Strong Non Split Block Domination in Graphs

¹M. H. Muddebihal and ²Nawazoddin U. Patel Department of Mathematics Gulbarga University, Gulbarga-585106 Karnataka, India.

E-mail: mhmuddebihal@yahoo.co.in and nawazpatel.88 @gmail.com

Abstract: For any graph G = (V, E), the block graph B(G) is a graph whose set of vertices is the union of the set of blocks of G in which two vertices are adjacent if and only if the corresponding blocks of G are adjacent. A dominating set D of a graph B(G) is a strong non split block dominating set if the induced sub graph $\langle V[B(G)] - D \rangle$ is complete. The strong non split block domination number γ_{snsb} (G) of G is the minimum cardinality of strong non split block dominating set of G. In this paper, we study graph theoretic properties of γ_{snsb} (G) and many bounds were obtain in terms of elements of G and its relationship with other domination parameters were found.

Keywords: Dominating set/ Independent domination/Block graph /Strong split block domination/ Edge domination/Roman domination/ strong non split block domination.

Subject Classification number: 05C69, 05C70.

1. Introduction:

In this paper, all the graphs consider here are simple and finite. For any undefined terms or notation can be found in Harary [3]. In general, we use $\langle X \rangle$ to denote the subgraph induced by the set of vertices X and N(v) and N([v]) denote open (closed) neighborhoods of a vertex v.

The concept of Roman domination function (RDF) was introduced by E.J. Cockayne, P.A.Dreyer, S.M.Hedetiniemi and S.T.Hedetiniemi in [2]. A Roman dominating function on a graph G = (V, E) is a function $f: V \to \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex of v of G for which f(v) = 2. The weight of a Roman dominating function is the value $f(V) = \sum_{v \in V} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_R(G)$, equals the minimum weight of a Roman dominating function on G.

The notation $\alpha_o(G)(\alpha_1(G))$ is the minimum number of vertices (edges) in vertex (edge) cover of *G*. The notation $\beta_o(G)(\beta_1(G))$ is the maximum cardinality of a vertex (edge) independent set in *G*. A block graph B(G) is the graph whose vertices correspond to the blocks of *G* and two vertices in B(G) are adjacent if and only if the corresponding blocks in *G* are adjacent.

We begin by recalling some standard definitions from domination theory (see [6]). A dominating set *D* of a graph G = (V, E) is an independent dominating set if the induced subgraph $\langle D \rangle$ has no edges. The independent domination number i(G) of a graph *G* is the minimum cardinality of an independent dominating set(see[5]). The concept of domination in graphs, with its many variations, is

now well studied in graph theory (see [1,5, and 6]). In this article, we study a variation on the domination theme, which is called Strong split Block domination in Graphs, recently introduce by M.H.Muddebihal et.al. [4].

A dominating set *D* of a graph B(G) is a strong non split block dominating set if the induced subgraph $\langle V[B(G)] - D \rangle$ is complete. The strong non split block domination number $\gamma_{snsb}(G)$ of *G* minimum cardinality of strong non split block dominating set of *G*. In this paper, many bounds on $\gamma_{snsb}(G)$ were obtained in terms of elements of *G* but not the elements of B(G). Also its relation with other domination parameters were established.

2. Main Results

We establish the lower bounds for γ_{snsb} (G).

1. LOWER BOUNDS PROBLEMS FOR $\gamma_{snsb}(G)$:

Many lower bounds for γ_{snsb} (G) are established in the following theorems.

Theorem 1: For any connected (p,q) graph G and $(G) \neq K_P$, then $\gamma_{snsb}(G) \geq \left| \frac{p}{\Lambda(G)+1} \right|$.

Proof: Suppose $B(G) = K_P$. Then by definition of $\gamma_{snsb}(G)$ -set does not exists. Now we consider a set $C = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ a set of all non end vertices in G. Assume there exists at least one vertex $v \in C$ such that $\deg(v) = \Delta(G)$. Then consider $S \subseteq C$ such that $N[v_i] = V(G), \forall v_i \in S, 1 \le i \le k$. Now without loss of generality, let $C' = \{b_1, b_2, b_3, \dots, b_i\}$ be the set of cut vertices in B(G). Since each block in B(G) is complete and each cut vertex is incident with at least two blocks. Let C'' = V[B(G)] - C' and consider a set $C'' \subseteq C'$ such that $V[B(G)] - \{C'' \cup C_1'''\} = S', \forall b_i \in S'$ gives $\langle S' \rangle$ which is complete. Suppose there exists vertex $v \in G$ such that $\forall v_i \in C$ are adjacent to v, if $\deg(v) = \Delta(G)$ and $N(v_i) \ge \Delta(G) + 1$. Then $C_1'' \cup C'' \ge \frac{V[G]}{\Delta(G)+1}$, which gives $|C_1'' \cup C''| \ge \left[\frac{V[G]}{\Delta(G)+1}\right]$. So that $\gamma_{snsb}(G) \ge \left[\frac{p}{\Delta(G)+1}\right]$.

Theorem 2: For any connected (p,q) tree T and $B(T) \neq K_P$, then $\gamma_{snsb}(T) \geq \alpha_o(T) - 1$. Where $\alpha_o(T)$ is the vertex covering number of T.

Proof: Suppose $B(T) = K_p$. Then $\gamma_{snsb} - set$ does not exists. We consider a tree T with $V(T) = \{v_1, v_2, v_3, \dots, v_p\}$. Let $V_1 = \{v_1, v_2, v_3, \dots, v_i\}, 1 \le i \le p$ be the set of cut vertices which are adjacent to end vertices and $V_2 = \{v_1, v_2, v_3, \dots, v_l\}, 1 \le l \le p$ be the set of cut vertices such that $\forall v_k \in N(v_l)$ are non-end vertices $1 \le l \le p$. Suppose a set $V_j \subseteq V_1$ or V_2 . Then we consider another subset $V_2' = \{v_1, v_2, v_3, \dots, v_n\}, 1 \le n \le l$ which are at a odd distance from the vertices of T with $deg(v_p) \ge 3$. Then every vertex belongs to $V_1 \cup V_2 \cup V_j \cup V_2'$ which covers all the edges of T. Hence $|V_1| \cup |V_2| \cup |V_j| \cup |V_2'| = \alpha_o(T)$. To get $\gamma_{snsb}(T)$, since each block in B(T) is complete.

Now suppose each block of B(T) is an edge. Then $V[B(T)] = \{v_1, v_2, v_3, \dots, v_n\}$ and there exists a set $H = \{v_1, v_2, v_3, \dots, v_n\}, 1 \le i \le n, H \subseteq V[B(T)]$ such that $v_j v_k \in V[B(T)]$ and $v_j v_k \in E[B(T)]$. Hence $V[B(T)] - \{H\} = v_j v_k$ is complete. Clearly H is γ_{snsb} – set. Now $|V_1| \cup |V_2| \cup |V_j| \cup |V_2'| \le |H| + 1$ which gives γ_{snsb} $(T) \ge \alpha_o(T) - 1$.

Theorem 3: For any (p, q) acyclic graph *G* with $B(G) \neq K_p$, then $\gamma_{snsb}(G) \geq \gamma(G)$. Equality holds for a path p_p with $p \geq 3$.

Proof: Suppose $V = \{v_1, v_2, v_3, \dots, v_p\}$ be the set of vertices of *G*. Let $D = \{v_1, v_2, v_3, \dots, v_k\}, 1 \le k \le p$ be a minimal dominating set of *G* such that $|D| = \gamma(G)$. Further $B = \{B_1, B_2, B_3, \dots, B_n\}$ be the number of blocks in *G*. In $B(G), V[B(G)] = \{b_1, b_2, b_3, \dots, b_n\}$ be the set of vertices corresponding to the blocks $\{B_1, B_2, B_3, \dots, B_n\}$ of *G*. Suppose there exists a block *H* in B(G) with maximum number of vertices and each block in B(G) is complete. Now we consider the following cases.

Case 1: Assume *H* is an end block in B(G) with *m* vertices. Then $H' \subset H$ with (m-1) vertices where $\{H'\} \in V[B(G)] - D'$ and is complete. Hence D' is a γ_{snsh} - set and $|D'| \ge |D|$ which gives $\gamma_{snsh}(G) \ge \gamma(G)$.

Case 2: Assume *H* is not an end block in *B*(*G*) with *m* vertices. Then $V[H] - \{v_1, v_2, v_3, \dots, v_m\}$. If at least two vertices of *H* are cut vertices, then every vertex of *H* is adjacent to at least one vertex of V[B(G)] - H. Since *H* is complete. Hence |H| is a $\gamma_{snsb} - set$. Suppose for some $v \in H$ such that $\{V[B(G)] - H\} \cup \{v\}$ is not minimal then *H* itself is a minimal $\gamma_{snsb} - set$. Hence $|H| \ge |D|$ which gives $\gamma_{snsb}(G) \ge \gamma(G)$.

For equality, suppose $G = P_p$ with $P \le 2$, $\gamma_{snsb}(G)$ does not exists. Hence we consider $G = P_p$ with $P \ge 3$. Suppose $G = P_p$ with $P \ge 3$. Let $G = P_p: \{v_1, v_2, v_3, \dots, v_p\}$ be a path with $P \ge 3$ then we consider a set $D = \{v_2, v_5, v_8, \dots, v_{p-n}\}$ such that $N(v_{p-n}) \cap N(v_{p-n-1}) = \emptyset$. Hence D be a γ -set of P_p . In $B(P_p), V[B(P_p)] = P - 1$, then we consider a set $K \subset V[B(P_p)]$ such that $V[B(P_p)] - K = M$ where each element in M is complete. Clearly |M| = |D| which gives $\gamma_{snsb}(P_p) = \gamma(P_p)$.

Theorem 4: For any (p, q) acyclic graph G and $B(G) \neq K_p$, then $\gamma_{snsb}(G) \ge i(G)$. Where i(G) is an independent domination number.

Proof: Let $m = \gamma_{snsb}(G)$ and let $D_{-1} = \{w_0, w_1, \dots, w_{u-1}\} \subseteq V$ be a dominating set. Also for any non empty $V' \subseteq V$ let a(V') denote the number of edges in the subgraph induced by V'. Clearly $0 \le a(D_{-1}) \le (2^m)$. If $a(D_{-1}) = 0$ then D_{-1} is an independent set and $i(G) \le m = \gamma_{snsb}(G)$. Therefore without loss of generality we may assume that $w_0w_1 \in E(G)$.

Now the set $N_0 = \{u \in V - D_{-1} | N(u) \cap D_{-1} | = \{w_0\}\}$ is not empty. Let u and w be any two distinct elements of N_0 and consider $\{w_0, w_1, \dots, u, w\} \subseteq V$. The subgraph induced by this set certainly contains $\{w_0, w_1, w_0, w_0, w\}$. By hypothesis $\{w_1, u, w_1, w, uw\} \cap E(G) \neq \emptyset$. But since $N(u) \cap D_{-1} = \{w_0\} = N(w) \cap D_{-1}$ it must be that $\in E(G)$. Now we see that any two distinct elements of $N_0 \cup \{w_0\}$ are adjacent. Take $u_0 \in N_0$ and consider $D_0 = \{u_0, w_1, \dots, w_{m-1}\}$. Let $Z \in V - D_0 = M \cup K$, where $M = (N_0 - \{u_0\}) \cup \{w_0\}$ and $K = V - (N_0 \cup D_{-1})$. If $Z \in M$ then $Z u_0 \in E(G)$ and if $Z \in K$ then $N(Z) \cap D_{-1} \supseteq \{w_i\}$, where $1 \le i \le m - 1$, which says $Zw_i \in E(G)$. Suppose D_0 is a block dominating set such that $|D_0| = m$. Now $N(u_0) \cap D_0 = \emptyset$ and hence $0 \le a(D_0) \le (2^m)$. Let $D_k = \{u_0, u_1, w_2, \dots, w_m\}, 1 \le k \le m$ such that $|D_k| \le m = \gamma_{snsb}(G)$. Hence D_k is an independent dominating set which is implies that D_k is a maximal independent set. Hence $i(G) \le |D_k| \le m = \gamma_{snsb}(G)$ and which gives $\gamma_{snsb}(G) \ge i(G)$.

Theorem 5: For any non trivial tree *T* with $C, C \ge 2$ cut vertices, if every non end vertex of a tree *T* is adjacent to at least one end vertex, then $\gamma_{snsb}(T) \ge C - 1$.

Proof: Let $F = \{v_1, v_2, v_3, \dots, v_m\} \subseteq V(T)$ be the set of all cut vertices in T with |F| = C. Further, $A = \{e_1, e_2, e_3, \dots, e_k\}$ be the set of edges which are incident with the vertices of F. Now by block graph, suppose $D = \{b_1, b_2, b_3, \dots, b_i\} \subseteq A$ be the set of vertices which covers all the vertices in B(T). Let $D' = \{b_1, b_2, b_3, \dots, b_m\}$ where m < i is a minimal dominating set of B(T) such that V[B(T)] - D' = N is a complete, then $|D'| = \gamma_{snsb}(T)$. Hence $|D'| \ge |F| - 1$ which gives $\gamma_{snsb}(T) \ge C - 1$.

Now we obtain an upper bounds of γ_{snsb} (G).

2. UPPER BOUNDS PROBLEMS FOR $\gamma_{snsb}(G)$:

Many upper bounds for γ_{snsb} (G) are established in the following theorems.

Theorem 6: For any (p, q) graph *G* and $B(G) \neq K_P$, then $\gamma_{snsb}(G) \leq P - \Delta(G)$.

Proof: Suppose $B(G) = K_P$. Then by definition $\gamma_{snsb} - set$ does not exist. Hence $B(G) \neq K_P$. Assume every block of *G* is an edge, let $A = \{B_1, B_2, B_3, \dots, B_n\}$ be the blocks of *G* and $M = \{b_1, b_2, b_3, \dots, b_n\}$ be the block vertices in B(G). Let $\{B_i\} \subset A$ such that each B_i is an non end block of *G*. Then $\{b_i\} \subseteq V[B(G)]$ which are vertices corresponding to the set $\{B_i\}$ since each block is complete in B(G).

Again we consider a subset $\{b_i^{'}\}$ such that $\{b_i^{'}\} \subset V[B(G)] - \{b_i\}$. Then $V[B(G)] - \{b_i^{'}\} = \{b_i\}$. If i = 1, then $\{b_i\}$ is a $\gamma_{snsb} - set$ of G. Otherwise if there exists i > 1 for $\{b_i\}$, we choose $\forall v_i \in N[b_i]$ such that $V[B(G)] - \{b_i^{'}\} \cup \{v_i\} = b_i$ gives for i > 1. Hence $\langle b_i \rangle$ is complete. Then $|V[B(G)] - \{b_i^{'}\} \cup \{v_i\}| = \gamma_{snsb}(G)$. Which gives $\gamma_{snsb}(G) \leq P - \Delta(G)$.

Theorem 7: If every non end vertex of a tree *T* is adjacent to at least one end vertex and $B(T) \neq K_P$, then $\gamma_{snsb}(T) \leq 2P - 2M(T) + 1$. Where M(T) is the number of end vertices in *T*.

Proof: Let $F = \{v_1, v_2, v_3, \dots, v_m\} \subseteq V(T)$ be the set of all end vertices in T with |F| = M. Further, $A = \{e_1, e_2, e_3, \dots, e_k\}$ be the set of edges which are incident with the vertices of $C \in N(F)$, where $C \subseteq V(T)$. In $B(T), \{A\} \subseteq V[B(T)]$ and each block of B(T) is complete. Suppose there exists a block B in B(T) with maximum vertices. Then $D' = V[B(T)] - \{B\}$ and $\forall v_i \in B$ is adjacent to at least one vertex of D'. Clearly D' is a $\gamma_{snsb} - set$ of T. Hence $|D'| \leq 2|V(T)| - 2|F| + 1$ gives $\gamma_{snsb}(T) \leq 2P - 2M(T) + 1$.

Theorem 8: For any (p, q) graph G with $B(G) \neq K_P$, then $\gamma_{snsb}(G) \leq \gamma_R(G) + \gamma_t(G) - 3$.

Proof: Let $f = (V_0, V_1, V_2)$ be any γ_R -function of G. Then V_2 is a γ - set of $H = G[V_0 \cup V_2]$ such that $|H| = \gamma_R(G)$. Let $S_1 = \{v_1, v_2, v_3, \dots, v_k\} \subseteq V(G)$ be the set of all non end vertices in G. Suppose $S_2 \subseteq S_1$ be the minimum set of vertices in G and if $\deg(v_i) \ge 1, \forall v_i \in S_2, 1 \le i \le n$ in the sub graph $\langle S_2 \rangle$. Then S_2 forms a total dominating set of G. Otherwise, if $\deg(v_i) < 1$, then attach the vertices $w_i \in N(v_i)$ to make $\deg(v_i) \ge 1$ such that $\langle S_2 \cup \{w_i\} >$ does not contain any isolated vertex. Clearly, $S_2 \cup \{w_i\}$ forms a minimal total dominating set of G such that $|S_2 \cup \{w_i\}| = \gamma_t(G)$.

Now we consider $\{b_1, b_2, b_3, \dots, b_n\}$ be the set of vertices of B(G) corresponding to the blocks $\{B_1, B_2, B_3, \dots, b_n\}$ of G. Let $D' = \{b_1, b_2, b_3, \dots, b_m\}$ where m < n is a minimal dominating set of B(G) such that V[B(G)] - D' = N is complete then

 $|D'| = \gamma_{snsb}(G). \text{ Hence } \gamma_{snsb}(G) = |D'| \le |H| \cup |S_2 \cup \{w_i\}| = \gamma_R(G) + \gamma_t(G) - 3 \text{ which gives } \gamma_{snsb}(G) \le \gamma_R(G) + \gamma_t(G) - 3.$

Theorem 9: For any (p, q) graph G with C number of cut vertices, then $\gamma_{snsb}(G) \leq \gamma(G) + \gamma'(G) + \left|\frac{c}{2}\right|$.

Proof: Suppose $B = \{B_1, B_2, B_3, \dots, B_n\}$ is the set of blocks in *G*. Then $\{B\} = V[B(G)]$. Let $A = \{B_1, B_2, B_3, \dots, B_i\}, 1 \le i \le n$ such that $A \subseteq B$ and $\forall b_i \in A$ are the non- end blocks in *G* which gives cut vertex in B(G). Also $C' = \{b_1, b_2, b_3, \dots, b_j\}, 1 \le j \le n$ be the set of end blocks in *G* and $C' \subseteq B$. Let $\{v_1, v_2, v_3, \dots, v_p\}$ be the set of vertices of *G* and $D = \{v_1, v_2, v_3, \dots, v_m\}$ where $m \le p$ be a dominating set of *G* such that $\gamma(G) = |D|$. Let *F* be minimal edge dominating set of *G*. Suppose E - F is not an edge dominating set. Then there exists an edge *f* such that $f \in F$ is adjacent to any edge in E - F. Since *G* has no isolated edges then *f* is dominated by at least one edge in $F - \{f\}$. Thus $F - \{f\}$ is edge dominating set, a contradiction to the minimality of *F*. Therefore *F* is edge dominating set. Such that $|F| = \gamma'(G)$.

Suppose $M = \{b_1, b_2, b_3, \dots, b_n\}$ be the set of vertices in B(G) corresponding to blocks in G. Let $M_1 = \{b_1, b_2, b_3, \dots, b_j\} \subseteq M$ where $1 \le j \le n$ be the set of all end vertices in B(G). Also $M_2 = \{b_1, b_2, b_3, \dots, b_i\} \subseteq M$, $1 \le i \le n$ be the set of all cut vertices in B(G). Further we consider a set $M_3 = \{b_1, b_2, b_3, \dots, b_s\}$, $1 \le s \le i$ such that $M_3 \subset M_2$. Now $\{V[B(G)] - (M_1 \cup M_3)\}$ which is complete which gives a strong non split block domination in B(G). Hence $|M_1 \cup M_3| = \gamma_{snsb}(G)$. Suppose in G every non end block has at least two blocks which are adjacent with different cut vertices and is denoted these cut vertices by a set C. Then by the definition of B(G) which gives $|D| + |F| + \left|\frac{C}{2}\right| \ge |M_1 \cup M_3|$. Hence $\gamma_{snsb}(G) \le \gamma(G) + \gamma'(G) + \left|\frac{C}{2}\right|$.

Theorem 10: For any (p,q) graph G with $B(G) \neq K_P$, then $\gamma_{ssb}(G) \leq \gamma_{snsb}(G)$.

Proof: Let $D = \{b_1, b_2, b_3, \dots, b_i\}$ be the set of cut vertices in B(G). Since each block in B(G) is complete and each cut vertex is incident with at least two blocks. Let D' = V[B(G)] - D and consider a set $D_1' \subseteq D'$ such that $V[B(G)] - \{D' \cup D_1'\} = S$ where $\forall b_i \in S$ is an isolates. Hence $|D' \cup D_1'| = \gamma_{ssb}(G)$. Now we consider a subset $\{b_i'\}$ such that $\{b_i'\} \subset V[B(G)] - \{b_i\}$. Then $V[B(G)] - \{b_i'\} = \{b_i\}$. If i = 1, then $\{b_i\}$ is a $\gamma_{snsb} - set$ of G. Otherwise if there exists i > 1 for $\{b_i\}$, we choose $\forall v_i \in N[b_i]$ such that $V[B(G)] - \{b_i'\} \cup \{v_i\} = b_i$ gives for i > 1. Hence $\langle b_i > i$ is complete. Then $|V[B(G)] - \{b_i'\} \cup \{v_i\}| = \gamma_{snsb}(G)$. Which gives $\gamma_{ssb}(G) \leq \gamma_{snsb}(G)$.

Further we developed our concept by comparing other different domination parameters.

Theorem 11: For any connected (p,q) graph G and $B(G) \neq K_P$, then $\gamma_{snsb}(G) + \gamma_c(G) \ge P + \gamma(G) - \Delta(G)$.

Proof: Let $V(G) = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of vertices in *G*. Suppose there exists a minimal set of vertices $S = \{v_1, v_2, v_3, \dots, v_k\} \subseteq V(G)$ such that $N[v_i] = V(G)$, $\forall v_i \in S, 1 \le i \le k$. Then *S* forms a minimal dominating set of *G*. Further, if the sub graph $\langle S \rangle$ has exactly one component, then *S* is itself is a connected dominating set of *G*. Suppose *S* has more than one component, then attach the minimal set of vertices S' of V(G) - S, which are every in u - w path, $\forall u, w \in S$ gives a single component $S_1 = S \cup S'$. Clearly, S_1 forms a minimal $\gamma_c - set$ of *G*.

Let $F = \{b_1, b_2, b_3, \dots, b_m\}$ be the set of vertices corresponding to the blocks of *G*. Suppose there exists a set of vertices $D' = \{b_1, b_2, b_3, \dots, b_p\} \subseteq V[B(G)] - D$, where $D \subseteq F$ such that $\langle D' \rangle$ is complete. Since for any graph *G*, there exists at least one vertex $v \in V(G)$ with deg $(v) = \Delta(G)$, it follows that $|D'| \cup |S_1| \ge |V(G)| \cup |S| - \Delta(G)$. Hence $\gamma_{snsb}(G) + \gamma_c(G) \ge P + \gamma(G) - \Delta(G)$.

Theorem 12: For any connected (p, q) graph G and $B(G) \neq K_P$, then $\gamma_{snsb}(G) + 2\gamma_c(G) \ge \alpha_o(G) + \beta_o(G) + 1$.

Proof: Let $A = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the set of all end vertices in G and $V_1 = V(G) - A$. Suppose there exists set of vertices $C \subseteq V_1$ such that $N(u) \cap N(w) \neq \emptyset$, $\forall u, w \in C$. Further $N(x) \cap N(y) \neq \emptyset$, $\forall x \in A, y \in C$. Then $C \cup A$ forms a maximal independent set of vertices. If $A = \emptyset$, then C itself forms a maximal independent set of vertices in G. Let $B = \{v_1, v_2, v_3, \dots, v_k\} \subseteq V_1$ be the set of vertices with $dist(v_i, v_j) \ge 2, 1 \le i \le j \le k, \forall v_i, v_j \in B$, covers all edges in G. Clearly, B forms a vertex covering set. Suppose the set $C \cup A$ covers all the vertices in G and if the sub graph $\langle V(G) - C \cup A \rangle$ does not contain any isolated vertex. Then $C \cup A$ itself connected dominating set of G. Otherwise, if there exists a vertex $v \in V(G) - \{C \cup A\}$ with deg(v) = 0 in the sub graph $\langle V(G) - \{C \cup A\} \rangle$. Then $C \cup A \cup \{v\}$ forms a minimal $\gamma_c - set$ of G. Further if $A = \emptyset$, then $\langle V(G) - C \rangle$ gives a connected dominating set of G. Now in B(G), let $F = \{B_1, B_2, B_3, \dots, B_m\} \subseteq V[B(G)]$ be the set of vertices corresponding to the blocks of G. Suppose $D = \{v_1, v_2, v_3, \dots, v_k\} \subseteq F$ be the set of vertices such that $N(u_i) = V[B(G)], \forall u_i \in D, 1 \le i \le k \text{ and } \langle V[B(G)] - D \rangle$ is complete. Now $|D| \cup 2|C \cup A \cup \{v\}| \ge |B| \cup |C| + 1$ and hence $\gamma_{snsb}(G) + 2\gamma_c(G) \ge \alpha_o(G) + \beta_o(G) + 1$.

Theorem 13: For any connected (p, q) graph G and $B(G) \neq K_P$, then $\gamma_{snsb}(G) + \gamma(G) \leq P + \gamma_c(G) - 2$.

Proof: Let $V'_1 = \{v_1, v_2, v_3, \dots, v_i\} \subseteq V_1(G)$ be the set of all non end vertices in *G*. Suppose there exists a minimal set of vertices $V'' = \{v_1, v_2, v_3, \dots, v_j\} \subseteq V'_1$ such that $N[v_k] = V_1(G)$, $\forall v_k \in V''$, $1 \le k \le n$. Then V'' forms a minimal dominating set of *G*. Further, if the sub graph $\langle V'' \rangle$ has exactly one component, then V'' is itself is a connected dominating set of *G*. Suppose V'' has more than one component, then attach the minimal set of vertices V_1'' of $V_1 - V''$, which are every in u - w path, $\forall u, w \in V''$ gives a single component $V_2 = V'' \cup V_1'''$. Clearly, V_2 forms a minimal $\gamma_c - set$ of *G*. Let $D = \{b_1, b_2, b_3, \dots, b_m\}$ be the set of vertices corresponding to the block which are incident with the vertices of V'' in *G*. Suppose there exists a set of vertices $D' = \{b_1, b_2, b_3, \dots, b_m\}$ be V[B(G)] - D'', where $D'' \subseteq D$ such that $\langle D' \rangle$ is complete, which gives a $\gamma_{snsb} - set$ in B(G). it follows that $|D'| \cup |V''| \leq |V_1(G)| \cup |V_2| - 2$. Hence $\gamma_{snsb}(G) + \gamma(G) \leq P + \gamma_c(G) - 2$.

Theorem 14: For any non trivial tree *T* with *n*-blocks and $B(T) \neq K_P$, then $\gamma_{snsb}(T) + \gamma(T) \leq n(T) + \Delta(T)$.

Proof: Suppose $B = \{b_1, b_2, b_3, \dots, b_n\}$ is the set of blocks in *T*. Then $\{B\} = V[B(T)]$. Let $A = \{b_1, b_2, b_3, \dots, b_i\}, 1 \le i \le n$ such that $A \subseteq B$ and $\forall b_i \in A$ are the non- end blocks in *T* which gives cut vertex in B(T). Also $C = \{b_1, b_2, b_3, \dots, b_j\}, 1 \le j \le n$ be the set of end blocks in *T* and $C \subseteq B$. Let $\{v_1, v_2, v_3, \dots, v_p\}$ be the set of vertices of *T* and $D = \{v_1, v_2, v_3, \dots, v_m\}$ where $1 \le m \le p$ be a dominating set of *T* such that $\gamma(T) = |D|$. Now we consider $A' \subset A$ and $C' \subset C$. Since $\{A\} \cup \{C\} = V[B(T)]$ then $V[B(T)] - \{A'\} \cup \{C'\} = \{K\}$ is complete. Hence $|A'| \cup |C'| = \gamma_{snsb}(T)$. For any graph *T*, there exists at least one vertex $v \in V(T)$ with deg $(v) = \Delta(T)$. Clearly $|A'| \cup |C'| + |D| \le |A| \cup |C| + \Delta(T)$ which gives $\gamma_{snsb}(T) + \gamma(T) \le n(T) + \Delta(T)$.

Theorem 15: If $\{v_i\}$ be the set of all end vertices in B(G), then $\{v_i\}$ is in every $\gamma_{snsb} - set$.

Proof: Suppose *D* be a block dominating set in B(G). Let $D' = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V[B(G)] - D$ be the set of vertices which covers all the vertices in B(G). Clearly, D' forms an $\gamma_{snsb} - set$. Now assume $\{v_i\} \notin D'$, and consider the vertices $\{u_i, w_i\} \notin D'$. Then clearly, v_i is in every $u_i - w_i$ path in B(G). Since $B(G) - \{v_i\}$ has exactly one component, it follows that the set $D_1' = (D' - \{u_i, w_i\}) \cup \{v_i\}$ is also a block dominating set. Clearly, $|D_1'| = |D'| = 1$, a contradiction to the fact that D' is a $\gamma_{snsb} - set$. Hence $\{v_i\} \notin D'$.

Theorem 16: If v be an end vertex of B(G), then v is in every strong non split block dominating set of B(G).

Proof: Let $D = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V[B(G)]$ be the minimal block dominating set of B(G). Suppose there exists a vertex set $D' \subseteq V[B(G)] - D$ be the $\gamma_{snsb} - set$ of B(G), assume there exists an end vertex $v \in V[B(G)]$, $v \notin D'$. Now consider any two vertex u and w such that $u, w \notin D'$. Since $v \notin D', v$ is in every u - w path in B(G) further, since $\deg(v) = 1$, where $v \in V[B(G)]$ it follows that the set $D'' = \{D' - \{u, w\}\} \cup \{v\}$ is also a minimal block dominating set of B(G). Clearly, |D''| = |D'| = 1, a contradiction to the fact that D' is also a $\gamma_{snsb} - set$ of B(G). Hence, $v \in D'$ and v is in every $\gamma_{snsb} - set$ of B(G).

3. References

- [1] Anwar Alwardi and N.D.Soner, Equitable edge Domination in graphs, BIMVI, 3(2013) 7-13.
- [2] E.J.Cockayne, P.A.Dreyer. Jr,S.M.Hedetiniemi and S.T.Hedetiniemi, Roman domination in graphs, Discrete maths,278(2004),11-22.
- [3] F.Harary, graph Theory, Adison Wesley, Reading mass, (1972).
- [4] M.H.Muddebihal et.al. strong split lict domination of a graph, IJESR, 2(2014) 187-198.
- [5] Robert B.ALLAN and Renu Laskar, on domination and independent domination number of a graph, Discrete Mathematics, 23(1978) 73-76.
- [6] T.W.Haynes, S.T.Hedetiniemi and P.J.Slater, Fundamentals of domination in graphs. Marcel-Dekker, Inc. (1997).