
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4699 - 4704

4699
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Prioritization of Re-executable Test Cases of Activity Diagram in Regression

Testing Using Model Based Environment

Prof. Sharmila M. Shinde (Associate Professor)

dept. of computer engineering

JSPM’s Jaywantrao Sawant College of Engineering, Pune

Pune, India

sharmi_anant@yahoo.co.uk

Miss. Komal S. Jadhav (PG Student)

dept. of computer engineering

JSPM’s Jaywantrao Sawant College of Engineering, Pune

Pune, India

jadhavkomal.19@gmail.,com

Miss. Hetal Thanki (Assistant Professor)

dept. of computer engineering

JSPM’s Jaywantrao Sawant College of Engineering, Pune

Pune, India

hetal_thanki@yahoo.co.in

Abstract— As we all know, software testing is of vital importance in software development life cycle (SDLC) to validate the new versions of the

software and detection of faults. Regression Testing, however concentrates on generating test cases on changed part of the software to detect

faults more earlier than any other testing practices. In case of model based testing approach, testing is performed using top-down method (black

box method) and design models of the software, for example, UML diagrams. UML diagrams gives us requirement level representation of the

software in graphical format which is now a days a standard used in software engineering.

In our proposed approach, we have derived a new technique which has never been used before to prioritize the test cases in model

based environment. In this technique, we have used activity diagram as an input to the system. Activity diagram is used basically because it

gives us the complete flow of each and every activity involved in the system and represents its complete working. Activity diagram is further

changed as the requirement changes, each time, when the changes happen, they are recorded and test cases are generated for the changed

diagram, test cases are also generated for the original diagram. Test cases for both the diagrams are compared and classified as re-usable and re-

executable test cases. Re-usable test cases are those that remain unchanged during requirement changes and re-executable test cases belong to

the changed part of the diagram. Then re-executable test cases are prioritized using one heuristic algorithm based on ACT(Activity Connector)

table. Now, the question is why to prioritize only the re-executable test cases. Because, any how we have to execute re-usable test cases, as they

remain same for both the versions of the diagram and are already tested when original diagram was made. But, re-executable test cases are never

been tested and may detect faults in the modified design quickly and by prioritizing them we can also reduce the execution time of the test cases

which will give us effective testing performance and will evolve a better new version of the software. All the existing prioritization techniques

are either code based or are using various tool supports. Code based techniques are too complex and tedious because for a small change in code,

we need to test whole application repeatedly. And in case of tool support, we have multiple assumptions and constraints to be followed. This

proposed technique will surely give better results and as the type of technique has never been used before will also prove very effective.

Keywords- activity diagram; regression testing; test prioritization; reusable test cases; re-executable test cases; ACT table

__*****___

I. INTRODUCTION

With the advent of technology software becomes very
crucial part in all the institute and industries. To develop
particular software and to test it as per customer requirement is
very important because the software which is not able to satisfy
customer requirement after development will lead to increase
and waste of cost, time and effort of all parts of organization.
Model-based test case generation is gaining acceptance to the
software practitioners. Advantages of this are the early
detection of faults, reducing software development time etc.
UML (Unified Modeling Language) is used to develop
software designs, which includes various diagrams for
complete representation of the software. Few work on the test
case generation using activity diagrams is reported in
literatures. To increase the productivity better test case suit
generation is very important for any small or large software
application. To generate better test cases of any project which
reduce number of test cases to be executed and also all part
coverage is necessary now days. Regression testing is used for
generating the test cases, and it allows to reduce the test cases

in case of modifications in the system. So, the idea to generate
and prioritize optimum number of test case suite for better
utilization of resources motivates to develop this system.

Model-driven software development is a new software
development paradigm. Its advantages are the increased
productivity with support for visualizing domains like business
domain, problem domain, solution domain and generation of
implementation artifacts. Activity diagram is an important
diagram used for business modeling, control and object
modeling, complex operation modeling etc. Main advantage of
this model is its simplicity and ease of understanding the flow
of logic of the system.

 Regression testing allows to optimize and reduce test
cases, so that there are minimum number of test cases to be
generated after some changes in the design of software during
software development cycle.

In our work, test cases are generated for different projects
using XML format of the Activity Diagram and then the test
cases for changed part are prioritized using prioritization
algorithm with the help of ACT(Activity Connector Table)
Table. The details of the ACT Table are given in the proposed
system section. This proposed technique will prove better to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4699 - 4704

4700
IJRITCC | July 2015, Available @ http://www.ijritcc.org

minimize test cases after making changes in the model so as to
validate new version with minimum efforts and evolve better
version of the software.

II. LITERATURE SURVEY

In [3], test cases are prioritized using sequence diagram and
state chart diagram. The design model from the requirement
defines the state variables and rules written in the application
and the states are identified by state machine which is written
in cord scripts for exploring the models. The states are
compared and prioritized based on severity. Test case generator
generates and clusters test cases using agglomerative
hierarchical process(AHP) which is cost effective method using
dendragram. The model based approach here is a pre-
implementation testing process starts at the design phase.
Changes in the requirements have a quicker effect on the
models rather than changes in coding phases. Agglomerative
clustering approach is used to group similar test cases based on
severity factor provide an efficient method to group similar test
cases.

In [4], a new test case prioritization method is implemented
basically for component based softwares. This method
prioritizes test cases in descending order for Component Based
Software Development(CBSD) using the concept of Prim’s
algorithm. This algorithm makes use of CIG(Component
Interaction Graph) as input for a medium/large size
CBSD(Component Based Software Development Process) by
taking any real-time system as an example and to generate
prioritized test cases in descending order. The algorithm used
finds the defects in component based software in less time.
Here more importance is given to component interactions
because maximum defect occur when components are going to
interact with each other. This approach is mainly applicable to
test the component composition in case of component based
software maintenance.

In [5], the weighting based test case prioritization algorithm
is used. The weighting factors used basically are code based.
The values for factors used are approximate. The factors are
customer-allotted priority(CP), developer-observed code
implementation complexity(IC), changes in requirements(RC),
fault impact of requirements(FI), completeness(CT) and
traceability(TR). The algorithm is based on analysis of the
percentage of test cases performed to find the faults and on
Average Percentage of Fault Detected (APFD) metric’s results.
Abiding by the percentage of executing test cases in earlier
fault detection is important as sometimes regression testing
ends without executing all test instances.

This project[6] uses the Extended Finite State
Machine(EFSM) model and the analysis of dynamic
dependencies namely data dependence and control dependence
along with their interaction patterns. The proposed technique
named dynamic interaction-based prioritization modifies the
existing approach in order to improve the early fault detection
capability. Other criterion for optimization is to reduce the
resource cost. The proposed dynamic interaction-based
prioritization technique performs better than the existing
randomized prioritization of test cases from system models. It
can be observed that the DIP(Dynamic Interaction-based
Prioritization) algorithm is able to detect the maximum number
of faults by almost 83% of the test case execution for the
system models considered.

In [7], requirement based system level test case
prioritization scheme is developed and validated to reveal more
severe faults at an earlier stage and to improve customer-

perceived software quality using Genetic Algorithm(GA). For
this, a set of prioritization factors is proposed. The factors may
be concrete, such as test case length, code coverage, data flow
and fault proneness, or, abstract, such as perceived code
complexity and severity of faults, which prioritizes the system
test cases based on six factors: customer priority, changes in
requirement, implementation complexity, completeness,
traceability and fault impact. The goodness of these orderings
was measured using an evaluation metric called APFD and
PTR that will also be calculated.

In [1], Roberto S. Silva Filho, Christof J. Budnik,William
M. Hasling, Monica McKenna and Rajesh Subramanyam have
proposed a model based regression testing and prioritization
scheme which efficiently selects test cases for regression
testing based on different user defined concerns. It depends on
traceability links between models, test cases and code and user
defined properties associated to model elements. Here, an
automatic tool called TDE/UML is used which generates test
cases using UML diagrams and categorizes them as reusable
and re-executable test cases and prioritizes them . The proposed
approach in this paper is top-down approach as compared to
traditional code based bottom-up approaches, because it works
along with the software development life cycle i.e. from
starting stage of the software. This approach works efficiently,
as it detects the errors in the early development stages of the
software. The technique reduces the efforts needed to validate
the new versions of the software and improves the overall
productivity of the software.

Model-based regression testing ensures the reliability of the
evolving softwares by optimally selecting the test cases to test
the affected portion of the software. This technique promises
the reduction in labor, time and cost to test the new version of
the software.

In[2], Mr. Rohit N. Devikar had presented the automatic
tool, Model-based regression testing tool(MBRT) ,which is
java based tool and used to reduce, generate and also categorize
test cases as obsolete, reusable and re-testable test cases. In this
paper class diagram and state machine diagram are used for
regression testing and flow graph is used to generate the test
cases.

In [8], to optimize the priority of the test cases at different
points in the design cycle, tool called Echelon is developed by
A. Srivastava and J. Thiagarajan, which is a test prioritization
system, that prioritizes the set of test cases of any application,
based on changes made to the program.

Echelon uses a binary matching system that computes the
differences at a basic block granularity between two versions of
the program in binary form. Echelon works on heuristic
approach. Echelon runs under the Windows environment.

In [9], R. France and B. Rumpe have given an overview of
current research in Model Driven Engineering (MDE) . The
research work in this paper is focused on providing
technologies that address the recurring problem of bridging the
problem-implementation gap. We also encourage research on
the use of runtime models. In this paper, a vision of MDE
environment is presented, that if realized, can result in
improvement in software development productivity and
quality. Progressively closer approximations of the vision will
have increasingly significant effects on the effort required to
develop complex software. The vision can act as a point of
reference against which MDE research progress can be
informally assessed.

In [10], a methodology and tool is presented by L. C.
Briand, Y. Labiche, and S. He that support test selection from

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4699 - 4704

4701
IJRITCC | July 2015, Available @ http://www.ijritcc.org

regression test suites based on change analysis in object-
oriented designs. Regression test cases are categorized as
Reusable, Re-testable, and Obsolete.

This paper focuses on automating the regression test
selection based on design model represented by Unified
Modeling Language (UML) and the traceability linking the
design to test cases. UML is used in this case as it is becoming
industry de-facto standard.

 In[11], to remove disadvantages of code based
regression test selection, a new specification based test
selection technique is developed by Y. Chen, R. L. Probert, and
D. P. Sims, which is based on customer requirements. The
basic model used is Activity diagram which is part of
UML(Unified Modeling Language). In this paper two types of
regression tests are selected as targeted tests and safety tests.
Targeted tests ensure that important current customer features
are still supported in the new release. Safety Tests are risk-
directed, and ensure that potential problem areas are properly
handled. Proposed test selection technique is based on a
practical risk analysis model.

III. PROPOSED SYSTEM

Various Techniques have been proposed to prioritize the
test cases in model driven environment. In the proposed
approach, Activity Diagram will be used to generate the test
cases for the system and prioritize them. Heuristic based
approach will be used to prioritize the test cases.

Proposed system is divided in three steps as:
A. UML to XML Conversion

B. Test case generation and classification as re-usable
and re-executable test cases

C. Prioritization of re-executable test cases

A. UML to XML Conversion

In this step, an original activity diagram for the system is
taken as an input then this diagram is backed up in another file
and original file is used for modification to the model
(diagram). Both these files are in .edg format which is a file
format used to store uml diagrams in UML Diagrammer tool.
Both the files then are converted to the xml format which
represent them in the form of tags and saved to .xml files.

B. Test case generation and classification as re-usable and

re-executable test cases

After uml to xml conversion, both the .xml files are used

for the generation of test cases. Then test cases generated for

both the diagrams are compared and common test cases are

classified as re-usable test cases and uncommon test cases are

classified as re-executable test cases.

C. Prioritization of re-executable test cases

Re-executable test cases are prioritized in order to execute
test cases with minimum execution time and to detect faults
earlier than normal process. This prioritization will evolve new
better version of software with minimum efforts. In this
algorithm, prioritization will be done on the basis of Activity
Connector Table(ACT). A heuristic technique for prioritization
of test cases derived from the activity diagram using Activity
Connector Table (ACT). The heuristic prioritization algorithm
will identify the most prioritize path for a test case.

We first extract the necessary information from the
diagram. Based on the extracted information, an Activity

Connector Table(ACT) is generated. With the help of ACT test
cases are generated, and by applying the heuristic prioritization
algorithm, prioritization sequence of test case is identified.

Pacestar UML Diagrammer is used to generate the activity
diagram and its design structure saved in text format is used for
conversion of this diagram to xml file. Prioritization of re-
executable test cases will reduce the test cases and will reduce
the testing time, efforts and cost of the software and will
improve the overall productivity of the software by reducing
the efforts needed to validate the new versions of the software.

IV. IMPLEMENTATION DETAILS

A. Mathematical Model

For given activity diagram X and set of test requirements
r1, r2,, rn there exist Xi such that Xi satisfies all Ri.
Let S={s,e,x,y,f}be the programmer’s perspective of
prioritization of test cases.
S → System which represents programmer’s perspective.
s → Distinct start of the system
e → Distinct end of the system
x → Activity diagram (old and modified)
Y → Set of prioritized test cases.
F → Central function for UML to XML Conversion, Test Case
Generation and Classification, Prioritization of Re-executable
Test Cases
Φ → Constraints
Let X be the input such that X = X1, X2,, Xn where X1,
X2,....., Xn are different activity diagram of same domain
projects.
M=m1, m2,...., mn where m1, m2,, mn are modified
activity diagram for X.
F(X,M)= Activity Diagram| Φ=must enter old and new activity
diagram
Y = prioritized test cases.
UML to XML Conversion:
INPUT: X
OUTPUT: Y1=M, Modified Activity Diagram
F(X):X| Φ =Original Activity Diagram in “.edg” Format
Test Case Generation and Classification:
INPUT: Y1(X, M)
OUTPUT: Y2=(RU, RE)
RU-Reusable Test Cases
RE-Re-executable Test Cases
F(X’,M’):X’,M’| Φ=original and modified activity diagram
in .xml format
Prioritization of Re-executable Test Cases:
INPUT: Y2(RE)
OUTPUT: Y=Prioritized Test Cases
F(RE):RE| Φ=By using different heuristics

B. Block Diagram

Figure 1. shows the block diagram of the proposed system.

The description of this diagram is already given in section

III(A).

C. Algorithm for System

 Take original activity diagram as an input, which is a

file with .edg extension.

 Backup this file (to be used later).

 Make changes to the original file taken as an input.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4699 - 4704

4702
IJRITCC | July 2015, Available @ http://www.ijritcc.org

 Now map the backup file and the modified one to the

xml format.

 Generate the test cases for these two files.

 Categorize the test cases as re-usable and re-

executable.

 Prioritize the re-executable test cases using the

prioritization algorithm.

 Prioritized test cases obtained from above step will

be the output of the proposed system.

D. Prioritization Algorithm

 Input Modified Activity diagram.

 Generate Activity Connector Table (ACT) using

Activity diagram.

 Loop the steps for all the test case states possible

using ACT.

o Create a test case state

o By using the ACT table get the next state.

o If the next state is the decision state then,

 Store the entire path into the next

empty location

 Continue the true side until it

reaches the end state

 For the false side just add the end

state and continue

o If the next state is the end state

 Stop the process

 Check any other path is incomplete,

if yes then continue with there.

 Else exit

o If the next state is the ordinary state, then

add the state at the end of the current path

 For assigning weigthage, use ACT Table

o Start the process with the start state, assign

the value as 1.

o Using ACT Table, check the next state

o Increment the value and assign it to next

o If the current state is decision then,

 Increment the value and assign it to

both true and false side of the

decision

o Repeat the step until it reaches the end state

 Compute fitness value as f,

o For each node calculate the number of

incoming nodes as a and number of

outgoing nodes as b.

o Compute f=a*b.

 For prioritization, create three variables called p_in,

p_out and p_best.

 Calculate the initial test path value, store it in the

p_best and store the path in p_in

 Calculate the neighborhood test pat h value.

 Compare the current value with the p_best.

o If p_best is greater than the current value

 Store the current path in p_out.

 Then go to next main step

o If p_best is smaller than the current value

 Store the current value in the

p_best.

 Add the current path to the p_in

 Repeat step before the previous step until all path

have been covered.

 By using the p_in we can get the prioritized path.

Figure 1. Block Diagram

E. Activity Connector Table (ACT)

Activity Connector Table (ACT) is the paradigm used to

prioritize the executable test cases. It contains the decision and

action states and simply its next state in the activity diagram. It

can be generated automatically or manually. But if we try to

generate it automatically, it gives a high error rate. As we are

generating the activity diagram in Pacestar UML Diagrammer,

it is saved in some textual format from which we are getting

information to generate test cases and we can also get the

information about the connectors. Many times it may happen

that the diagram is not drawn 100% accurate by means of

connecting the connectors and other components or we may

delete and add connectors many times. Because of this, the

textual format we obtain is not 100% accurate and we cannot

get the information about the connectors 100% accurate. So

ACT Table is generated manually which will give us 100%

correct results. The example of the ACT Table is given in the

next results and discussion section.

V. RESULTS AND DISCUSSION

A. Case Study

With the use of Pacestar UML Diagrammer, we are drawing

activity diagram, then using the same tool we are modifying it.

Fig.2 and Fig.3 shows the original and modified diagram.

These diagrams belong to the Online Order System. In the

modified part, as we can see, the payment module is added

extra. The ACT table for these diagrams can be prepared as

shown in the Fig.4.

 In this case, while modifying the diagram, original

part is maintained as it is, so there will not be any obsolete test

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4699 - 4704

4703
IJRITCC | July 2015, Available @ http://www.ijritcc.org

cases, i.e. test cases that become of no use during testing as

components belong to those test cases is been removed from

the original diagram permanently. But in our work, we are

considering only re-usable and re-executable test cases.

 Once, the original diagram is saved in backup and

modified, they are converted to xml format to generate the test

cases. After generating the test cases, they are classified as re-

usable and re-executable test cases. Using ACT table,

prioritization algorithm is applied on re-executable test cases

and they are prioritized. Fig.5 gives the output for the diagram

in case study.

 From the result window, it can be clearly seen that

the test cases for modified part are classified as re-executable

test cases and the prioritization output for the same is shown in

the same window.

 This system gives us 100% accurate results as we are

making the ACT table manually. In case of automatic

generation of ACT Table, we could have some error rate.

 In prioritization algorithm, the heuristic factor used is

ACT table and the weighting is done on the basis of number of

in and out edges to the action or decision component.

VI. CONCLUSION AND FUTURE SCOPE

In software development life cycle, software testing is very

important part, as the success of the software project depends

on it.

It is therefore very essential to handle this task of software

development very carefully. In our paper, we present a

regression testing and prioritization technique which will work

from early stages of the software development life cycle and

will reduce time, efforts and cost for testing. The type of

technique is never been used before for the prioritization. This

is very simple and effective technique with 100% accuracy,

giving better results. Heuristic approach is used to prioritize

the re-executable test cases which makes use of ACT table.

This prioritization technique is giving better improved version

of the software with minimum efforts and increases software

productivity. This technique can also be applied to various

domains as education, medical, finance, etc.

This is very effective technique, as it is very simple and

easy to understand. This technique gives better results using

top-down i.e. black box testing approach. At the design level

only, we can have testing applied, which detects faults earlier

before coding. Complexities in code based technique can be

totally removed using this technique, which is the main

advantage of this.

In future, we can try to make the ACT table automatically,

by using another better tools for drawing the activity diagram

which can specify each and every component and connector

100% correctly.

ACKNOWLEDGMENT

The satisfaction that accompanies the successful completion
of any task would be incomplete without mentioning the people
who make it possible. I wish to thank honourable guide Prof. S.
M. Shinde, H.O.D. Prof. H. A. Hingoliwala, PG coordinator
Prof. M.D. Ingle and Principal Dr. M.G. Jadhav of JSPMs
JAYAWANTRAO SAWANT COLLEGE OF ENGG. Pune,
for providing vital comments, information, and review of this
paper. We also acknowledge thanking different sites and
references which we receive from different sources.

Figure 2. Original Activity Diagram

Figure 3. Modified Activity Diagram

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4699 - 4704

4704
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Figure 4. ACT Table

Figure 5. Result

REFERENCES

[1] Roberto S. Silva Filho, Christof J. Budnik,William M. Hasling,
Monica McKenna, Rajesh Subramanyam, “Supporting Concern-
Based Regression Testing and Prioritization in a Model-Driven
Environment”, 34th Annual IEEE Computer Software and
Applications Conference Workshops,2010.

[2] Mr. Rohit N. Devikar, Prof. Manjushree D. Laddha,
“Automation of Model-based Regression Testing”, Internatonal
Journal of Scientific and Research Publications, Volume 2, Issue
12, December 2012.

[3] Vinothkumar.N, Galeebathullah.B,”Prioritizing Test Cases for
Regression Testing A Model Based Approach ” International
Journal For Trends in Engineering & Technology, Volume4,
Issue1, April 2015.

[4] Shweta A. Joshi, Prof. D. S. Adiga, Prof. B. S. Tiple, “Effective
Use of Prim’s Algorithm for Model Based Test Case
Prioritization” International Journal of Computer Science and
Information Technologies, Vol 5(3), 2014, 3444-3447.

[5] Thillaikarasi Muthusamy, Dr. Seetharaman.K,”Effectiveness of
Test Case Prioritization Techniques Based on Regression
Testing”, International Journal of Software Engineering &
Applications, Vol 5, No. 6, November 2014.

[6] Chris Nitin Adonis Petrus, M.S. Razou, M. Rajeev, M.
Karthigesan, “Model-Based Test Case Minimization and
Prioritization for Improved Early Fault Detection Capability”,
International Journal of Innovative Technology and Exploring
Engineering, Volume-2, Issue-5, April 2013.

[7] S. Raju, G. V. Uma, “Factors Oriented Test Case Prioritization
Technique in Regression Testing Using Genetic Algorithm”,
European Journal of Scientific Research, Vol. 74, No. 3, 2012.

[8] A. Srivastava and J. Thiagarajan, "Effectively Prioritizing Tests
in Development Environment," in Intl. Symposium on Software
Testing and Analysis Roma, Italy: 2002.

[9] R. France and B. Rumpe, "Model-driven Development of
Complex Software: A Research Roadmap," in Future of
Software Engineering: IEEE Computer Society, 2007.

[10] L. C. Briand, Y. Labiche, and S. He, "Automating regression test
selection based on UML designs," Inf. Softw. Technol., vol. 51,
pp. 16-30, 2009

[11] Y. Chen, R. L. Probert, and D. P. Sims, "Specification-based
Regression Test Selection with Risk Analysis," in 2002
Conference of the Centre for Advanced Studies on Collaborative
Research Toronto, Ontario, Canada: IBM Press, 2002.

[12] O. Pilskalns, G. Uyan, and A. Andrews, "Regression Testing
UML Designs," in 22nd IEEE International Conference on
Software Maintenance: IEEE Computer Society, 2006.

[13] T. J. Ostrand and M. J. Balcer, "The Category-partition Method
for Specifying and Generating Fuctional Tests," Commun.
ACM, vol. 31, pp. 676-686, 1988.

[14] L. Naslavsky, H. Ziv, and D. J. Richardson, "A Model-based
Regression Test Selection Technique," in IEEE International
Conference on Software Maintenance, 2009, pp. 515-518.

[15] S. Elbaum, A. G. Malishevsky, and G. Rothermel, "Prioritizing
test cases for regression testing," in ACM SIGSOFT
International Symposium on Software testing and analysis
Portland, Oregon, United States: ACM, 2000.

[16] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri, and
X. Qiu, "On Test Suite Composition and Cost-effective
Regression Testing," ACM Trans. Software Engineering
Methodology, vol. 13, pp. 277-331, 2004.

[17] P. K. Chittimalli and M. J. Harrold, "Regression test selection on
system requirements," in 1st India Software Engineering
Conference Hyderabad,India:ACM,2008.

http://www.ijritcc.org/

