
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 10 6049 - 6053

__

6049

IJRITCC | October 2015, Available @ http://www.ijritcc.org

Machine Learning for Classification of Imbalanced Big Data

Takshak Desai

Department of Computer Engineering

D. J. Sanghvi College of Engg.

Mumbai, India

takshakpdesai@gmail.com

Udit Deshmukh

Department of Computer Engineering

D. J. Sanghvi College of Engg.

Mumbai, India

udit2594@gmail.com

Prof. Kiran Bhowmick

Department of Computer Engineering

D. J. Sanghvi College of Engg.

Mumbai, India

kiran.bhowmick@djsce.ac.in

Abstract— The problem of classification of imbalanced datasets is a critical one. With an increase in the number of application domains that rely

on classification, extensive research has been carried out in this field; with focus directed towards the problem of poor classification accuracy.

Of late, the rise in significance of Big Data has forced industries to search for better techniques to handle massive and unstructured datasets; this

has led to a need for robust classification algorithms that deal with unbalanced Big Data. This paper surveys the current algorithms provided by

Machine Learning for unbalanced dataset classification and considers their possible use for larger or unstructured datasets.

Keywords-unbalanced datasets;classification;machine learning;Big Data;unstructured data

__*****___

I. INTRODUCTION

Imbalance in datasets typically refers to the non-uniform

distribution of classes among its records. The distribution is
highly uneven: more than 90% of the records belong to a
particular class (the majority or negative class) while the
remaining records belong to the other class (the minority or
positive class). Standard algorithms used for classification in
data mining assume a bias towards the majority class as they
assume that the dataset they are working on is stratified and
hence show poor accuracy when classifying unbalanced data.
Further, these algorithms are accuracy driven i.e. they are
concerned with minimizing the overall error to which a very
small contribution is made by the minority class [3].

The problem gets worse when unbalance occurs in Big Data
as a large number of records could get misclassified. It could
lead to disastrous problems in cases such as medical diagnosis
when an otherwise malignant tumor would get classified as
harmless. Thus, extensive research has been carried out in this
field as the number of application domains that rely on
classification is increasing gradually. Broadly, solutions have
been suggested at both the data level and the algorithm level to
combat the problem. At the data level, solutions include
different forms of sampling. At the algorithm level, one-class
learning and cost-sensitive classification are suggested to
counter the imbalance in data.

This paper surveys the existing algorithms used for
classification, analyses the modifications made in them to cater
to the imbalance in datasets and observes the practicality of
these algorithms if the imbalance were to occur in Big Data. It
concludes by recommending suitable areas for further research.

II. EXISTING ALGORITHMS

A. Decision Tree

Decision trees are one of the most popular classification
algorithms used in data mining. Formally, it can be defined as a
labelled tree where each interior node is labeled with an
attribute, each of the leaf nodes in labeled with a class and each
edge directed from an interior node is labeled with a value of
range of values of the attribute at that node.

A decision tree construction algorithm (e.g. ID3, C4.5)
commences with the root node that represents all the records

present in the training set. It recursively partitions these records
into nodes; for each partition, a child being created to represent
it. The split into partitions is determined by the values of an
attribute called the splitting attribute. Common examples of the
criteria used to determine the splitting attribute include
information gain, gini value, etc. The recursive splitting
terminates at nodes that are pure i.e. all the records in these
nodes belong to one class only. In some cases, it may also
terminate at nodes that are almost pure i.e. the records mostly
belong to a particular class.

A decision tree can be visualized as a graphical model of
the dataset that can be used to predict the class for new records.
For any new record, the algorithm that predicts the class of a
record starts at the root node and at each edge, a decision is
taken whether to traverse along that edge or not. When a leaf
node is reached, the class labelled at that node is output as the
class of the record to be classified.

A decision tree is typically evaluated by predictive accuracy
that considers all errors equally. However, predictive accuracy
might not be appropriate when the data is unbalanced or if the
costs of the errors differ markedly. The probability that some
branches that predict the small classes are removed and the new
leaf node is labelled with a dominant class is very high.
Further, if the training set is unbalanced, decision trees may
have to create several tests to distinguish the small classes from
the dominant classes [1] [2]. Thus, if unbalanced data sets are
used to construct the decision tree, it may lead to inflated
performance estimates: this will generate false conclusions for
the record whose class is to be determined.

B. Associative Classifier

Associative Classifiers are techniques that make use of
association rule mining to carry out the classification of
records. These techniques are based on the assumption that
each record contains only Boolean attributes and a class label.
This assumption is not restrictive as categorical and qualitative
attributes can be converted into Boolean attributes. e.g. For a
numeric attribute, the value of the attribute for a record lies
within a certain range or not can indirectly make the attribute
function as a Boolean attribute.

Once this modification has been made, association rule
mining can be carried by implementing any standard frequent
itemset mining algorithm. Since the objective of an associative
classifier is the classification of records, we are interested in

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 10 6049 - 6053

__

6050

IJRITCC | October 2015, Available @ http://www.ijritcc.org

mining only those rules where the RHS consists of a class label
i.e. for a class association rule X→C, if X is in a test record, the
class is likely to be C. In the event of a conflict i.e. when two
association rules are mined such that one rule classified a
record to class C1 and the other to class C2; the rule with
higher confidence value can be chosen.

For an unbalanced data set, association rules describing
smaller classes are not likely to be found as such rules may
have low confidence values or because patterns describing
small classes may have a rare occurrence in the dataset.

C. Neural Networks

Neural Networks use a technology that attempts to produce
intelligent behavior by trying to mimic the structure and
functions of the nervous system. The nervous system is usually
abstracted as a weighted directed graph where nodes function
as neurons and the values associated with the links between
these nodes indicate the type and strength of association.
Neural networks are extremely popular in pattern recognition
and machine learning applications.

Back propagation algorithms provide the best neural
network architecture for classification problems. Experimental
studies on training unbalanced bi-class data sets revealed that
the net error for samples in the majority class got reduced
quickly in the first few iterations but the net error for minority
class increased considerably. Theoretical analysis indicated that
this phenomenon occurred because the gradient vector
computed by the standard backpropagation algorithm was in a
downhill direction for the majority class but in an uphill
direction for the minority class. This is because the length of
the gradient vector of the majority class will be much larger
than that of the minority class. Therefore, the gradient vector is
dominated by that of the majority class. Consequently, if
weights are recalculated in the direction of the gradient vector,
the net error of the majority class will decrease significantly
and that of the minority class will increase significantly.
Empirical studies also reported that the subsequent rate of
decrease of net error for the small class was very low. It needed
thousands of iterations to reach an acceptable solution [1] [2].

D. Support Vector Machines (SVMs)

SVM refers to a supervised learning model which
categorizes data points into two distinct classes by defining an
optimum hyperplane between the two classes. An optimum
hyperplane is the one which has the largest margin. Margin is
the minimum distance between two data points belonging to
different classes. SVMs seek an optimal separating hyperplane,
where the margin is maximal. The solution is based only on
those data points at the margin. These points are called as
support vectors. The linear SVMs have been extended to
nonlinear examples when the nonlinear separated problem is
transformed into a high dimensional feature space using a set of
nonlinear basis functions. However, the SVMs are not
necessary to implement this transformation to determine the
separating hyperplane in the possibly high dimensional feature
space. Instead, a kernel representation can be used, where the
solution is written as a weighted sum of the values of a certain
kernel function evaluated at the support vectors. When perfect
separation is not possible, slack variables are introduced for
sample vectors to balance the tradeoff between maximizing the
width of the margin and minimizing the associated error.

SVM assumes that only support vectors are informative in

the process of classification and rest of the data points are

redundant. However, in unbalanced data set, the majority class

pushes the hyperplane closer to the minority class. Due to this,

the support vectors of the majority class may be redundant and

more informative data points may hide behind them [1] [8].

E. K-Nearest Neighbours Classifier

KNN is one of the simplest machine learning algorithms to
be used for classification. In a bi-class classification problem,
the Euclidian distance between the testing data point and the
data points in the training set is computed and the k-nearest
neighbors of the testing point are found. Depending on the class
of the majority neighbors, the testing point is classified as the
class of the majority neighbors. It is crucial to set the optimum
value of k. A smaller value of k will lead to overfitting while a
larger value may lead to under-fitting. To set the optimum
value of K, k-fold cross validation is used.

The drawback of using KNN is that it is computationally
expensive to find the k nearest neighbors; and hence for a large
data set, it is not feasible at all to use KNN [3] [12]. Further,
along with the size of the data set, even the dimensions of
features adds a computational cost. Feature extraction hence
becomes crucial.

F. Naïve Bayes Classifier

Naïve Bayes classifier is a probabilistic classifier. It is
based on Bayes‟ theorem with independence assumptions
between predictors. Bayes theorem provides a way of
calculating the posterior probability, P(c|x), from P(c), P(x),
and P(x|c). Naive Bayes classifier assume that the effect of the
value of a predictor (x) on a given class (c) is independent of
the values of other predictors. This assumption is called class
conditional independence.

P(c|x) is the posterior probability of class (target)
given predictor (attribute). P(c) is the prior probability of class.
P(x|c) is the likelihood which is the probability
of predictor given class. P(x) is the prior probability
of predictor.

P(c|x) = P(x|c).P(c) / P(x) (1)
P(c|X) = P(x1|C).P(x2|C)…P(xn|C).P(c) (2)

The advantage of using this classifier is that it simple to

calculate. If the NB conditional independence assumption

actually holds, a Naive Bayes classifier will converge quicker

than discriminative models like logistic regression, so you

need less training data. And even if the NB assumption doesn't

hold, a NB classifier still often performs surprisingly well in

practice. However, for a given unbalanced data set,

dependency patterns inherent in the small classes are usually

not significant and hard to be adequately encoded in the

networks. When the learned networks are inferred for

classification, the samples of the small classes are most likely

misclassified [1] [3].

III. TOWARDS BIG DATA

Big Data collectively refers to those datasets that are so
massive and complex that traditional algorithms cannot handle
them adequately. Particularly, when it comes to mining
meaningful data from such complex datasets, there is a need for
powerful processors and analytic skills that successfully handle
such data. While many technologies and techniques have been
proposed to handle Big Data; a large part of Big Data remains
grossly underutilized and unexplored. This is largely due to the
unstructured nature of Big Data i.e. content that does not

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 10 6049 - 6053

__

6051

IJRITCC | October 2015, Available @ http://www.ijritcc.org

conform to a specific model. With the increase in number of
sources that contribute to the volume of Big Data, it would not
be wrong to estimate that a large part of this data would be
unstructured. Thus, any research efforts that are dedicated
towards managing Big Data are majorly focused on the
massive and unstructured nature of data that is increasing with
a rapid velocity.

Machine learning literature on this topic has provided
several solutions to cater to this problem. We discuss these
solutions in the following section.

IV. HANDLING BIG DATA

A. Sampling

One solution is to carry out the undersampling of the
majority class or oversampling of the minority class. If
oversampling of the smaller class is carried out, typically
through duplication of records, the decision region for the
smaller class can become very specific i.e. it can lead to
overfitting of the training data. A popular oversampling
algorithm called SMOTE [11] adds new, non-replicated smaller
class records to the training set. Undersampling of the
dominant class by removing random records from the dominant
class can also cause the smaller class to have a larger presence
in the training data set. This technique can provide potential
results with techniques such as decision trees, associative
classifiers and Naïve Bayes classifier [11].

However, constructing a decision tree for a very large
dataset is inadvisable as searching for meaningful areas within
a very large decision tree is time consuming [6]. A solution to
this problem is to build a set of decision trees in parallel on
smaller datasets that are subsets of the original training set. The
trees constructed are then reduced to a set of rules, any
conflicting rules are resolved and then merged together to
generate one set that is used for classifying the new records.
The general strategy followed is to partition the training set into
n subsets and apply the decision tree algorithm discussed
earlier on each subset independently and in parallel. The output
of this step will be independent decision trees that model the
partitions. These independent decision trees are then converted
to decision rules [5].

Combining the decision rules into a unified rule will not
suffice as two rules may conflict each other i.e. one rule may
classify a record as class „A‟ while the other may classify the
same record as class „B‟. One technique for combining decision
trees is where conflicts could be resolved by considering the
conditional tests used to generate the rule. By modifying the
conditional tests, one of the two rules can be chosen or the two
rules can be modified to remove the ambiguity [5]. The final
rule obtained will model the entire dataset and can be converted
to a decision tree. Using this decision tree, the class for the new
records can be predicted using the decision tree algorithm as
discussed previously.

In the case of unbalanced big data, the partitioning of data
should take place in a manner such that the partitions mirror the
distribution of classes in the original dataset. E.g. If the original
dataset comprises 98% records of class A and 2% records of
class B; then the partitions should also possess the same or
marginally different ratio of records. This could remove any
classification inaccuracies and prevent misclassification of new
records.

B. Cost sensitive learning

An alternative to sampling is to make use of cost-sensitive
learning that takes into account the miscalculation costs
associated with the dataset being classified. Cost-sensitive
learning assigns a higher cost whenever the record belonging to
minority class is misclassified, as compared to a majority class
example being misclassified. A cost-sensitive learning
technique takes into account the cost matrix of the classifier in
the design phase and selects the model with the least cost. A
possible solution to improve classification accuracy of an
algorithm would be to first run the algorithm on the dataset,
obtain the confusion matrix and make use of this confusion
matrix to obtain the cost.

A major drawback of using cost-sensitive learning is that

the cost matrix for a dataset is often unavailable; thus giving

sampling a preference over cost-sensitive learning. However,

empirical studies [16] have revealed that for datasets

containing more than 10000 records, cost-sensitive learning is

arguably a better option when compared to sampling. Thus, for

an unbalanced big data set, cost-sensitive learning would

prove to be a better alternative.

C. Converting unstructured data to structured data

Gartner‟s report [14] revealed that up to 80% of Big Data is
unstructured. Thus, it becomes imperative to take into account
the unstructured nature of Big Data while using any
classification algorithm.

To handle unstructured data, a decision tree algorithm
called CUST [7] was designed. CUST introduces the use of
splitting criteria formed by unstructured attribute values and
reduces the number of scans on the datasets by using
appropriate data structures. The first step involved is to convert
the unstructured dataset to a structured dataset. E.g. If the
dataset consists of “Website Content” as an attribute, then it
can be converted to a structured attribute by representing each
text content of the webpage as a Boolean attribute. Then any of
the decision tree algorithms can be applied for classification.

Similarly, any other algorithm can be applied to

unstructured datasets after converting these unstructured

datasets to structured datasets. In case of Big Data, this would

obviously lead to an increase in the size of the data used. In

that case, associative classifiers would be a better option.

Associative classifiers [3] can directly handle unstructured

data, and are able to mine more meaningful rules especially

when compared to the decision tree classifier algorithm. But

this algorithm is very slow to work with.

D. Using GSVM-RU and DC-SVM

To address the challenges posed by big data, a novel divide

and conquer approach (DC-SVM) to efficiently solve the

kernel SVM problem has been proposed. DC-SVM achieves

faster convergence speed compared to state-of-the-art exact

SVM solvers, as well as better prediction accuracy in much

less time than approximate solvers. To accomplish this

performance, DC-SVM first divides the full problem into

smaller sub problems, which can be solved independently and

efficiently. It is theoretically shown that the kernel k means

algorithm is able to minimize the difference between the

solution of sub problems and of the whole problem, and

support vectors identified by sub problems are likely to be

support vectors of the whole problem. However, running

kernel k means on the whole dataset is time consuming, so a

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 10 6049 - 6053

__

6052

IJRITCC | October 2015, Available @ http://www.ijritcc.org

two-step kernel k means procedure to efficiently find the

partition is applied. In the conquer step, the local solutions

from the sub problems are glued together to yield an initial

point for the global problem. The coordinate descent method

in the final stage converges quickly to the global optimal.
The data set is divided into k sub problems. The quadratic

optimization problem is solved for all the k sub problems
independently. The solution of each sub problem is then
combined. Since the set of support vectors for all the sub
problems is expected to be close to the support vectors of the
entire problem, the co-ordinate descent solver converges
quickly.

Since the data set of concern is unbalanced, it must be
ensured that each sub problem must contain the same ratio of
positive to negative samples, as in the original data set. After
dividing the data set into k subsets, GSVM-RU is applied to
each subset. The process of GSVM-RU is described below.

SVM assumes that only support vectors are informative in
the process of classification and rest of the data points are
redundant. However, in unbalanced data set, the majority class
pushes the hyperplane closer to the minority class. Due to this,
the support vectors of the majority class may be redundant and
more informative data points may hide behind them [10].

A single SVM cannot guarantee to extract all the
informative support vectors at once [8]. However, it is safe to
assume that a single SVM can extract at least a subset of
informative support vectors. Based on this assumption, multiple
information granules containing different informative samples
can be formed using the technique of granulation. Initially, all
the positive samples are considered informative and included in
the positive informative granule. The negative samples
contributing to the SVM are considered to be included in the
negative information granule. This negative granule is then
removed and another SVM is constructed. The negative
samples contributing to the SVM are then added to the second
negative information granule. The second negative information
granule is then removed and the process is repeated. The
negative samples which are not included in any information
granule are discarded. Finally, the negative information
granules are aggregated with the positive granule to construct
the final SVM [9].

Then aggregation takes place. The aggregation dataset is
initialized to the positive samples. The performance criteria is
initialized to be the performance of the basic SVM. The first
negative information granule is aggregated with the
aggregation set. A new SVM is constructed and the
performance is measured. If the performance is better than
before, aggregation is continued by adding the second negative
information granule in the aggregation dataset. The process is
continued until the performance of the new classifier is inferior
to the previous one.

GSVM-RU reduces information loss by including only the

support vectors during each phase of granulation. As opposed

to information loss, it leads to cleaning the dataset [9].

E. Modifying KNN for unstructured datasets

An experiment conducted on the classification of text
documents [15] made use of an improved rule called NWKNN.
It was found to yield better performance than the traditional
KNN.

V. PERFORMANCE EVALUATION

When evaluating the performance of the classifier, accuracy
could be replaced by balanced accuracy. The definition of
accuracy is obtained from the normalized confusion matrix
designed for a classifier. We define a as the number of true
positives, b as the number of false positives, c as the number of
false negative and d as the number of true negatives.

For a bi-class problem, accuracy would be defined as:

Accuracy = a+d / (a+b+c+d) (3)

Balanced accuracy would be defined as the arithmetic mean

of class specific accuracies.

Balanced accuracy = 0.5 (a / a+b) + 0.5 (c / c+d) (4)

The use of balanced accuracy has found to avoid inflated

performance estimates on the datasets. [1] [2]
Some classifiers e.g. Naïve Bayes classifier and Neural

Networks make use of AUC or Area Under Curve as a
performance parameter. Two parameters are defined as:

True Positive Rate (TPR) = a / (a+b) (5)
False Positive Rate (TFR) = c / (c+d) (6)

A curve called the ROC (Receiver Operating

Characteristics) curve is plotted with TPR on Y-axis and TFR
on X-axis. The area under this curve is abbreviated as AUC.
This provides a single measure of a classifier‟s performance for
evaluating which model is better on average even if the
classifier works on an unbalanced dataset [3] [13].

Another widely used measure for finding the accuracy of a

classifier are the F1-measure and G-score. F1-measure is

obtained from the confusion matrix as:

Precision=a/a+b (7)

Recall=a/a+c (8)

F1-measure = 2 (precision.recall)/(precision+recall)

 (9)

F1-measure finds application in the field of natural

language processing, machine learning and information
retrieval.

Similarly, G-score is defined as the geometric mean of
precision and recall. It finds application in computational
linguistics; and is very popular: many software have predefined
methods for calculating the G-score.

VI. CONCLUSIONS AND FURTHER RESEARCH

SVMs are reported to be least affected by class imbalance

problems. It has also been empirically observed that they show

the best classification accuracy when used for classifying

unbalanced data [1]. Hence, for massive datasets, SVMs

would prove to be the best classification algorithm. An

unstructured Big Data set could be converted to a structured

dataset before using the SVM for classification.

However, the need to develop an algorithm or classification

method that handles unstructured data directly as is the case
with associative classifiers (Which are slow to work with) is
clear. Research is currently being carried out in the direction of

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 10 6049 - 6053

__

6053

IJRITCC | October 2015, Available @ http://www.ijritcc.org

neural networks, fuzzy logic and genetic algorithms to build a
classifier that can work on unstructured data directly

REFERENCES

[1] Sun, Yanmin, Andrew KC Wong, and Mohamed S. Kamel.
"Classification of imbalanced data: A review." International
Journal of Pattern Recognition and Artificial Intelligence 23, no.
04 (2009): 687-719.

[2] Han, Jiawei, Micheline Kamber, and Jian Pei. Data mining:
concepts and techniques: concepts and techniques. Elsevier,
2011.

[3] Ganganwar, Vaishali. "An overview of classification algorithms
for imbalanced datasets." International Journal of Emerging
Technology and Advanced Engineering 2, no. 4 (2012): 42-47.

[4] Chawla, Nitesh V. "C4. 5 and imbalanced data sets:
investigating the effect of sampling method, probabilistic
estimate, and decision tree structure." In Proceedings of the
ICML, vol. 3. 2003.

[5] G.J. Williams, “Inducing and Combining Multiple Decision
Trees”, PhD Thesis, Australian National University, Canberra,
Australia, 1990.

[6] Hall, Lawrence O., Nitesh Chawla, and Kevin W. Bowyer.
"Decision tree learning on very large data sets." In Systems,
Man, and Cybernetics, 1998. 1998 IEEE International
Conference on, vol. 3, pp. 2579-2584. IEEE, 1998.

[7] Gong, Shucheng, and Hongyan Liu. "Constructing Decision
Trees for Unstructured Data." In Advanced Data Mining and
Applications, pp. 475-487. Springer International Publishing,
2014.

[8] Imam, Tasadduq, Kai Ming Ting, and Joarder Kamruzzaman.
"z-SVM: an SVM for improved classification of imbalanced
data." In AI 2006: Advances in Artificial Intelligence, pp. 264-
273. Springer Berlin Heidelberg, 2006.

[9] Cao, Peng, Dazhe Zhao, and Osmar Zaiane. "An optimized cost-
sensitive SVM for imbalanced data learning." In Advances in
Knowledge Discovery and Data Mining, pp. 280-292. Springer
Berlin Heidelberg, 2013.

[10] Tang, Yuchun, Yan-Qing Zhang, Nitesh V. Chawla, and Sven
Krasser. "SVMs modeling for highly imbalanced classification."
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on 39, no. 1 (2009): 281-288.

[11] Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and
W. Philip Kegelmeyer. "SMOTE: synthetic minority over-
sampling technique." Journal of artificial intelligence research
(2002): 321-357.

[12] Mani, Inderjeet, and I. Zhang. "kNN approach to unbalanced
data distributions: a case study involving information
extraction." In Proceedings of Workshop on Learning from
Imbalanced Datasets. 2003.

[13] Brodersen, Kay H., Cheng Soon Ong, Klaas E. Stephan, and
Joachim M. Buhmann. "The balanced accuracy and its posterior
distribution." In Pattern Recognition (ICPR), 2010 20th
International Conference on, pp. 3121-3124. IEEE, 2010.

[14] http://www.gartner.com/technology/research/methodologies/hyp
e-cycle.jsp

[15] Tan, Songbo. "Neighbor-weighted k-nearest neighbor for
unbalanced text corpus." Expert Systems with Applications 28.4
(2005): 667-671.

[16] Yanmin Sun, Mohamed S. Kamel, Andrew K.C. Wong, Yang
Wang, Cost-sensitive boosting for classification of imbalanced
data, Pattern Recognition, Volume 40, Issue 12, December 2007,
Pages 3358-3378, ISSN 0031-3203,
http://dx.doi.org/10.1016/j.patcog.2007.04.009

