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Abstract— The problem of classification of imbalanced datasets is a critical one. With an increase in the number of application domains that rely 

on classification, extensive research has been carried out in this field; with focus directed towards the problem of poor classification accuracy. 

Of late, the rise in significance of Big Data has forced industries to search for better techniques to handle massive and unstructured datasets; this 

has led to a need for robust classification algorithms that deal with unbalanced Big Data. This paper surveys the current algorithms provided by 

Machine Learning for unbalanced dataset classification and considers their possible use for larger or unstructured datasets. 
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I.  INTRODUCTION 

 
Imbalance in datasets typically refers to the non-uniform 

distribution of classes among its records. The distribution is 
highly uneven: more than 90% of the records belong to a 
particular class (the majority or negative class) while the 
remaining records belong to the other class (the minority or 
positive class). Standard algorithms used for classification in 
data mining assume a bias towards the majority class as they 
assume that the dataset they are working on is stratified and 
hence show poor accuracy when classifying unbalanced data. 
Further, these algorithms are accuracy driven i.e. they are 
concerned with minimizing the overall error to which a very 
small contribution is made by the minority class [3]. 

The problem gets worse when unbalance occurs in Big Data 
as a large number of records could get misclassified. It could 
lead to disastrous problems in cases such as medical diagnosis 
when an otherwise malignant tumor would get classified as 
harmless. Thus, extensive research has been carried out in this 
field as the number of application domains that rely on 
classification is increasing gradually. Broadly, solutions have 
been suggested at both the data level and the algorithm level to 
combat the problem. At the data level, solutions include 
different forms of sampling. At the algorithm level, one-class 
learning and cost-sensitive classification are suggested to 
counter the imbalance in data. 

This paper surveys the existing algorithms used for 
classification, analyses the modifications made in them to cater 
to the imbalance in datasets and observes the practicality of 
these algorithms if the imbalance were to occur in Big Data. It 
concludes by recommending suitable areas for further research. 

II. EXISTING ALGORITHMS 

A. Decision Tree 

Decision trees are one of the most popular classification 
algorithms used in data mining. Formally, it can be defined as a 
labelled tree where each interior node is labeled with an 
attribute, each of the leaf nodes in labeled with a class and each 
edge directed from an interior node is labeled with a value of 
range of values of the attribute at that node. 

A decision tree construction algorithm (e.g. ID3, C4.5) 
commences with the root node that represents all the records 

present in the training set. It recursively partitions these records 
into nodes; for each partition, a child being created to represent 
it. The split into partitions is determined by the values of an 
attribute called the splitting attribute. Common examples of the 
criteria used to determine the splitting attribute include 
information gain, gini value, etc. The recursive splitting 
terminates at nodes that are pure i.e. all the records in these 
nodes belong to one class only. In some cases, it may also 
terminate at nodes that are almost pure i.e. the records mostly 
belong to a particular class. 

A decision tree can be visualized as a graphical model of 
the dataset that can be used to predict the class for new records. 
For any new record, the algorithm that predicts the class of a 
record starts at the root node and at each edge, a decision is 
taken whether to traverse along that edge or not. When a leaf 
node is reached, the class labelled at that node is output as the 
class of the record to be classified. 

A decision tree is typically evaluated by predictive accuracy 
that considers all errors equally. However, predictive accuracy 
might not be appropriate when the data is unbalanced or if the 
costs of the errors differ markedly. The probability that some 
branches that predict the small classes are removed and the new 
leaf node is labelled with a dominant class is very high. 
Further, if the training set is unbalanced, decision trees may 
have to create several tests to distinguish the small classes from 
the dominant classes [1] [2]. Thus, if unbalanced data sets are 
used to construct the decision tree, it may lead to inflated 
performance estimates: this will generate false conclusions for 
the record whose class is to be determined. 

B. Associative Classifier 

Associative Classifiers are techniques that make use of 
association rule mining to carry out the classification of 
records. These techniques are based on the assumption that 
each record contains only Boolean attributes and a class label. 
This assumption is not restrictive as categorical and qualitative 
attributes can be converted into Boolean attributes. e.g. For a 
numeric attribute, the value of the attribute for a record lies 
within a certain range or not can indirectly make the attribute 
function as a Boolean attribute. 

Once this modification has been made, association rule 
mining can be carried by implementing any standard frequent 
itemset mining algorithm. Since the objective of an associative 
classifier is the classification of records, we are interested in 
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mining only those rules where the RHS consists of a class label 
i.e. for a class association rule X→C, if X is in a test record, the 
class is likely to be C. In the event of a conflict i.e. when two 
association rules are mined such that one rule classified a 
record to class C1 and the other to class C2; the rule with 
higher confidence value can be chosen. 

For an unbalanced data set, association rules describing 
smaller classes are not likely to be found as such rules may 
have low confidence values or because patterns describing 
small classes may have a rare occurrence in the dataset. 

C. Neural Networks 

Neural Networks use a technology that attempts to produce 
intelligent behavior by trying to mimic the structure and 
functions of the nervous system. The nervous system is usually 
abstracted as a weighted directed graph where nodes function 
as neurons and the values associated with the links between 
these nodes indicate the type and strength of association. 
Neural networks are extremely popular in pattern recognition 
and machine learning applications. 

Back propagation algorithms provide the best neural 
network architecture for classification problems. Experimental 
studies on training unbalanced bi-class data sets revealed that 
the net error for samples in the majority class got reduced 
quickly in the first few iterations but the net error for minority 
class increased considerably. Theoretical analysis indicated that 
this phenomenon occurred because the gradient vector 
computed by the standard backpropagation algorithm was in a 
downhill direction for the majority class but in an uphill 
direction for the minority class. This is because the length of 
the gradient vector of the majority class will be much larger 
than that of the minority class. Therefore, the gradient vector is 
dominated by that of the majority class. Consequently, if 
weights are recalculated in the direction of the gradient vector, 
the net error of the majority class will decrease significantly 
and that of the minority class will increase significantly. 
Empirical studies also reported that the subsequent rate of 
decrease of net error for the small class was very low. It needed 
thousands of iterations to reach an acceptable solution [1] [2]. 

D. Support Vector Machines (SVMs) 

SVM refers to a supervised learning model which 
categorizes data points into two distinct classes by defining an 
optimum hyperplane between the two classes. An optimum 
hyperplane is the one which has the largest margin. Margin is 
the minimum distance between two data points belonging to 
different classes. SVMs seek an optimal separating hyperplane, 
where the margin is maximal. The solution is based only on 
those data points at the margin. These points are called as 
support vectors. The linear SVMs have been extended to 
nonlinear examples when the nonlinear separated problem is 
transformed into a high dimensional feature space using a set of 
nonlinear basis functions. However, the SVMs are not 
necessary to implement this transformation to determine the 
separating hyperplane in the possibly high dimensional feature 
space. Instead, a kernel representation can be used, where the 
solution is written as a weighted sum of the values of a certain 
kernel function evaluated at the support vectors. When perfect 
separation is not possible, slack variables are introduced for 
sample vectors to balance the tradeoff between maximizing the 
width of the margin and minimizing the associated error. 

SVM assumes that only support vectors are informative in 

the process of classification and rest of the data points are 

redundant. However, in unbalanced data set, the majority class 

pushes the hyperplane closer to the minority class. Due to this, 

the support vectors of the majority class may be redundant and 

more informative data points may hide behind them [1] [8]. 

E. K-Nearest Neighbours Classifier 

KNN is one of the simplest machine learning algorithms to 
be used for classification. In a bi-class classification problem, 
the Euclidian distance between the testing data point and the 
data points in the training set is computed and the k-nearest 
neighbors of the testing point are found. Depending on the class 
of the majority neighbors, the testing point is classified as the 
class of the majority neighbors. It is crucial to set the optimum 
value of k. A smaller value of k will lead to overfitting while a 
larger value may lead to under-fitting. To set the optimum 
value of K, k-fold cross validation is used. 

The drawback of using KNN is that it is computationally 
expensive to find the k nearest neighbors; and hence for a large 
data set, it is not feasible at all to use KNN [3] [12]. Further, 
along with the size of the data set, even the dimensions of 
features adds a computational cost. Feature extraction hence 
becomes crucial. 

F. Naïve Bayes Classifier 

Naïve Bayes classifier is a probabilistic classifier. It is 
based on Bayes‟ theorem with independence assumptions 
between predictors. Bayes theorem provides a way of 
calculating the posterior probability, P(c|x), from P(c), P(x), 
and P(x|c). Naive Bayes classifier assume that the effect of the 
value of a predictor (x) on a given class (c) is independent of 
the values of other predictors. This assumption is called class 
conditional independence. 

P(c|x) is the posterior probability of class (target) 
given predictor (attribute). P(c) is the prior probability of class. 
P(x|c) is the likelihood which is the probability 
of predictor given class. P(x) is the prior probability 
of predictor. 

 
P(c|x) = P(x|c).P(c) / P(x)  (1) 
P(c|X) = P(x1|C).P(x2|C)…P(xn|C).P(c) (2) 

 

The advantage of using this classifier is that it simple to 

calculate. If the NB conditional independence assumption 

actually holds, a Naive Bayes classifier will converge quicker 

than discriminative models like logistic regression, so you 

need less training data. And even if the NB assumption doesn't 

hold, a NB classifier still often performs surprisingly well in 

practice. However, for a given unbalanced data set, 

dependency patterns inherent in the small classes are usually 

not significant and hard to be adequately encoded in the 

networks. When the learned networks are inferred for 

classification, the samples of the small classes are most likely 

misclassified [1] [3]. 

III. TOWARDS BIG DATA 

Big Data collectively refers to those datasets that are so 
massive and complex that traditional algorithms cannot handle 
them adequately. Particularly, when it comes to mining 
meaningful data from such complex datasets, there is a need for 
powerful processors and analytic skills that successfully handle 
such data. While many technologies and techniques have been 
proposed to handle Big Data; a large part of Big Data remains 
grossly underutilized and unexplored. This is largely due to the 
unstructured nature of Big Data i.e. content that does not 
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conform to a specific model. With the increase in number of 
sources that contribute to the volume of Big Data, it would not 
be wrong to estimate that a large part of this data would be 
unstructured. Thus, any research efforts that are dedicated 
towards managing Big Data are majorly focused on the 
massive and unstructured nature of data that is increasing with 
a rapid velocity. 

Machine learning literature on this topic has provided 
several solutions to cater to this problem. We discuss these 
solutions in the following section. 

IV. HANDLING BIG DATA 

A. Sampling 

One solution is to carry out the undersampling of the 
majority class or oversampling of the minority class. If 
oversampling of the smaller class is carried out, typically 
through duplication of records, the decision region for the 
smaller class can become very specific i.e. it can lead to 
overfitting of the training data. A popular oversampling 
algorithm called SMOTE [11] adds new, non-replicated smaller 
class records to the training set. Undersampling of the 
dominant class by removing random records from the dominant 
class can also cause the smaller class to have a larger presence 
in the training data set. This technique can provide potential 
results with techniques such as decision trees, associative 
classifiers and Naïve Bayes classifier [11]. 

However, constructing a decision tree for a very large 
dataset is inadvisable as searching for meaningful areas within 
a very large decision tree is time consuming [6]. A solution to 
this problem is to build a set of decision trees in parallel on 
smaller datasets that are subsets of the original training set. The 
trees constructed are then reduced to a set of rules, any 
conflicting rules are resolved and then merged together to 
generate one set that is used for classifying the new records. 
The general strategy followed is to partition the training set into 
n subsets and apply the decision tree algorithm discussed 
earlier on each subset independently and in parallel. The output 
of this step will be independent decision trees that model the 
partitions. These independent decision trees are then converted 
to decision rules [5]. 

Combining the decision rules into a unified rule will not 
suffice as two rules may conflict each other i.e. one rule may 
classify a record as class „A‟ while the other may classify the 
same record as class „B‟. One technique for combining decision 
trees is where conflicts could be resolved by considering the 
conditional tests used to generate the rule. By modifying the 
conditional tests, one of the two rules can be chosen or the two 
rules can be modified to remove the ambiguity [5]. The final 
rule obtained will model the entire dataset and can be converted 
to a decision tree. Using this decision tree, the class for the new 
records can be predicted using the decision tree algorithm as 
discussed previously. 

In the case of unbalanced big data, the partitioning of data 
should take place in a manner such that the partitions mirror the 
distribution of classes in the original dataset. E.g. If the original 
dataset comprises 98% records of class A and 2% records of 
class B; then the partitions should also possess the same or 
marginally different ratio of records. This could remove any 
classification inaccuracies and prevent misclassification of new 
records. 

B. Cost sensitive learning 

An alternative to sampling is to make use of cost-sensitive 
learning that takes into account the miscalculation costs 
associated with the dataset being classified. Cost-sensitive 
learning assigns a higher cost whenever the record belonging to 
minority class is misclassified, as compared to a majority class 
example being misclassified. A cost-sensitive learning 
technique takes into account the cost matrix of the classifier in 
the design phase and selects the model with the least cost.  A 
possible solution to improve classification accuracy of an 
algorithm would be to first run the algorithm on the dataset, 
obtain the confusion matrix and make use of this confusion 
matrix to obtain the cost. 

A major drawback of using cost-sensitive learning is that 

the cost matrix for a dataset is often unavailable; thus giving 

sampling a preference over cost-sensitive learning. However, 

empirical studies [16] have revealed that for datasets 

containing more than 10000 records, cost-sensitive learning is 

arguably a better option when compared to sampling. Thus, for 

an unbalanced big data set, cost-sensitive learning would 

prove to be a better alternative. 

C. Converting unstructured data to structured data 

Gartner‟s report [14] revealed that up to 80% of Big Data is 
unstructured. Thus, it becomes imperative to take into account 
the unstructured nature of Big Data while using any 
classification algorithm. 

To handle unstructured data, a decision tree algorithm 
called CUST [7] was designed. CUST introduces the use of 
splitting criteria formed by unstructured attribute values and 
reduces the number of scans on the datasets by using 
appropriate data structures. The first step involved is to convert 
the unstructured dataset to a structured dataset. E.g. If the 
dataset consists of “Website Content” as an attribute, then it 
can be converted to a structured attribute by representing each 
text content of the webpage as a Boolean attribute. Then any of 
the decision tree algorithms can be applied for classification. 

Similarly, any other algorithm can be applied to 

unstructured datasets after converting these unstructured 

datasets to structured datasets. In case of Big Data, this would 

obviously lead to an increase in the size of the data used. In 

that case, associative classifiers would be a better option. 

Associative classifiers [3] can directly handle unstructured 

data, and are able to mine more meaningful rules especially 

when compared to the decision tree classifier algorithm. But 

this algorithm is very slow to work with. 

D. Using GSVM-RU and DC-SVM 

To address the challenges posed by big data, a novel divide 

and conquer approach (DC-SVM) to efficiently solve the 

kernel SVM problem has been proposed. DC-SVM achieves 

faster convergence speed compared to state-of-the-art exact 

SVM solvers, as well as better prediction accuracy in much 

less time than approximate solvers. To accomplish this 

performance, DC-SVM first divides the full problem into 

smaller sub problems, which can be solved independently and 

efficiently. It is theoretically shown that the kernel k means 

algorithm is able to minimize the difference between the 

solution of sub problems and of the whole problem, and 

support vectors identified by sub problems are likely to be 

support vectors of the whole problem. However, running 

kernel k means on the whole dataset is time consuming, so a 
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two-step kernel k means procedure to efficiently find the 

partition is applied. In the conquer step, the local solutions 

from the sub problems are glued together to yield an initial 

point for the global problem. The coordinate descent method 

in the final stage converges quickly to the global optimal. 
The data set is divided into k sub problems. The quadratic 

optimization problem is solved for all the k sub problems 
independently. The solution of each sub problem is then 
combined. Since the set of support vectors for all the sub 
problems is expected to be close to the support vectors of the 
entire problem, the co-ordinate descent solver converges 
quickly. 

Since the data set of concern is unbalanced, it must be 
ensured that each sub problem must contain the same ratio of 
positive to negative samples, as in the original data set. After 
dividing the data set into k subsets, GSVM-RU is applied to 
each subset. The process of GSVM-RU is described below. 

SVM assumes that only support vectors are informative in 
the process of classification and rest of the data points are 
redundant. However, in unbalanced data set, the majority class 
pushes the hyperplane closer to the minority class. Due to this, 
the support vectors of the majority class may be redundant and 
more informative data points may hide behind them [10]. 

A single SVM cannot guarantee to extract all the 
informative support vectors at once [8]. However, it is safe to 
assume that a single SVM can extract at least a subset of 
informative support vectors. Based on this assumption, multiple 
information granules containing different informative samples 
can be formed using the technique of granulation. Initially, all 
the positive samples are considered informative and included in 
the positive informative granule. The negative samples 
contributing to the SVM are considered to be included in the 
negative information granule. This negative granule is then 
removed and another SVM is constructed. The negative 
samples contributing to the SVM are then added to the second 
negative information granule. The second negative information 
granule is then removed and the process is repeated. The 
negative samples which are not included in any information 
granule are discarded. Finally, the negative information 
granules are aggregated with the positive granule to construct 
the final SVM [9]. 

Then aggregation takes place. The aggregation dataset is 
initialized to the positive samples. The performance criteria is 
initialized to be the performance of the basic SVM. The first 
negative information granule is aggregated with the 
aggregation set. A new SVM is constructed and the 
performance is measured. If the performance is better than 
before, aggregation is continued by adding the second negative 
information granule in the aggregation dataset. The process is 
continued until the performance of the new classifier is inferior 
to the previous one. 

GSVM-RU reduces information loss by including only the 

support vectors during each phase of granulation. As opposed 

to information loss, it leads to cleaning the dataset [9]. 

E. Modifying KNN for unstructured datasets 

An experiment conducted on the classification of text 
documents [15] made use of an improved rule called NWKNN. 
It was found to yield better performance than the traditional 
KNN.  

V. PERFORMANCE EVALUATION 

When evaluating the performance of the classifier, accuracy 
could be replaced by balanced accuracy. The definition of 
accuracy is obtained from the normalized confusion matrix 
designed for a classifier. We define a as the number of true 
positives, b as the number of false positives, c as the number of 
false negative and d as the number of true negatives. 

For a bi-class problem, accuracy would be defined as: 

 

Accuracy = a+d / (a+b+c+d) (3) 
 
Balanced accuracy would be defined as the arithmetic mean 

of class specific accuracies. 
 

Balanced accuracy = 0.5 (a / a+b) + 0.5 (c / c+d) (4) 
 
The use of balanced accuracy has found to avoid inflated 

performance estimates on the datasets. [1] [2] 
Some classifiers e.g. Naïve Bayes classifier and Neural 

Networks make use of AUC or Area Under Curve as a 
performance parameter. Two parameters are defined as: 

 
True Positive Rate (TPR) = a / (a+b) (5) 
False Positive Rate (TFR) = c / (c+d) (6) 

 
A curve called the ROC (Receiver Operating 

Characteristics) curve is plotted with TPR on Y-axis and TFR 
on X-axis. The area under this curve is abbreviated as AUC. 
This provides a single measure of a classifier‟s performance for 
evaluating which model is better on average even if the 
classifier works on an unbalanced dataset [3] [13]. 

Another widely used measure for finding the accuracy of a 

classifier are the F1-measure and G-score. F1-measure is 

obtained from the confusion matrix as: 

 

Precision=a/a+b   (7) 

Recall=a/a+c   (8) 

F1-measure = 2 (precision.recall)/(precision+recall)

 (9) 

 
F1-measure finds application in the field of natural 

language processing, machine learning and information 
retrieval. 

Similarly, G-score is defined as the geometric mean of 
precision and recall. It finds application in computational 
linguistics; and is very popular: many software have predefined 
methods for calculating the G-score. 

VI. CONCLUSIONS AND FURTHER RESEARCH 

SVMs are reported to be least affected by class imbalance 

problems. It has also been empirically observed that they show 

the best classification accuracy when used for classifying 

unbalanced data [1]. Hence, for massive datasets, SVMs 

would prove to be the best classification algorithm. An 

unstructured Big Data set could be converted to a structured 

dataset before using the SVM for classification. 

 
However, the need to develop an algorithm or classification 

method that handles unstructured data directly as is the case 
with associative classifiers (Which are slow to work with) is 
clear. Research is currently being carried out in the direction of 
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neural networks, fuzzy logic and genetic algorithms to build a 
classifier that can work on unstructured data directly 
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