
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4845 - 4848

4845
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Formal Methods for the Verification of Safety Critical Applications using SPIN

Model Checker

Neha Chopra

M. Tech*

BMSCE

Sri Mukatsar Sahib, Punjab

chopra.ecb@gmail.com

Er. Lovnish Bansal

Assistant Professor

BMSCE

Sri Mukatsar Sahib, Punjab

lovnish_bansal@rediffmail.com

Abstract— Security over the years has been a major concern for the organizations and companies. With the emergence of smart

cards, industry has become more interested in methodologies which are used to establish the correctness and security of the

applications developed with the acceptance of the use of smart cards in such domains. This paper provides a general introduction

to the state-of-the-art of formal methods for the development of safety-critical systems. The idea is to combine two program

verification approaches: the functional verification at the source code level and the verification of high level properties on a

formal model built from the program and its specification. One of the important security systems in building security is door

access control. The door access control is a physical security that assures the security of a building by limiting access to the

building to specific people and by keeping records of such entries. In this paper we employ a model checking method to verify the

functional aspects of the smartcard operated door lock system which authenticates each person entering the building. PROMELA

model for the proposed system Is presented.

Keywords—formal methods, formal specification, formal verification, Promela, SPIN.

__*****___

I. INTRODUCTION

 Over the years, several security measures have been employed to

combat the menace of insecurity of lives and property. This is done by

preventing unauthorized entrance into buildings through entrance

doors using conventional and electronic locks, discrete access code,

and biometric methods such as the finger prints, thumb prints, the iris

and facial recognition [1]. In this paper, a prototype door security

system is designed to allow a privileged user to access a secure

keyless door where valid smart card authentication guarantees an

entry. This task is accomplished using a well-founded technique of

Software Engineering, called Formal Methods. In software

engineering, formal methods are mathematically based techniques and

tools for the synthesis (i.e. development) and analysis of software

systems. Formal methods can be applied at various points through the

software development cycle. Formal methods can also be used in

reverse engineering to model and analysis existing systems. This

paper will focus on formal methods for the specification of functional

requirements and design, and for validation/verification which are the

most common forms of use of formal methods. The use of formal

methods is motivated by the expectation that, as in other engineering

disciplines, performing appropriate mathematical modeling and

analysis can contribute to the correctness of the resulting product.

However, it should be noted that the use of formal methods does not

miraculously guarantee correctness, but can be used to increase the

level of correctness. Using formal methods in the specification and

design phases implies not only that more flaws are found, but also that

they are found already in these earlier phases rather than in the testing

or maintenance phases. This is also important factor as the cost of

repairing flaws is much higher in the later phases than in the earlier

phases, e.g. the investigation reported in. Formal methods are usually

only used in the development of safety, business, and mission critical

software where the cost of faults is high.

 In this paper we have given the system (smartcard operated door

lock model) description in section 2. In section 3 we discussed about

the methodology used to specify as well as to verify the model.

Section 4 deal gives the experimental and section 5 we have

conclusion of the given study.

II. SYSTEM DESCRIPTION

In this paper it is proposed to construct a simple model to represent a

building fitted with a card operated access system is given. For this

purpose we have defined the processes required to model the door

lock, card readers and users. After that we have combined these

processes to create a simulation of a building with a single room

accessed through a single door with a card operated lock and a card

reader on each side.

Explanation of how the location of each user is represented is given in

this model. Simulation takes place in this model using SPIN and

shown that when authorized users show their card to a reader, the door

opens enabling them to pass through, but the door will not open for

unauthorized users. Simulation also illustrates how the locations of

users get updated as a result of users passing through doors.

A client server kind of architecture is represented for the above stated

problem. Figure 1 shows the abstraction of the model. Here the

card reader process will be client and there will be a common server.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4845 - 4848

4846
IJRITCC | July 2015, Available @ http://www.ijritcc.org

A global channel will be used by the card readers to communicate

with the server. The server will respond to each card reader on a

private exclusive channel which will be passed by the card reader to

the server at the time of request.

Fig. 1 Design abstraction of doorlock system

Zone 1 & 2 represent the two valid zones in the system. Authorized

users can move in and out from zone1 to zone 2.

Figure 2: Environment model

We will revise and extend our model with the increased number of

doors and zones to represent the building and permissions of inwards

and outwards conditions respectively.

III. PROPOSED METHODOLOGY

Our work focuses on verified software implementations and especially

on implementations of communication protocols. We extend the

PROMELA/SPIN system (one formal description technique) in a way

that makes it possible to create compiled implementations of provable

correct specifications. The formal description techniques (FDT’s) are

a technique that can be used by designers of software to ameliorate the

quality of their products. Those techniques were initially developed

for and are mainly used in the world of telecommunications, but they

are getting more and more important for other fields of engineering,

like avionics, nuclear power control, medicine, railway control,

automotive etc. Figure 3 shows the process of Software Development

using Formal Description Techniques [2].

Figure: 3 Software Development using Formal Description

Techniques [6]

FORMAL SPECIFICATION

A specification is a description of a product (either to be build or

existing). Specifications are used in many different engineering

disciplines including software engineering. Formal specifications are,

used in the analysis and design phases of the software development

cycle to record requirements and design decisions, respectively [2].

They can be used as contracts or communication media between

customer and developers, and between developers. To specify our

model we have PROMELA modeling language.

Promela is the language for the specification of concurrent systems.

Such systems consist of a finite number of separate components,

which act independently one from another, and interact through the

exchange of messages over message channels [3].

FORMAL VERIFICATION

A classical approach of formal verification consists in building a

model of the system in a formal framework, for instance a theorem

proven language, and target properties are proved to be satisfied by

this model [7]. This approach can be found for instance in industrial

domains, when formal methods are used to increase the security level

of products. A model of a given sensitive system is usually built from

the system requirements specification. Security policies can then be

translated into security properties and proved in the same formal

framework. In this approach, the implementation is generally

developed in parallel with the verification process. Therefore the main

problem is to justify the link between the verified model and the

implementation. This correctness of the model with respect to the

source code is mandatory to claim that the code verifies the target

properties. A usual way to strengthen this link is to refine the high

level model in lower level models, until a low level model whose link

with the code is as straight forward as possible, in terms of data

structures and functions [4]. The links between two levels are proved

using an abstraction property. There are two major state-of-the-art

approaches to formal verification: theorem proving and model

checking.

SPIN is a generic model checking tool that supports the design and

verification of asynchronous process systems. SPIN verification

models are focused on proving the correctness of process interactions,

and they attempt to abstract as much as possible from internal

sequential computations. Process interactions can be specified in

SPIN with rendezvous primitives, with asynchronous message passing

through buffered channels, through access to shared variables, or with

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4845 - 4848

4847
IJRITCC | July 2015, Available @ http://www.ijritcc.org

any combination of these. In focusing on synchronous control in

software systems, rather than synchronous control in hardware

systems [6].

Fig. 2 Basic structure of SPIN [6]

IV. RESULTS OF SPIN SIMULATION

 Operations on the card operated door lock system are now examined

with SPIN simulator. SPIN is a software tool for analyzing the logical

consistency of concurrent and distributed systems. The results

obtained with the two defined models clearly demonstrate that partial-

order reduction approach can significantly give the results for the state

vectors and memory uses when we perform the operations to detect

authorized as well as for unauthorized users entering in a building

either inbound or outbound directions.

SPIN PARAMETERS USED FOR SIMULATION

S.No. Name of parameter value

1.

Safety

(i) Invalid endstate (Deadlock) +

(ii) Assertion Violation +

2. Storage Mode Exhaustive

3.

Search Mode

Depth First

Search(Partial

Order

Reduction)

4. Cycle checkes -

5. Never Claim -

SIMULATION RESULTS

Table 1 shows the results of state vector for both the models. SPIN

checks for the state of the process by reading the bytes in sate vector

global variable. For task 1 it consumed 60 bytes and for task 2 it took

120 bytes since task 2 scales the model with 4 doors at a time.

Name of the Property Task 1 Task 2

State Vector 60 byte 120 byte

Depth Reached 21 76

State Stored 11 46

States Matched 1 45

Total Transactions

(Stored + matched)

12 91

Atomic Steps 6 52

Hash Conflicts 0(Resolved) 0(Resolved)

Table 2 shows the results of memory usage for both the models.

Name of the Property Task 1

(in MB)

Task 2 (in

MB)

equivalent memory usage for

states (stored*(State-vector +

overhead))

0.001 0.006

Memory used for hash table 0.125 0.125

Actual memory usage for states 0.287 0.287

memory used for DFS stack 0.343 0.343

total actual memory usage 0.758 0.761

The result shown above states that the model derived using promela is

successfully implemented through spin simulator. Spin converted the

whole promela code into c and performed various security properties

on that code and gives the best possible values for the permission of

accessing the door by an authorized user.

VI. CONCLUSION

With so much usage of smart card applications the security parameters

of these assets becomes a mandatory step. To build a system with very

high level specifications written in relational calculus or algebraic

notations construct as well as to analyze and to prove correctness

properties in those type of systems developed is useful but is still

expensive, as it requires experts. Moreover, a formal link between the

models and the actual system implementation is lacking. To

accomplish the purpose we have used the well founded technique of

software engineering known as formal methods. In these methods we

performed two basic operations called formal specification and then

verification of those specifications using SPIN model checker. The

main focus of the developers is then to build tools generating secure

code from verified high level models. The method which we have

proposed here allows providing a formal verification at source code

level.

In this paper we have introduced a model checking approach to verify

a smart card operated door lock system. Firstly we analyzed the

general specifications of the system including authentication protocol,

the processes that can be the participants of the model and the

message floe between those processes. Then we proposed the

particular specifications for the model and coded them into

PROMELA code and then did some experiments which can prove that

the model specified by me can simulate actual authentication process.

We have provided the verification results.

FUTURE WORK

Our approach can be easily extended to verify the system using some

other verification tools and then compare the results of both

verification methods. Also some comparison can be made between

Model Checking approach and Theoram proving Approach of

Verification.

REFERENCES

[1] Oke, A.O., O.M. Olaniyi, O.T. Arulogun, and O.M.

Olaniyan (2009): “Development of a Microcontroller -

Controlled Security Door System”. Pacific Journal of

Science and Technology. 10(2):398-403.

[2] Anne E. Haxthausen and Jan Peleska. Formal Development

and Verification of a Distributed Railway Control System.

IEEE Trans- action on Software Engineering, 26(8):687–

701, 2000..

[3] G.,]. Holzmann. Design and Validation of Protocols.

Prentice-Hall, 1990.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4845 - 4848

4848
IJRITCC | July 2015, Available @ http://www.ijritcc.org

[4] Dines Bjørner. New Results and Current Trends in Formal

Techniques for the Development of Software for

Transportation Systems. In Proceedings of the Symposium

on Formal Methods for Railway Operation and Control

Systems (FORMS’2003), Budapest/Hungary. L’Harmattan

Hongrie, May 15-16 2003.

[5] J. Andronick, B. Chetali, and O. Ly. Using Coq to Verify

Java ard Applet Isolation Properties. In International

Conference on Theorem Proving in Higher Order Logics

(TPHOLs’03), volume 2758 of LNCS, pages 335–351.

Springer-Verlag, September 2003.

[6] G.J. Holzmann, “State Compression in SPIN: Recursive

Indexing and Compression Training Runs,” Proc. Third

SPIN Workshop, Twente Univ., R. Langerak, ed., The

Netherlands, Apr. 1997.

[7] S. Gerhart, D. Craigen, and T. Ralston. Observations

on industrial practice using formal methods. In

Proceedings of the 15th Inter- national Conference on

Software Engineering, pages 24–34. IEEE Computer

Society Press, April 1993.

[8] Anne E. Haxthausen, Marie Le Bliguet, and Andreas A.

Kjær. Modelling and Verification of Relay Interlocking

Systems. In Christine Choppy and Oleg Sokolsky, editors,

15th Monterey Workshop: Foundations of Computer

Software, Future Trends and Techniques for development,

number 6028 in Lecture Notes in Computer Science.

Springer, 2010. Invited paper.

[9] Anne E. Haxthausen and Jan Peleska. Formal Development

and Verification of a Distributed Railway Control System.

IEEE Trans action on Software Engineering, 26(8):687–

701, 2000.

http://www.ijritcc.org/

