
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4742- 4746

4742
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Dynamic Load Balancing and Self-load Migration with Delay Queue in DVE

Mr. Kundan B.Pagar
Department Of Computer Engineering

G. H. Raisoni College of Engineering and

Management Wagholi, Pune, India

kundanpagar@gmail.com

Prof. Sachin Patil
Department Of Computer Engineering

G. H. Raisoni College of Engineering and

Management Wagholi, Pune, India

sachin.3400@gmail.com

Abstract—Distributed Virtual environments are gaining a lot of attention recently, due to the ever improving popularity of on the internet and
social networking sites. As the variety of contingency users of a distributed virtual environment increases the critical issue is coming up, the

issue describes as improving amount of work between several web servers how can be balanced to maintain real-time efficiency. The variety of

load balancing methods has been suggested recently but they either try to produce high quality load balancing outcomes and become too slow or

highlight on efficiency and the load balancing outcomes become less effective. In this perform, the new approach is suggested to address this
issue based on the Front load balancer. The heat diffusion methods is used to develop a load balancing system after that the front load balancer

will create improvements in the Dynamic load balancing of the several web servers with Delay queue. The numbers of tests are performed to

evaluate the efficiency of the suggested technique. The trial outcomes show that the suggested technique works effectively in reducing server

over-loading while at the same time being efficient.

Keywords- Dynamic Load Balancing, Heat Diffusion Algorithms, Communication Latency, Distributed Virtual Environments

__*****___

I. INTRODUCTION

In a distributed virtual environment lots of customers with

access to the Internet are discovering a place of interest

without having to go there. Or get involved in some activities

with some other customers from different geometric places.

Programs for distributed virtual environment techniques

include multi-player free internet games, Social media, army

and commercial remote training. One popular strategy is to

deal with the problem of multi-server assistance is to divided

the load to several web servers by dividing the virtual

environment into several areas, with each area being provided

by a single server. This dividing procedure is handled as fixed

procedure. The advantages of this static load balancing

strategy are that it is simple and the speed of the dividing

procedure does not impact the performance of the distributed

virtual environment But, when the customers of a distributed

virtual environment program move around inside the exclusive

environment, some areas may have too many customers due to

some application goals while others may have too few

customers. As a result, the web servers providing the

populated area will become bombarded and the customers

being provided may suffer from significant delay, while other

server may be under used. To deal with the above restriction, a

different strategy is to perform the load balancing procedure

dynamically during playback However, an important need of

distributed virtual environment is entertaining reaction. This

means that the computational cost of the load balancing

procedure should be as light as possible in order not to impact

the interaction of the distributed virtual environment program.

In this work we examine the potency of applying the balancing

plan for load balancing and to reduce the system latency in

allocated exclusive surroundings. The Heat diffusion strategy

will be used to develop load balancing of distributed virtual

environment .

II. RELATED WORK

Keep your text and Instead of splitting the users, a different

strategy is to split the categories into fixed areas, with each

area provided by one server however, when a huge number of

user move into the same area. The server providing the area

can still be bombarded. An enhanced strategy to this problem

is to dynamically subdivide the game scene into areas. With

each area provided by one server. Currently, there are two

main direction of research, global load balancing and local

load balancing.

 In [5], a global load balancing technique is suggested. It

models the lots of the allocated exclusive surroundings as a

chart, with each node comprising a user and each age

comprising the interaction cost between two nearby nodes.

The load balancing problem becomes finding the best way to

partition the chart into areas to be managed by different web

servers. Although this approach may produced the best

partition, it is NP complete, including handling all the nodes in

the allocated exclusive surroundings. As such, it is very costly

and difficult to meet the real-time need of allocated exclusive

surroundings. [9] Suggests a global load balancing technique

that uses a tracking server to keep check of the load produced

by each of the customers and hence the quantity of lots of each

server. It reassigns the customers to different web servers in

order to redistribute the load s among the web servers.

However, this tracking server may possibly become a center of

failing. In addition, As the load balancing process is conducted

slightly by this tracking server, it may actually take longer for

an bombarded server to start redistributing the extreme plenty.

 In [7], a load balancing technique is suggested. It separates

the DVE into areas, each provided by a server. When a server

is bombarded, it only connections its next door neighbor

server to determine suitable server for load redistribution.

mailto:Indiakundanpagar@gmail.com
mailto:Indiakundanpagar@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4742- 4746

4743
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Results from the paper show that this technique is very

effective. However, since the bombarded server amount not

have the load position of all web servers, the load balancing

process may only be regarded as a temporary one and the

server may quickly become bombarded again. In [10,11], a

technique is suggested to improve [7] to include additional

web servers for load redistribution. An bombarded server will

first look at its next door neighbor web servers to see if it may

transfer all its extra load to its others who live nearby. If not, it

will consider the next door neighbor web servers of the

available nearby web servers and so on.

 Limited factor analysis research encounters identical issues to

ours in that they need to dynamically subdivide a capable for

handling and analysis. However as their involved is more on

the quality of the community, they generally make use of

global information to enhanced the dividing [12]. Hence their

techniques are generally to slowly for our objective.

III. PROPOSED SYSTEM

Problem Definition: Dynamic balancing of http requests for

configurable number of servers. Make application servers

capable of migrating load and avoid loss of requests by

introducing Request Delay Queue.

Proposed Solution: All incoming http request will be handled

by front load balancer and will be distributed to back web

servers for further processing .Front controller will also

consider different capabilities of every web server. Making

web servers capable of themselves of migrating load to his less

loaded neighbour. This will allow servers to be utilized to their

high capacity. Request delay queue will be introduced when

all the servers are fully loaded. It will buffer the incoming

requests to process further. Scheduler will schedule the

buffered requests for further process.

Request Delay Queue: Time may come, when capabilities of

servers are less or total number of available servers are less to

fulfil the current load on system. At such situations, when all

servers will be over loaded, coming requests will be discarded

because of lack of resources. Request Delay Queue(RDQ) is

Introduced for such overloaded situations. When all the

servers are overloaded, coming requests will be buffered in

RDQ. Capacity of this buffer can be modified by attaching

more resources to it.

Queue Scheduler: This scheduler has access to the RDQ,

scheduler has contract of data exchange with load accountant.

As load is subsequently average, scheduler pops requests from

RDQ and processes it. This avoids loss of requests on very

high load situations.

A. The Load Balancing Algorithm

This load balancing criteria is based on the centralized

approach. So, to come up with the problem, server chart is

constructed for the distributed exclusive atmosphere program

as G= (S: E), where S represents the set of web servers in the

DVE program and E represents the set of sides with each edge

connecting two web servers handling the two nearby

categories.

Fig. 1. A server graph with 9 nodes representing 9 partitions.

Edge represents the adjacency among the partitions.

B. The Heat Diffusion Algorithm

The main idea of the heat diffusion algorithm is that given

server graph, each node sends some load to its next nodes in

each time. The amount to transfer to an next node is

proportional to the change between the load of the present

node and that of the next node. This process may take a

number of iterations in order to nearly balance the load of each

node. This load migration process is similar to heat diffusion

process, which is governed by the heat equation:

+)

Where, u (x: y: t) is a temperature function that describes the

variation of temperature across special location (x : y) at time

t, and a is the thermal conductivity. The heat equation is used

to determine the change in the temperature function over time

as heat spreads throughout space.

C. The Global Heat Diffusion Algorithm

It has two key stages : global migration planning and local

load transfer. In the global migration planning, the middle

server, which has the global knowledge of all the servers,

determines the amount of load for each node to transfer to

each of its next nodes through the equivalent edge. This stage

typically involves a number of iteration of prospective flow

computation. In the local load transfer, each server carries out

the load transfer locally. We are trying to develop the

following mathematical equation. The load balancing problem

can be define as how to find out the balancing flow along each

edge. For convenience, we assume that all servers have the

same processing performance. The balancing flow can then be

formulated as follows: Where l is the is the average load over

all nodes represents the summation of the balancing flows

between Si and each of its adjacent nodes Sj.

Global Migration Planning:

 = li - ∑j λi→j

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4742- 4746

4744
IJRITCC | July 2015, Available @ http://www.ijritcc.org

At this level, a main server will compute the amount of load to

be moved through each edge in the server chart based on the

load information of all the servers. After finishing the global

scheduling level, the main server will inform each server in the

server chart the accumulated potential flow for each of its

adjacent edges.

Local Load Transfer:

It is to transfer load between adjacent servers based on the

amount indicated by the balancing flows. This process is

carried out in a distributed way by each local server that

manages a partition.

A. DYNAMIC LOAD BALANCING SCHEME

Now , we will see the balancing plan strategy for the powerful

load balancing which we are applying in the distributed

exclusive environment, the balancing plan strategy will

improve the efficiency of load balancing and reduced the

network latency in the distributed exclusive environment The

balancing scheme divides the balancing process in three

interdependent sequential phases:

1) Monitoring Phase: A group manager request information

from its set of local management agents and sub-group

manager and accesses third party tool. Each local management

agent, as well as each subgroup manager, forwards

information regarding the communication actions of

simulation federates. The third party tool is accessed to collect

information concerning the load of the shared resources that a

group manager is responsible for managing. At the end of the

process, a group manager emits migration calls, which are

forwarded to the respective local management agent.

2) Reallocation Phase: After an ordered list of communicative

federates is selected, a repartitioning is performed to search for

the most appropriate destination resources for such a federates.

This federates are reallocated by evaluating them according to

the redistribution procedure. This repartitioning of federates is

performed with the objective of precisely determining

migration moves to destination resources that can benefits

simulation performance by decreasing the communication

latencies.

3) Migration Phase: In a migration procedure a manager

releases a migration manager remotely, suspends a federates

execution, regenerates its state, and coordinate the required

data transactions. The migration manager also triggers a

migration proxy to support the federates migration when the

destination resource of a migration call is inaccessible by the

manager, so a peer - to - peer data exchange cannot be

realized. The migration proxy acts as an advanced migration

aspect that has the roll of forwarding the data to a migrating

federate.

B. SYSTEM ARCHITECTURE

The system architecture comprises three basic concepts,

Which are as follows : 1)Central Server, 2) Local Server, 3)

Local Management Agents. These three will implemented by

using heat diffusion algorithm and dynamic load balancing

scheme. The central server will monitor the all the phases of

system. The local servers of system will the servers who

directly interact with the users and they are the servers whose

load balancing will be done using balancing scheme and

ultimately it will result in the latency reduction. The local

management agents are called as LMAs. It will incorporate all

the data structures of improved system. All the phases will

execute in this agents. A repartitioning is performed to search

for the most suitable destination resources for such federates.

These federates are reallocated by analysing them in

accordance to the redistribution method described in

Algorithm1

Fig. 2. System architecture for improved system

Figure 2: System architecture for improved system In the

algorithm 2 the resource candidate is not able to receive a

federates for migration, the next ring in the structure is

selected, consequently identifying the resource with the least

load. The same comparisons are consecutively applied to

determine a migration move for the communicative federates.

IV. ALGORITHM AND MATHEMATICAL MODEL

Mathematical model of system is as follow:

𝑙 = 𝑙𝑖 −∑ 𝑗 𝜆𝑖 →𝑗

 Where,

 𝑙 = is the average load over all nodes,

 ∑𝑗 𝜆𝑖 →𝑗 = represents the summation of the balancing flows

between 𝑆𝑖 and each of its adjacent nodes 𝑆𝑗 .
 𝑆𝑖 = { 𝑆1, 𝑆2, 𝑆3, … . 𝑆𝑖} are local servers.

 𝑆𝑗 = { 𝑆1, 𝑆2, 𝑆3, … . 𝑆𝑗 } are local servers

Information Measures:

To consider the communication delay,

Where,

𝑙𝑖 ′ 𝑡 = The load of server 𝑆𝑖measured by 𝑆𝑖 itself locally at

time t

𝑙𝑖 = The load status of 𝑆𝑖available at the central server at time t

Δ𝑡𝑖 = Time to reach load status to servers.

𝑙𝑖 ′ 𝑡 = 𝑙𝑖(𝑡 − Δ𝑡𝑖)

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4742- 4746

4745
IJRITCC | July 2015, Available @ http://www.ijritcc.org

The above formula calculates the load on local server at time

„t‟ by measuring the difference between load at time „t‟ and

Δ𝑡𝑖

The load variation of 𝑆𝑖 between these two time moments,

Δ𝑙𝑖 𝑡 − Δ𝑡𝑖 , 𝑡 + Δ𝑡𝑖 = 𝑙𝑖 𝑡 + Δ𝑡𝑖) − 𝑙𝑖(𝑡 – Δ𝑡𝑖)
The formula calculates the load variation at local server by

measuring the load status received at two time moments

Due to the communication delay, the balancing flow received

by 𝑆𝑖 ,

𝜆‟𝑖 →𝑗 (𝑡) = 𝜆𝑖 →𝑗 (𝑡 − Δ𝑡𝑖)
The formula calculates the balancing flow at time „t‟ by

measuring the balancing flow at two different time moments.

A. Algorithm 1:

Communication Redistribution Algorithm Require:

current loads, spec loads,federates loads, path distances

order(federates_loads)

cmean <= calc_mean(federates_loads)

cstd <= calc_STD(locservrs_loads, cmean)

comm_federates <=

find_comm(locservrs_loads,mean, std)

for all locservers IN comm_locservrs do

while !resource_found and path distances(next)

do

ring <= get_closest_ring(path_distances,RTI)

resource <= least_load_resource(ring)

If !overloaded(resource.load)then

migration_move.add(locservrs, resource)

resource_found <= TRUE

end if

end while

end for return migration_moves.

The procedure of looking for a resource candidate in the range

rings continues while the destination resource is not found or

the communication latency of a ring is not higher than the

latency of the resource where the federate is running. The stop

condition of the algorithm determines that any communication

progress cannot be reached since the scenario of the federates

cannot be improved in a given load configuration of the

distributed system.

V. IMPLEMENTATION:

The hardware requirements are a simulator in java to

model a multi-server distributed virtual system for evaluations,

All the algorithms are also written in java. We will conduct a

number of experiments to verify the effectiveness of the

proposed methods. All the experiments will be conducted on a

PC with an Intel Core i3v2.80GHZ and 2GB RAM. The

software requirements are a simulator in java to model a multi

server distributed virtual system for evaluations. All the

algorithms are also written in java. So, JDK environment is

required, Also we will need Eclipse java framework for the

developments of java server programs.

VI. PROPOSED RESULTS:

 We will conduct two set of experiments to compute the

performance of our system. These two experiments are as

follows 1)Ratio of overloaded servers, 2) Ratio of migrated

users. We will show here the proposed results of the two

experiments which are depicted in graphs. These two sets of

experiments will prove as important performance

measurements for our system. As it willshow the previous

results and can show what our system is improving in terms of

the performance.

Experiment 1:- This experiment studies the effects of the

proposed balancing scheme on the performance of the load

balancing algorithm based on the ratio of the overloaded

severs, ROS.

Fig: Server load analysis of local server 1&2

Experiment 2:- This experiment studies the effects of the

proposed balancing schemes on the performance of the load

balancing algorithm based on the ratio of migrated users,

RMU.

VII. CONCLUSION:

In this Paper we have proposed a new dynamic load

balancing with latency reduction approach for distributed

virtual environments based on request delay queue, which has

been studied in distributed virtual simulations and proved to be

a very effective and efficient tool for dynamic load balancing .

We have investigated heat diffusion based load balancing

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4742- 4746

4746
IJRITCC | July 2015, Available @ http://www.ijritcc.org

algorithms and improved balancing scheme of distributed

virtual simulations.Ultimately, we are developing an improved

balancing scheme of distributed virtual environment model

based on heat diffusion algorithms and the improved balancing

scheme of distributed virtual simulations. As a future work, we

are currently conducting a more detailed investigation into the

relevant problems.

REFERENCES:

[1] Yunhua Deng and Rynson W.H. Lau, “On Delay

Adjustment for Dynamic Load Balancing in Distributed

Virtual Environments” IEEE TRANSACTIONS ON

VISUALIZATION AND COMPUTER GRAPHICS,

VOL. 18, NO. 4, APRIL 2012

[2] Robson Eduardo De Grande, Azzedine Boukerche, and

Hussam Mohamed Soliman Ramadan "Decreasing

communication latency through Dynamic

measurements,Analysis and Partitioning For Distributed

virtual simulations” IEEE TRANSACTIONS ON

INSTRUMENTATION AND MEASUREMENT, VOL.

60, NO. 1, JANUARY 2011

[3] S.Dhakal,B.Paskaleva, M. Hayat, E. Schamiloglu, and

C.Abdallah. “Dynamical discrete-time load balancing in

distributed systems in the presence of time delays”. In

Proc. IEEE Conference on Decision and Control,volume

5, pages 5128–5134, 2003.

[4] Robson Eduardo De Grande, Azzedine Boukerche,

andHus sam Mohamed Soliman Ramadan “Measuring

And Analysing Migration Delay For The Computational

Load Balancing of Distributed Virtual Simulations”.IEEE

TRANSACTIONS ON INSTRUMENTATION AND

MEASUREMENT,61(12); December 2012.

[5] J. Lui and M. Chan. An efficient partitioning algorithm

for distributed virtual environment systems. IEEE Trans.

on Parallel and Distributed Systems, 13(3):193–211,

2002.

[6] Z. Lan, V. Taylor, and G. Bryan. Dynamic load balancing

of SAMR applications on distributed systems. In Proc.

ACM/IEEE Conference on Supercomputing, pages 24–

24, 2001.

[7] B. Ng, A. Si, R. Lau, and F. Li. “A multi-server

architecture for distributed virtual walkthrough”. In Proc.

ACM VRST, pages 163–170, 2002.

[8] J. Douglas Birdwell, J. Chiasson, Z. Tang, C. Abdallah,

M. Hayat, and T. Wang. “Dynamic time delay models for

load balancing. Part I: Deterministic models”. In Proc.

CNRS-NSF Workshop: Advances in Control of Time-

Delay System, 2003.

[9] P. Morillo et al,“Improving The Performance Of The

Distributed Virtual Environment Systems” IEEE

Trans. on Parallel And Distributed systems,16(7):637-

649,2005.

[10] K. Lee and D. Lee. A scalable dynamic load distribution

scheme for multi-server distributed virtual environment

systems with highly-skewed user distribution. In Proc.

ACM VRST, pages 160–168, 2003.

[11] D. Lee,M.lim, S. Han,K.Lee,“ATLAS: A Scalable

Network Framework for Distributed Virtual

Environments,”Presence. 16(2):125-156,April 2007.

[12] R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw.

Shape-optimized mesh partitioning and load balancing for

parallel adaptive FEM. Parallel Computing, 26:1555–

1581, 2000.

[13] M. Hayat, S. Dhakal, C. Abdallah, J. Douglas Birdwell,

and J. Chiasson. Dynamic time delay models for load

balancing. Part II: A stochastic analysis of the effect of

delay uncertainty. In Proc. CNRS-NSF

Workshop:Advances in Control of Time-Delay System,

2003.

[14] R. Lau. Hybrid load balancing for online games. In Proc.

ACM Multimedia, pages 1231–1234, 2010.

