
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 10 6003 - 6007
__

 6003

IJRITCC | October 2015, Available @ http://www.ijritcc.org

Energy Efficient Scheduling of MapReduce over Big Data

Prashant Sugandhi
Computer Department

Dr. D Y Patil School of Engineering,

Pune, India.

prashant.sugandhi1@gmail.com

Harshit Karnewar
Computer Department

Dr. D Y Patil School of Engineering,

Pune, India.

hnk1510@gmail.com

Cheryl Joseph
Computer Department

Dr. D Y Patil School of Engineering,

Pune, India.

cj4783@gmail.com

Prof. Jayashree Chaudhari
Computer Department

Dr. D Y Patil School of Engineering,

Pune, India.

jayashree.chaudhari@dypic.in

Abstract— The majority of large-scale data intensive applications carried out by information centers are based on MapReduce or its open-source

implementation, Hadoop. Such applications are carried out on rich clusters requiring ample amounts of energy, helping the energy costs an

appreciable fraction of the data centers overall costs. Therefore, reducing the energy consumption when carrying out each MapReduce task is a

critical worry for data centers. In this paper, we advise a framework for mending the energy efficiency of MapReduce applications, while

satisfying the (SLA) Service Level Agreement. We first prototype the problem of energy-aware scheduling of a single MapReduce task as an

Integer Program. After that we court two algorithms, known as MapReduce scheduling algorithms and load scheduling algorithm, that find the

assignments of map and reduce tasks to the machines plenty in order to reduce the energy consumed when carrying out the application. The

energy aware configuration and scheduling will improve the energy efficiency of MapReduce clusters thus help in reduction of the service costs

of the data-centers.

Keywords- MapReduce, big data, reducing energy consumption, scheduling

__*****___

I. INTRODUCTION

Several businesses and organizations are faced with a never

growing need for analyzing the unprecedented a mounts of

available data. Such need challenges existing methods, and

requires novel approaches and technologies in order to cope

with the complexities of big data processing. One of the major

challenges of processing data intensive applications is

minimizing their energy costs. Electricity used in US data

centers in 2010 accounted for about 2 percent of the total

electricity used nationwide. In addition, the energy consumed

by the data centers is growing at over 15 percent annually, and

the energy costs make up about 42 percent of the data centers’

operating costs. Considering that server costs are consistently

falling, it should be no surprise that in the near future a big

percentage of the data centers’ costs will be energy costs.

Therefore, it is critical for the data centers to minimize their

energy consumption when offering services to customers. Big

data applications run on large clusters within data centers,

where their energy costs make energy efficiency of executing

such applications a critical concern. MapReduce and its open-

source implementation, Hadoop, have emerged as the leading

computing platforms for big data analytics. For scheduling

multiple MapReduce jobs, Hadoop originally employed a

FIFO scheduler. To over-come the issues with the waiting

time in FIFO, Hadoop then employed the Fair Scheduler.

These two schedulers, however, do not consider improving the

energy efficiency when executing MapReduce applications.

Improving energy efficiency of MapReduce applications leads

to a significant reduction of the overall cost of data centers. In

this paper, we design MapReduce scheduling algorithms that

improve the energy efficiency of running each individual

application, while satisfying the service level agreement

(SLA).

II. LITERATURE SURVEY

[1] The results in the existing system show that make span
minimization is not necessarily the best strategy to consider
when scheduling MapReduce jobs for energy efficiency in data
centers. This is due to the fact that data centers are obligated to
deliver the requested services according to the SLA, where
such agreement may provide significant optimization
opportunities to reduce energy costs. Such reduction in energy
costs is a great incentive for data centers to adopt our proposed
scheduling algorithms.

Due to the increasing need for big data processing and the
widespread adoption of MapReduce and its open source
implementation Hadoop for such processing, improving
MapReduce performance with energy saving objectives can
have a significant impact in reducing energy consumption in
data centers. G. Eason, B. Noble, and I. N. Sneddon show that
there are significant optimization opportunities within the
MapReduce framework in terms of reducing energy
consumption. G. Eason, B. Noble, and I. N. Sneddon proposed
two energy-aware MapReduce scheduling algorithms,
EMRSA-I and EMRSA-II, that schedule the individual tasks of
a MapReduce job for energy efficiency while meeting the
application deadline. Both proposed algorithms provide very
fast solutions making them suitable for execution in real-time
settings. G. Eason, B. Noble, and I. N. Sneddon performed
experiments on a Hadoop cluster to determine the energy
consumption of several MapReduce benchmark applications
such as Tera-Sort, Page Rank, and K-means clustering. Then
used this data in an extensive simulation study to analyse the
performance of EMRSA-I and EMRSA-II. The results showed

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 10 6003 - 6007
__

 6004

IJRITCC | October 2015, Available @ http://www.ijritcc.org

that the proposed algorithms are capable of obtaining near
optimal solutions leading to significant energy savings.

In the future, G. Eason, B. Noble, and I. N. Sneddon plan to
design and implement a distributed scheduler for multiple
MapReduce jobs with the primary focus on energy
consumption.

[2] Most of the current day applications process large

amounts of data. There were different trends in computing like
mainframes, parallel computing, cluster computing, grid
computing as per the requirement of the data size and execution
speed. Cloud computing is the new era of computing where
efficient utilization of resources can be done with no
compromise on data size, execution time and cost of execution.
Map Reduce is a programming model which is widely used for
processing large scale data intensive applications in cluster,
cloud environments. A. Sree Lakshmi, Dr M. BalRaju, Dr N.
Subhash Chandra have discussed various scheduling algorithms
of map reduce tasks. The default schedulers available with
Hadoop can be improved to make it more efficient for the cloud
environments.

In current day world as there is huge increase in volumes of
data and big data has become an important point of research.
This paper has discussed scheduling of Map Reduce parallel
applications on cloud. There has been an active research in the
area of scheduling of the map and reduce tasks to virtual
machines to improve the performance of map reduce
applications. Most of the scheduling algorithms concentrate on
map tasks data locality. Scheduling can be made efficient by
using the knowledge of data locality of the intermediate data
generated by the map tasks. This knowledge helps out to
reduce the intermediate network traffic during the reduce phase
and there by speeding the execution of map reduce
applications.

[3] Energy efficiency has become the center of attention in

emerging data center infrastructures as increasing energy costs
continue to outgrow all other operating expenditures. Nezih
Yigitbasi, Kushal Datta, Nilesh Jain and Theodore Willke
investigate energy aware scheduling heuristics to increase the
energy efficiency of MapReduce workloads on heterogeneous
Hadoop clusters comprising both low power (wimpy) and high
performance (brawny) nodes. Nezih Yigitbasi, Kushal Datta,
Nilesh Jain and Theodore Willke first make a case for
heterogeneity by showing that low power Intel Atom
processors and high performance Intel Sandy Bridge processors
are more energy efficient for I/O bound workloads and CPU
bound workloads, respectively. Then present several energy
efficient scheduling heuristics that exploit this heterogeneity
and real-time power measurements enabled by modern
processor architectures. Through experiments on a 23-node
heterogeneous Hadoop cluster we demonstrate up to 27% better
energy efficiency with our heuristics compared with the default
Hadoop scheduler.

[4] Power consumption has become a critical issue in large

scale clusters. Existing solutions for addressing the servers’
energy consumption suggest “shrinking” the set of active
machines, at least until the more power-proportional hardware
devices become available. This paper demonstrates that
leveraging the sleeping state, however, may lead to
unacceptably poor performance and low data availability if the
distributed services are not aware of the power management’s
actions. Therefore, Nedeljko Vasic, Martin Barisits, Vincent

Salzgeber, Dejan Kostic present an architecture for cluster
services in which the deployed services overcome this problem
by actively participating in any action taken by the power
management. Nedeljko Vasic, Martin Barisits, Vincent
Salzgeber, Dejan Kostic propose, implement, and evaluate
modifications for the Hadoop Distributed File System and the
MapReduce clone that make them capable of operating
efficiently under limited power budgets.

Nedeljko Vasic, Martin Barisits, Vincent Salzgeber, Dejan
Kostic demonstrate that important classes of distributed
applications do not gracefully operate with limited power
budgets. We believe that energy-aware design for cluster
applications and services and their active participation in power
management actions will be required for reliable, high
performance, and low cost data centers. Nedeljko Vasic, Martin
Barisits, Vincent Salzgeber, Dejan Kostic therefore propose a
new approach for making cluster applications energy aware,
and demonstrate the efficiency of our approach using a
prototype implementation of HDFS and MapReduce.

III.PROPOSED WORK

Our system tends to style it to efficiently method streams of
data queries and stream-DB workloads, using any hardware
and stream package. As a demonstration and test scenario take
into account a student database with student detail-records
(SDR) and at an equivalent time massive databases holding
past data and services outline records. Figure 1, shows process
to design Dynamic Load balancing algorithm to attain
scalability even in heavy queries, event generation and
handling, job submission control.

Figure 1

• Scheduling of Query
• Load Scheduling and Event generation

A. SCHEDULING THE QUERY

 Proposed System schedules the incoming data, decision

of distribution of query are depend upon load balancing
algorithm. A number of load balancing algorithm are there like
Round Robin (RR), Least Weighted (LW) etc. Proposed system
is based on Least Work based on the number of queries running
(LWRn). This algorithm requires knowledge about the number
of queries running at each node, and chooses the node with less
queries at the assignment instant. Finally, the Least Weight
(LW) algorithm needs to measure current load in terms of
parameters such as CPU, memory and IO in order to determine

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 10 6003 - 6007
__

 6005

IJRITCC | October 2015, Available @ http://www.ijritcc.org

the less loaded node, then it assigns the query to the less-loaded
node.

B. OVERLOAD DETECTION

 When a new query arrives at the scheduler it is send to the

node with less load. If the queue of the processing node reaches
a limit size, then the query is removed from it, and put to run in
the ready node, ready node becomes a processing node.
Elasticity and scalability is achieved by adding new nodes to
the set of ready-nodes.

 When a node has a small minimum number of queries and
minimum load, the resource is de-provisioned. The node tries
to free resources by submitting the queries to the scheduler. If it
gets free, the node will be set on standby as a ready-node.

C. EVENT HANDLING AND ALERT

 Every time a P/C queue reaches the maximum size

(configurable parameter), queries removal or load scheduling
decisions need to be made. If all the previews options are
exhausted and the system is still overloaded it will alert the
administrator, indicating the node and queries in overload
condition. The administrator can decide to add more ready-
nodes, remove more queries.

D. ALGORITHM

 In this section we describe the algorithm used in system.
Workload refers to database sub queries. In section IV-A, we
describe Scheduling algorithm and in Section IV- B we
describe load scheduling algorithm.

1. Scheduling Algorithm

 The following is scheduling algorithm. The variables
Times means how many times query was reschedule if it is
zero scheduler will schedule it to best node.

Step 1. Start
Step 2. Accept Query as QUERY
Step 3. 3.1. Check the number of times QUERY has been

relocated
 3.2. If Relocation Times
 Go to step 4
 else if Relocation Times = 1
 Go to step 5
 else if Relocation Times = 2
 Go to step 6

Step 4. 4.1. Node= The least utilized node from the pool of
nodes

 4.2. Send QUERY to Node
 4.3. Update the Relocation Times of QUERY = 2

 4.4. Update the Relocation Times of previous QUERY
=1

 4.5. Go to step 7
Step 5. 5.1. Send QUERY to Node

 5.2. Update the Relocation Times of QUERY = 1
 5.3. Go to step 7

Step 6. 6.1. Count the number of Ready Nodes available in
the Ready Node Pool

 6.2. If Ready node is not available
 Go to step 7
 Else
 Send query to any one of the available Ready Node
 Go to step 7

Step 7. Stop

2. Load Scheduling Algorithm
 In this section we design algorithm for handling the

overload condition, when overload detected in many node or
one node but query location is unable to solve the problem.
Algorithm has following steps

Step 1. Start
Step 2. if size of P/C Queue > Assigned maximum size

 go to step 3
 else
 go to step 9

Step 3. Get the target load scheduling value
Step 4. If current load scheduling val < target load scheduling

val
 Go to step 5
 Else
 Go to step 6

Step 5. 5.1. Set current load scheduling value = minimum of
(target load scheduling value current load
scheduling value + 5% of current load
scheduling value)

 5.2. Go to step 9
Step 6. 6.1. Check status of Query to check whether Query

dropping is enabled
 6.2. If Query drop enabled
 Go to step 7
 Else
 Go to step 8

Step 7. 7.1. Remove Query
 7.2. Set current load scheduling value = 0
 7.3. Go to step 9

Step 8. 8.1. Alert Administrator about failure in load
scheduling

 8.2. Go to step 9
Step 9. Stop

3. EMRSA-X

1. Create an empty priority queue Q

m

2. Create an empty priority queue Q
r

3. for all j  Ado

4. min
p
e

ij

ij
Mi

m

jecr 
 , for EMRSA-I; or

M

p

e
Mi

ij

ij

m

jecr
 

 , for EMRSA-II

5. Q
m
.),(m

jecrjenqueue

6. for all j  B do

7. min
p
e

ij

ij
Ri

m

jecr 


R

p

e
Ri

ij

ij

m

jecr
 



8. Q
r
.),(r

jecrjenqueue

9. ;mD ;rD

10. while Q
m
 is not empty and Q

r
 is not empty, do

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 10 6003 - 6007
__

 6006

IJRITCC | October 2015, Available @ http://www.ijritcc.org

11. ().extractMinQj mm 

12. ().extractMinQj rr 

13.









r
i

m
i

jp

jp

Ri

Mi
f

14.
mT : sorted unassigned map tasks i  M based

on
m

i jp .

15.
rT : sorted unassigned reduce tasks i  R based

on
r

i jp .

16. if mT and rT then break

17. ASSIGN-LARGE ()
18. ASSIGN-SMALL ()

19. if mD then

20.
rm pDD 

21.
rr pD 

22. if mT or rT then

23. No feasible schedule
24. return
25. Output: X, Y

The ordering induced by these metrics on the set of slots

determines the order in which the slots are assigned to tasks,

that is, a lower
m

jecr means that slot j has a higher priority to

have a map task assigned to it. Similarly, a lower
m

jecr means

that slot j has a higher priority to have a reduce task assigned to
it.

In addition, EMRSA-X uses the ratio of map and reduce
processing times, denoted by f, in order to balance the
assignment of map and reduce tasks. The ratio f is defined as
follows:









r
i

m
i

jp

jp

Ri

Mi
f

This ratio is used in the task assignment process in each
iteration of EMRSA-X. As we already mentioned, we use job
profiling of production jobs to estimate the processing time of
map and reduce tasks. This information, extracted from job

profiling (i.e., the values of
m

i jp and
r

i jp) is used by

EMRSA-X to compute the ratio f.

4. ASSIGN-LARGE ()

1. mm ptjTt

mi


 minarg

2. rr ptjTt

ri


 minarg

3. 0mp ; 0rp

4. if Dpp rrmm jiji
 and

m

ji
Dp mm  and

r

ji
Dp rr  then

5. }{\ iTT mm 

6. }{\ iTT rr 

7. mm ji

m pp 

8. rr ji

r pp 

9. 1mm ji
X

10. 1rr ji
Y

11. do

12. mm ptjTt

mi


 minarg

13. rr ptjTt

ri


 minarg

14. if 1f then

15. while f
p

pp

r

ji

m
mm




and Dppp mm ji

rm 

and
m

ji

m Dpp mm  and mT do

16. }{\ iTT mm 

17. mm ji

mm ppp 

18. 1mm ji
X

19. mm ptjTt

mi


 minarg

20. Balance the assignment of reduce tasks (repeat lines
15-19 for reduce tasks).

21. else

22. The code for 1f is similar to lines 15-20 and is

not presented here.

23. while Dpppp rrmm jiji

rm  and

m

ji

m Dpp mm  and
r

ji

r Dpp rr  and

(mT or rT)

5. ASSIGN-SMALL ()

1. {Assign small map tasks}

2. mm ptjTt
i


 minarg

3. while Dppp mij

rm  ,
m

ij

m Dpp m  &

mT do

4. }{\ iTT mm 

5. mij

mm ppp 

6. 1ijmX

7. mm ptjTt
i


 minarg

8. {Assign small reduce tasks}

9. rr ptjTt
i


 minarg

10. while Dppp rij

rm  ,
r

ij

m Dpp m  &

rT do

11. }{\ iTT rr 

12. rij

rr ppp 

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 10 6003 - 6007
__

 6007

IJRITCC | October 2015, Available @ http://www.ijritcc.org

13. 1rij
Y

14. rr ptjTt
i


 minarg

IV. CONCLUSION

A solution for any big data system is to MapReduce and
parallelizes the load though many machines or cores, however
nodes can still overload. Hence an integrated approach is
proposed to increase scalability of query processing with robust
architecture for overload mitigation, scalability, Query
processing control, Various researchers has put forward
mechanism for load balancing in networking and cloud
environment but this approach provides unique and integrated
approach and considers many factors in unison to provide best
possible results. In future it is possible to contribute this work
to data ware houses.

V. Acknowledgment
I wish to express my sincere thanks to the guide Prof.

Jayashree Chaudhari and Head of Department, Prof. Soumitra
Das, as well as our director Dr. S.S. Sonavane and last but not
least, the staff members of Computer Department for their
support.

VI. REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,”
Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April
1955. (references)

[2] Scheduling of Parallel Applications Using Map Reduce On
Cloud: A Literature Survey -A.Sree Lakshmi, Dr.M.BalRaju,
Dr.N.Subhash Chandra

[3] Energy Efficient Scheduling of MapReduce Workloads on
Heterogeneous Clusters -NezihYigitbasi, KushalDatta, Nilesh
Jain and Theodore Willke

[4] Making Cluster Applications Energy-Aware -NedeljkoVasic,
Martin Barisits,Vincent Salzgeber, DejanKostic

