
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 9 5629 - 5633

__

5629
IJRITCC | September 2015, Available @ http://www.ijritcc.org

Load Balancing Through Map Reducing Application Using CentOS System

Nidhi Sharma
Research Scholar, Suresh Gyan Vihar University,

Jaipur (India)

Bright Keswani

Associate Professor, Suresh Gyan Vihar University,

Jaipur (India)

Abstract:- The main aim is to design an algorithm for Map-Reduce application, with a ballot count application, which explains how the big data
can be handled by the individual Mappers and how data is split using map() function. The output of Mappers and is given to the Reducer and

reduce () function is applied. The execution takes set of input key/value pairs, and gives a set of output key/value pairs. Map, accepts the input

from the user, processes it and generates a set of intermediate key/value pairs. The Map Reduce library groups all the intermediate values of the

same category and passes it to the Reduce function. The Reduce function takes the intermediate key and a set of values associated with the key.
It groups together all the associated values and generates a smaller set of values. Finally, only zero or one output value is generated by the

reducer. The iterate is responsible for accepting the intermediate key and its associated value.

Keywords:- Ad hoc, Map Reduce, CentOS System, Cloud Computing, Load Balancing etc.

__*****___

I. INTRODUCTION

Cloud computing is one of the emerging technology in the

current era. It helps the users to share resources, information

and devices, so, reduced time and cost involved. Capital and

Operational cost is also greatly reduced. It works on multi-

tier architecture. Internet network works on the basis of

cloud strategy.

The major issue to be addressed in cloud is the “Load

Balancing”. Load balancing is the method of distributing the

services equally throughout the cloud. The cost of the cloud

may increase if it holds idle resources. So, instead of

allocating the jobs to the same resources again and again

and increasing the pressure on a particular system, it is

profitable to distribute the job throughout the cloud as

shown in Fig:1.

Figure 1: Distribution of jobs

Work flow defines a set of jobs and its dependency. In

XML, workflow is represented as a Directed Acyclic Graph

(DAG). The application/task is represented as node and the

dependency of execution among the tasks is represented as

“Directed Edge”. Dependency exists with the data involved,

its execution order and dataflow from one task to another.

Certain tasks can be processed in parallel. Cloud computing,

using services reduce the effort involved to access high

performance computing and also information storage. The

advantages are configurability, scalability and reliability

with the high performance. The cost of execution of a job on

a cloud is depending on the amount of computation done

and the resources consumed. Map-Reduce model of

programming consists of two functions- “Map” and

“Reduce”. The function of “Map” executes a block of inputs

thus giving output as sequence of pairs, whereas the

function “Reduce” processes single key function and its

associated set of values.

Google for the usage of web-indexing technologies applied

Map-Reduce operation. This is used to monitor the web-

pages viewed and generate inverted-indices and summarize

the web-pages for search-results. Later the methodology was

applied to larger processes like query processing for both

raw and derived data. This made many others use this

process for their own set of evaluation of the organizational

data. Map-Reduce help in managing large volumes of the

data and with larger data sets which had dependencies

existing among them. The aim of this work is to generate an

algorithm using Map-Reduce model for the application

ballot-count which had big set of input data. There are two

main processes, one is to group ballot-count in different

regions and create the total ballot count and other is to use

combiner utility function to document the data. The

functions map() and reduce() are mainly used. For

processing three functions map(); combine(); and reduce()

are used.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 9 5629 - 5633

__

5630
IJRITCC | September 2015, Available @ http://www.ijritcc.org

II. LOAD BALANCING

It is a process of distributing the total load to the different

nodes of the whole system to make effective resource

utilize. It is used to improve the time response of the task,

and at the same time we will remove a condition in which

some nodes become over loaded whereas others are not. A

dynamic natured load balanced algorithm does not use the

previous state or nature of the system, i.e., depending upon

the present state of the system. The important points to

remember while writing this type of algorithm are: load

estimation, load comparison, system stability, system

performance, action between the nodes, transferred work’s

behavior and select nodes etc. This load can be considered

in types of load of CPU, memory used ratio, delay or load of

Network.

III. DISTRIBUTED SYSTEM OF BALANCING

LOAD FOR CLOUD

There is a requirement for balancing of load in the

complicated and big systems. To make balancing of load in

the cloud, a thing that has to be done is, using such

techniques by which components of the system of cloud acts

as the balanced load of the full system. For this purpose, we

can discuss three solutions which can be used in a

distributed purposely: algorithm for honeybee foraging, a

biased and choose at random samples at a random walk

process and Active Clustering.

IV. TECHNIQUE OF HONEYBEE FORAGING

This algorithm derived from the nature of honey bees for

searching and making food. A class of honey bees called

forager bees which can search for sources of food, and on

finding it, they return to their beehive to tell to everyone by

a dance called “waggle dance”. The steps of that dance,

gives the location of food and their quantity and also the

distance of the food source from their beehive. Foragers

then show the way to scout bees to the food location and

then start to make it. Then they come back to their beehive

and start doing waggle dance, which shows quantity of food

left and so results in more using and this course of action for

the source of food.

In balancing of load’s case, according to the increment and

decrement in the demand in web servers, the services are

allocated dynamically to meet the changing user demands.

The servers are categorized under “Virtual Servers (VS)”,

each and every Virtual Servers have its own virtual service

buffers. Each and every server processes a request from its

buffer which calculates a benefit or profit, which is same to

the quality of honey bees as shows in their dance. Benefit of

this technique can be measured by the time amount which is

used by CPU to process a request. The honey bees dance

floor is same as an advert board in this case. The benefit of

the whole colony can be advertised by that advert board.

Each and every server has to take the job of either a “forager

role” or “scout role”. After process a request, the server can

post their probability of px as well as their benefit on the

board. A buffer can be chosen by the server of Virtual server

by a probability of px expressing forage/explore nature, and

it can also check all advertisements and process it, and thus

showing scout nature.

Figure 2: Honey Bee Foraging Technique

V. MAP REDUCE: ISOLATED PROCESSES

Hadoop is designed to efficiently process large volumes of

information by connecting many commodity computers

together to work in parallel. The theoretical 1000-CPU

machine described earlier would cost a very large amount of

money, far more than 1,000 single-CPU or 250 quad-core

machines. Hadoop will tie these smaller and more

reasonably priced machines together into a single cost-

effective compute cluster. Hadoop controls the all

communication perform by the processes and each alone

record is controlled by a work in the state of being separate

from one and another. While it is like a large demerit at first,

it makes the full framework much better. Hadoop will not

execute like any program and divide it across the cluster.

"Map Reduce" is a particular programming model is used to

conform to the written programs.

In “Map Reduce”, all records are executed in the state of

being separate by works called as “Mappers”. The output of

the Mappers is brought together to a other set of jobs called

“Reducers”, where different mappers results can be

combined together as shown in Figure 3.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 9 5629 - 5633

__

5631
IJRITCC | September 2015, Available @ http://www.ijritcc.org

Figure 3: Mapping and Reducing Process in Map

Reduce

Different nodes in the Hadoop cluster still interact with

another node. However, more normal divided systems where

application makers exactly marshal byte streams from one

node to another node over the sockets or by the MPI buffers.

Communication performed in the Hadoop is implicit

communication. Packets of data can be labeled with key

names which tell Hadoop how to transfer the bits of

information data to a common final node. Hadoop controls

all the cluster topology issues and data transfer internally.

By jamming the node to node communication, Hadoop

makes the distributed system much easier. Individual

failures of nodes can be done around by re-starting jobs on

the other systems. Since jobs of user-level do not interact

explicitly with one to other, there is no need to exchange

messages by user programs, same as nodes also do not need

to roll back to checkpoints which are pre-arranged to

partially restart the calculation. The rest workers keep

operate as here nothing went wrong, leaving the challenging

points of partially begin the program again to the underlying

layer of Hadoop.

VI. FLATSCALABILITY IN HADOOP

One of the big merits of using Hadoop as compare to

another distributed systems is the flat scalability curve.

Processing Hadoop on a less amount of information data and

on a less number of nodes may not be makes particularly

stellar performance, the overhead used in starting Hadoop

programs is quite high. Other parallel/distributed

programming patterns like MPI (Message Passing Interface)

can perform much satisfactory on two, four, or possibly a

dozen system machines. In spite of the fact that the effort of

co-ordinating task to less number of machines can be well-

performed by such machines, the cost paid in performance

and developing effort incrementing non-linearly.

A program written in divided frameworks apart from

Hadoop may require huge amounts of refactoring when

measuring from ten to hundred or thousand machine

systems. This can be involved taking the program be written

again and again many times; basic elements of its design can

also bound the scale to which the application can increase its

strength.

Hadoop is mainly developed to have a curve of flat

scalability. After Hadoop program is being written and

performing on ten nodes, if any job is need for that program

to execute on a big amount of hardware. The amount of

growth magnitude are manage with very less re-job is

needed for the applications. The records and hardware

sources manages by the given Hadoop platform. The growth

of the performance of the system which is proportionate to

the large number of system available to the system which is

dependable to the system.

VII. MAP-REDUCE SEARCH METHODOLO-GY

The job of the Hadoop system is implemented as workload.

The system nodes of map jobs and reduce jobs are depends

on each other. Basically the communication exists between

map jobs and reduces jobs. The job of the reducers is fixed

in the basic Hadoop system. Hash partitioned gives

Beforehand and the reducer to the value pair. The function

hash practitioner specifies the key to return back value

among 0 and 1 which is sent to that reducer. Reducer load

unbalancing exists in the system as mostly reducers receive

much more key value pairs. This imbalance can be reduced

by multiprocessor scheduling algorithm and a reduction in

the gain of the execution time as we gives roles to the

reducer as shown in Fig: 4.

Figure 4: Input-Output phases of Map Reducing

Technique

VIII. PROBLEM STATEMENT

 Input: text documents in large numbers

 Task: Calculate the word count on all of the

documents

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 9 5629 - 5633

__

5632
IJRITCC | September 2015, Available @ http://www.ijritcc.org

Figure 5: Map and Reduce Phase Working

IX. PROBLEM SOLUTION

 Mapper: every word in the document gives (word,

“1”)

 Reducer: Sum all occurrences’ of word and outputs

(word, total_count)

The two functions that associate to the Map-Reduce

programming model are as follow:

 Map Function:

 (Kin, Vin) -----list (Kinter, Vinter)

 Reduce function:

 (Kinter, list(Vinter))--------- list (Kout, Vout)

X. RESULTS

To initiate the project first we have to start our CentOS

system at our virtual machine that is Oracle VM virtual box

supported by Horton works Sandbox as shown in Figure 6.

Figure 6: CentOS login Window

After initiation and login formalities the system will now

process the files as per run command. For this first we have

to import all input files in job browser and then have to run

the program file to get our output information. The output

window is shown in Figure 7.

Figure 7: Output Window

The following output produced after calculating all the

system inputs as shown in Figure 8.

Figure 8: Result Window

XI. CONCLUSION

It is helpful in usage of web-indexing technologies applied

Map-Reduce operation. This is used to monitor the web-

pages viewed and generate inverted-indices and summarize

the web-pages for search-results. Later the methodology was

applied to larger processes like query processing for both

raw and derived data. This made many others use this

process for their own set of evaluation of the organizational

data. Map-Reduce were helpful in managing large volumes

of the data and with larger data sets which had dependencies

existing among them. The aim of this work is to generate an

algorithm using Map-Reduce model for the application

ballot-count which had big set of input data. There are two

main processes, one is to group ballot-count in different

regions and create the total ballot count and other is to use

combiner utility function to document the data. The

functions map() and reduce() are mainly used. For

processing three functions map(); combine(); and reduce()

are used.

XII. REFFERENCES

[1] Hadoop, http://hadoop.apache.org/mapreduce/.
[2] D. Abadi et al. Column-Oriented Database Systems.

PVDLB,2(2):1664–1665, 2009.

[3] F. N. Afrati and J. D. Ullman. Optimizing Joins in a

Map-Reduce Environment. In EDBT, pages 99–110,
2010.

[4] S. Babu. Towards automatic optimization of MapReduce

programs. In SOCC, pages 137–142, 2010.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 9 5629 - 5633

__

5633
IJRITCC | September 2015, Available @ http://www.ijritcc.org

[5] S. Blanas et al. A Comparison of Join Algorithms for

Log Processing in MapReduce. In SIGMOD, pages 975–
986, 2010.

[6] J. Dean and S. Ghemawat. MapReduce: A Flexible Data

Processing Tool. CACM, 53(1):72–77, 2010.

[7] J. Dittrich, J.-A. Quian´e-Ruiz, A. Jindal, Y. Kargin, V.
Setty, and J. Schad. Hadoop++: Making a Yellow

Elephant Run Like a Cheetah (Without It Even

Noticing). PVLDB, 3(1):519–529, 2010.

[8] J. Dittrich, J.-A. Quian´e-Ruiz, S. Richter, S. Schuh, A.
Jindal, and J. Schad. Only Aggressive Elephants are Fast

Elephants. PVLDB, 5, 2012.

[9] A. Floratou et al. Column-Oriented Storage Techniques

for MapReduce. PVLDB, 4(7):419–429, 2011.
[10] A. Gates et al. Building a HighLevel Dataflow System

on Top of MapReduce: The Pig Experience. PVLDB,

2(2):1414–1425, 2009.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In SOSP, pages 29–43, 2003.

[12] H. Herodotou and S. Babu. Profiling, What-if Analysis,

and Cost-based Optimization of MapReduce Programs.

PVLDB, 4(11):1111–1122, 2011.
[13] M. Isard et al. Dryad: Distributed Data-Parallel Programs

from Sequential Building Blocks. In EuroSys, pages 59–

72, 2007.

[14] E. Jahani, M. J. Cafarella, and C. R´e. Automatic
Optimization for MapReduce Programs. PVLDB,

4(6):385–396, 2011.

[15] D. Jiang et al. The Performance of MapReduce: An In-

depth Study. PVLDB, 3(1-2):472–483, 2010.
[16] A. Jindal, J.-A. Quian´e-Ruiz, and J. Dittrich. Trojan

Data Layouts: Right Shoes for a Running Elephant. In

SOCC, 2011.

[17] J. Lin et al. Full-Text Indexing for Optimizing Selection
Operations in Large-Scale Data Analytics. MapReduce

Workshop, 2011.

[18] Y. Lin et al. Llama: Leveraging Columnar Storage for

Scalable Join Processing in the MapReduce Framework.
In SIGMOD, 2011

[19] D. Logothetis et al. Stateful Bulk Processing for

Incremental Analytics. In SoCC, pages 51–62, 2010.

[20] A. Okcan and M. Riedewald. Processing Theta-Joins
Using MapReduce. In SIGMOD, pages 949–960, 2011.

[21] A. Pavlo et al. A Comparison of Approaches to Large-

Scale Data Analysis. In SIGMOD, pages 165–178, 2009.

[22] J.-A. Quian´e-Ruiz, C. Pinkel, J. Schad, and J. Dittrich.
RAFTing MapReduce: Fast Recovery on the RAFT.

ICDE, 2011.

[23] A. Thusoo et al. Data Warehousing and Analytics

Infrastructure at Facebook. In SIGMOD, 2010.
[24] A. Thusoo et al. Hive – A Petabyte Scale Data

Warehouse Using Hadoop. In ICDE, 2010.

[25] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query

Optimization for Massively Parallel Data Processing. In
SOCC, 2011.

[26] M. Zaharia et al. Improving MapReduce Performance in

Heterogeneous Environments. In OSDI, 2008.

http://www.ijritcc.org/

