising number of computer security suggests that malware

is an epidemic. Devices such as smartphones and tablets are

becoming increasingly popular but this popularity attracts

malware authers too. Now a days, operating system such as

android is “clearly today’s target”. With the growth of malware

we have also seen an evolution of anti-malware tools.
Malware can be described as a program whose objective is

malevolent. In this paper, we have described the efficacy of anti-

malware tools. To evaluate existing anti-malware soft-ware, a

systematic framework called DroidChameleon with several common

transformation techniques that may be used to transform Android

applications automatically is described. Some of these transformations

are highly specific to the Android platform only[1]. Based on the

framework, we pass known malware samples(from different families)

through these transformations to generate new variants of malware,

which are verified to possess the originals malicious functionality. We

use these variants to evaluate the effectiveness and robustness of

popular anti-malware tools.

II. METHODS OF EVALUATION OF ANTI-MALWARE

A. ADAM-

ADAM, an automated system for evaluating the detection of

Android malware. ADAM is an extensible platform which is

automatic, generic and able to evaluate the Android malware detection

systems. ADAM applies different transformation techniques to

generate different variants of each Android malware sample, and

evaluates the effectiveness of different smart-phone malware detection

systems in identifying such malware variants[3]. ADAM is able to

automatically transform an original malware sample to different

variants using repackaging and obfuscation techniques in order to

evaluate the strength of different anti-malware systems against

malware attacks. ADAM is built by connecting different building

blocks such as transformation, scanning and analysis of malwares.

These blocks help to test different anti-malwares against malware

samples. But ADAM is not always able to avoid anti-malware tool.

So, it will not always provide the better detection mechanism. ADAM

then evaluates the detection of these variants against different smart-

phone malware detection systems. Such malware transformations and

detection evaluations are generic enough to support heterogeneous

malware samples and malware detection systems, respectively. Lastly,

ADAM can be extensible to support new implementations of malware

transformations and detection evaluations.

ADAM aims for the following design goals:
1. Security analysis - ADAM checks whether an Android-based

malware sample in .apk format can be detected by an existing anti-

virus system. For this analysis, we do not need the source code of

the malware sample.

2. Automated transformation - ADAM can automatically

transforms a malware sample into different malware variants,

while preserving the original malicious behavior. No manual

modification of a malware sample is required.

3. Generic application - ADAM can be applied for general

classes of Android-based malware samples and malware

detection systems.

4. Extensibility - ADAM provides an interface that can easily

integrate new implementations of transformation techniques

and detection methodologies.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6215 - 6219

__

6216
IJRITCC | November 2015, Available @ http://www.ijritcc.org

ADAM is composed of different building blocks. Figure 1

illustrates how different building blocks are involved in testing

malware samples against anti-virus systems. Let us now

describe how each building block works, and argue how the

building blocks can be extended for different variants of

implementation.
Transformation : implement two classes of transformation

techniques: repackaging and code obfuscation.

Fig. 1. Design flow of ADAM[3]

Scanning : support two types of scan engines - online and local.

Analysis : The analysis results can be summarized and

presented, so as to provide recommendations for antivirus

vendors to evaluate the effectiveness of the state of the art of

malware detection for Android.

B. Automatic Code Obfuscation-

A tool named code obfuscator is used which converts the program into

an equivalent one that is more difficult to understand and for reverse

engineering[4]. It is done to protect the messages which help to

preserve privacy policies between sender and receiver. As shown in

Figure 2 obfuscation technique provides the protection of messages

between Alice and Bob. By using source message object code is

created which is then obfuscated and passed to the server. The server

sends it to Bob i.e. client. The reverse operation is done by Bob to get

the original source code. Although the system can easily trace the

software pirates but it remains secret until the powerful de-obfuscator

to be built. So, obfuscated software version release must be within

short period.A variety of tools exist to perform or assist with code

obfuscation. These include experimental research tools created by

academics, hobbyist tools,commercial products written by

professionals, and open-source. There also exist de-obfuscation tools

that attempt to perform the reverse transformation. Obfuscation can

make reading, writing and reverse-engineering a program difficult and

time-consuming, but not necessarily impossible. Some anti-virus

software, such as AVG, will also alert their users when they land on a

site with code obfuscated, as one of the purposes of obfuscation can be

to hide malicious code. This decreases security.

C. Effective and Efficient Malware Detection at the End Host-
Clemens Kolbitsch proposed a novel malware detection

approach that is both effective and efficient, and thus, can

Fig. 2. Protection through obfuscation[4]

be used to replace old anti-virus tool at the end host[7]. This technique

analyzes a malware to build a model that characterizes its behavior.

Then, extract the program slices responsible for such information

flows. For detection, execute these slices to match with these models

against the runtime behavior of an unknown program. The main

limitation is that it cannot generate system call signatures or find a

starting point for the slicing process. The goal of our system is to

effec-tively and efficiently detect malicious code at the end host.

Moreover, the system should be general and not incorporate a priori

knowledge about a particular malware class. Given the freedom that

malware authors have when crafting malicious code, this is a

challenging problem. To attack this problem, our system operates by

generating detection Models based on the observation of the execution

of malware programs. That is, the system execute sand monitors a

malware program in a controlled analysis environment. Based on this

observation, it extracts the behavior that characterizes the execution of

this program. The behavior is then automatically translated into

detection models that operate at the host level.

D. Crowdroid-

This is a behavioral based malware detection system for

Android. They used detector which is embedded in an overall

framework for a collection of traces collected from unlimited real

users based on crowd sourcing. The system analyzed collected data in

central server using two types of data sets: artificially created

malwares and real malwares. It is an effective method of isolating the

malware as well as alerting the users about the downloaded malwares.

When it is actually going to apply on mobile, it might result an extra

overhead in the processor, causes a faster battery drain. VirusMeter

proposes to detect malware based on abnormal power consumption

caused by malware. Crowdroid collects system calls of running apps

on mobile devices and applies clustering algorithms to differentiate

between benign and malicious apps[8]. Dixon proposes a system to

detect malicious code by correlating power consumption pattern with

the users location. Survey of the current situation of mobile malware

on three popular smartphone platforms

Fig. 3. Behavior-Based Malware Detection Framework[8]

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6215 - 6219

__

6217
IJRITCC | November 2015, Available @ http://www.ijritcc.org

(iOS,Android and Symbian). DroidMOSS detects repackaged apps in

third-party Android markets. DroidRanger is different from these

systems in not detecting mobile malware on mobile devices (under

resource constraints such as limited battery or CPU). Instead, it

performs offline analysis to detect malware in current Android

Markets. Accordingly,it needs to address different challenges by

accommodating a large number of apps.

Behavior-based malware detection System framework :

Our framework is composed of several components which provide

enough resources and mechanisms to detect mal-ware on the Android

platform. First, we have developed a lightweight client called

Crowdroid, which can be down loaded and installed from Google’s

Market. This application is in charge of monitoring Linux Kernel

system calls and sending them preprocessed to a centralized server.

According to a crowdsourcing philosophy, users will help with

sending non-personal, but behavior-related data of each application

they use. These applications could have been downloaded both from

the official Market and also from unofficial repositories.

E. Scalable and Accurate Zero-day Android Malware
Detection-

Fig. 4. The RiskRanker architecture[9]

Michael Grace et al. proposed proactive scheme to spot zero-day

Android malware, It does not depend on malware samples and their

signatures. It is an automated system called RiskRanker to scalable

analyze whether a particular app exhibits dangerous behavior. Figure

3. Shows the overall architecture of RiskRanker. It checks and

translates potential security risks into corresponding detection

modules of two orders of complexity[9]. The first-order modules

handle non-obfuscated apps by evaluating the risks in a

straightforward manner; the second-order modules capture certain

behaviors (e.g. encryption and dynamic code loading) to detect

malware.

III. FRAMEWORK DESIGN
In this paper, we focus on the evaluation of anti-malware

products for Android. Specifically, we attempt to deduce the

kind of signatures that these products use to detect malware and

how resistant these signatures are against changes in the

malware binaries.

We classify our transformations as trivial (which do not

Fig. 5. Evaluating anti-malware[1]

require code level changes), those which result in variants that can

still be detected by static analysis (DSA), and those which can

render malware undetectable by static analysis (NSA). In the rest

of this section, we describe the different kinds of transformations

that we have in the DroidChameleon framework.

A. Trivial Transformations-
Trivial transformations do not require code-level changes. We have

transformations such as Repacking, Diassembling and reassembling,

changing package name in this category.

B. Transformation Attacks Detectable by Static Analysis

(DSA)-
The application of DSA transformations does not break all types of

static analysis. Various transformations in DSA are Identifier

Renaming, Data Encoding, Call Indirections, code Reordering, Junk

code Insertion, Encrypting payloads and native exploits, Other simple

and composite transformations.

C. Transformation Attacks Non-Detectable by Static

Analysis(NSA)-
These transformations can break all kinds of static analysis.

it focuses on Reflection and Bytecode Encryption transforma-

tion.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6215 - 6219

__

6218
IJRITCC | November 2015, Available @ http://www.ijritcc.org

TABLE I
COMPARISON OF EVALUATION TECHNIQUES

Methods of Transformation Limitations

Evaluation Technique

ADAM Repackaging and Not always capable

(Automated Detection Obfuscation of providing better

of Android Malware) Technique detection mechanism

Automatic Code Code Obfuscator Obfuscator remains

Obfuscation Tool secret until

 deobfuscator built

Effective and Efficient Novel Malware Not capable of

malware detection Detection Approach generating system

at the End Host call signatures

Crowdroid Based on Not suitable of large

 Crowd Sourcing set of malwares and

 and Clustering security issues

Scalable and Risk-Ranker Results in extra

Zero-day Android Automatic System overhead in processor

Malware Detection draining battery faster

IV. CONCLUSION
In this paper we have described different methods of evaluation

of anti-malware such as ADAM, Automatic Code Obfuscation,

Effective and Efficient Malware Detection at the End Host,

Crowdroid, Scalable and Accurate Zero-day Android Malware

Detection against transformation attack. We have also described

DroidChameleon framework and various transformation

techniques.
ACKNOWLEDGMENT

We express our sincere gratitude to Mrs. M. A. Potey, Head

of Department, Computer Engineering, for her assistance,

persuasion, and an incent to work better.

Our deepest gratitude goes to our project guide, Mrs. N. S. Patil,

for her guidance, ideas, help, encouragement, interpre-tations and

suggestions which helped us in the realization of our objective and

coordinate as a team.

We are extremely thankful to our project incharge, Mrs

Shanthi Guru for her comments, introspections and support

which helped us throughout our work.

REFERENCES
[1] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang, “Catch Me

If You Can: Evaluating Android Anti-Malware Against

Transformation Attacks”, IEEE transactions on information

forensics and security, VOL. 9, NO. 1, Jan 2014.

[2] V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Eval-

uating Android anti-malware against transformation

attacks”, in Proc. ACM ASIACCS, May 2013, pp. 329334.

[3] M. Zheng, P. Lee, and J. Lui, “ADAM: An automatic and

extensible platform to stress test Android anti-virus

systems”, in Proc. DIMVA, Jul. 2012, pp. 120.

[4] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of

obfuscating transformations”, Dept. Comput. Sci., Univ.

Auckland, Auckland, New Zealand, Tech. Rep. 148, 1997.

[5] M. Christodorescu and S. Jha, “Testing malware

detectors”, in Proc. ACM SIGSOFT Int. Symp. Softw. Test.

Anal., 2004, pp. 3444.

[5] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X.

Yan, “Synthesizing near-optimal malware specifications

from suspicious behaviors”, in Proc. IEEE Symp. SP, May

2010, pp. 4560.

[6] C. Kolbitsch, P. Comparetti, C. Kruegel, E. Kirda, X. Zhou,

and X. Wang, “Effective and efficient malware detection at

the end host”, in Proc. 18th Conf. USENIX Security Symp.,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 11 6215 - 6219

__

6219
IJRITCC | November 2015, Available @ http://www.ijritcc.org

2009, pp. 351366.

[7] Iker Burguera and Urko Zurutuza, Simin Nadjm-Tehrani,

“Crowdroid: Behavior-Based Malware Detection System for

Android”, in ACM, October 17, 2011, pp. 1-11.

[8] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,

“RiskRanker: Scalable and accurate zero-day android

malware detection, in Proc. 10th Int. Conf. Mobile Syst.,

Appl., Ser-vices, 2012, pp. 281294.

[9] Seemadevi M. Shelake, Prof. Prakash. B. Dhainje, Dr.

Deshmukh Pradeep K., “Evaluating efficiency of Anti-

Malware using Transformation Attacks”, in International

Jour-nal of Advanced Research in Computer Science and

Software Engineering,Volume 5, Issue 3, March 2015, pp.

773-777.

http://www.ijritcc.org/

