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Purpose: We have previously identified specific epithelial proteins with altered expression in human diabetic central
corneas. Decreased hepatocyte growth factor receptor (c-met) and increased proteinases were functionally implicated in
the changes of these proteins in diabetes. The present study examined whether limbal stem cell marker patterns were
altered in diabetic corneas and whether c-met gene overexpression could normalize these patterns.

Methods: Cryostat sections of 28 ex vivo and 26 organ-cultured autopsy human normal and diabetic corneas were
examined by immunohistochemistry using antibodies to putative limbal stem cell markers including ATP-binding cassette
sub-family G member 2 (ABCG2), N-cadherin, ANp63a, tenascin-C, laminin y3 chain, keratins (K) K15, K17, K19, B1
integrin, vimentin, frizzled 7, and fibronectin. Organ-cultured diabetic corneas were studied upon transduction with
adenovirus harboring c-met gene.

Results: Immunostaining for ABCG2, N-cadherin, ANp630, K15, K17, K19, and B1 integrin, was significantly decreased
in the stem cell-harboring diabetic limbal basal epithelium either by intensity or the number of positive cells. Basement
membrane components, laminin y3 chain, and fibronectin (but not tenascin-C) also showed a significant reduction in the
ex vivo diabetic limbus. c-Met gene transduction, which normalizes diabetic marker expression and epithelial wound
healing, was accompanied by increased limbal epithelial staining for K17, K19, ANp63a, and a diabetic marker asf31
integrin, compared to vector-transduced corneas.

Conclusions: The data suggest that limbal stem cell compartment is altered in long-term diabetes. Gene therapy, such as

with c-met overexpression, could be able to restore normal function to diabetic corneal epithelial stem cells.

In pathological conditions, such as diabetes mellitus, the
cornea is significantly affected and this can cause visual
impairment. The most recognized diabetic complications in
the cornea include neurotrophic corneal ulcers, filamentous
keratitis, loss of corneal sensation, and a characteristic
epithelial keratodystrophy, which is referred to as diabetic
keratopathy [1-9]. Diabetic cornea exhibits basement
membrane abnormalities, reduced  numbers of
hemidesmosomes, altered growth factor content and
signaling, epithelial cellular enlargement, edema, and delayed
wound healing resulting in persistent epithelial defects [2-4,
8-11]. Treatment for diabetic keratopathy remains
symptomatic [2].

Corneal epithelial renewal and healing of epithelial
wounds largely depend on corneal stem cells that, at least in
humans, reside in the basal epithelial layer of the corneoscleral
junction, limbus [12-21]. These cells represent less than 10%
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of the total limbal basal epithelial cell population [22,23].
Deficiencies of or damage to these limbal epithelial stem cells
(LESC) have serious implications for corneal function such
as in-growth of conjunctival cells and neovascularization of
the corneal stroma, which eventually lead to corneal opacity
and vision loss [20,24-26]. These cells have a high capacity
for self-renewal, which is retained throughout life. Corneal
maintenance depends on LESC as a source of epithelial
proliferation and rapid renewal through generation of
transient amplifying (TA) cells, which in turn differentiate
into epithelial cells during their centripetal movement [21,
27-29].

Because of its role in epithelial renewal and wound
healing, deficiency of the limbal niche and its residing LESC
may be responsible for abnormalities in diabetic corneal
epithelium. In the present paper we examined various putative
stem cell markers in ex vivo diabetic and normal epithelial
limbal compartment, as well as in organ-cultured diabetic
corneas upon overexpression of c-met proto-oncogene shown
to normalize wound healing time and epithelial marker
expression [30]. Immunostaining patterns of several putative
stem cell markers were altered in the diabetic limbus, and
some of these patterns could be normalized by c-met
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TABLE 1. DONOR CHARACTERISTICS.

Case number Diabetes type Age, sex Diabetes duration, years Cause of death

Ex vivo normal

95-12 - 17,F - gunshot wound
95-15 - 59, M - cardiac arrest
95-44 - 68, M - massive hemorrhage
99-19 - 79, F - respiratory arrest
99-61 - 80, F - myocardial infarction
03-3 - 71,M - myocardial infarction
03-09 - 72,M - lung cancer
05-16 - 56, M - ruptured aortic dissection
05-25 - 60, F - COPD
05-26 - 60, F - COPD
05-45 - 10,M - exsanguination
05-46 - 10, M - exsanguination
05-56 - 45, M cardiovascular accident
05-60 - 65,F - pneumonia
10-03 - 69, M - respiratory failure
Ex vivo diabetic
95-17 IDDM 79, M 5 cardiac arrest
95-18 IDDM 79, M 5 cardiac arrest
9606 IDDM 69, M 22 acute cardiac event
96-30 NIDDM 77,F >5 cardiorespiratory arrest
9646 IDDM, PDR 68, F >48 cardiorespiratory arrest
9647 IDDM, PDR 68, F >48 cardiorespiratory arrest
96-95 IDDM 63, M 3 cardiovascular accident
96-96 IDDM 63, M 3 cardiovascular accident
99-08 IDDM, DR 67, F 30 myocardial infarction
99-79 IDDM, PDR 77, F unknown cardiac arrest
99-80 IDDM, PDR 77, F unknown cardiac arrest
01-47 IDDM, DR 64, F unknown ventricular arrhythmia
06-26 NIDDM 77, M 15 intracerebral hemorrhage
Organ-cultured diabetic
07-27 IDDM 81, M >10 acute renal failure
07-32 NIDDM 84, M 20 stroke
07-34 IDDM, DR 37, M 22 intracranial hemorrhage
08-35 IDDM, DR 88, M 38 cardiac arrest
08-36 NIDDM 82, M 15 stroke
08-38 IDDM 73 F >10 diabetic ketoacidosis
08-40 NIDDM 59, M 20 cardiac arrest
08-44 IDDM, DR 71,M 15 cardiopulmonary arrest
0849 NIDDM 59,F 28 intracranial hemorrhage
08-54 NIDDM 57,M 10 myocardial infarction
08-57 IDDM 78, F 15 respiratory failure
09-12 NIDDM, DR 61,F unknown myocardial infarction
09-16 NIDDM 61, F >10 congestive heart failure

M, male; F, female; PDR, proliferative diabetic retinopathy; COPD, chronic obstructive pulmonary disease. In the ex vivo
groups, each case number refers to one cornea; in organ-cultured diabetic group, each case number refers to a pair of fellow
corneas.
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TABLE 2. ANTIBODIES USED IN THE STUDY.

Antigen Antibody Source Dilution Immunostaining
ABCG2 Mouse mAb MAB4155 Millipore 1:50 -
ABCG2 Mouse mADb sc-58222 Santa Cruz Biotechnology 1:5 +
ABCG2 Rabbit pAb sc-25821 Santa Cruz Biotechnology 1:20 +
C/EBPS Rabbit pAb sc-636 Santa Cruz Biotechnology 1:20 -
Fibronectin Mouse mADb 568 [72] 1:60 +
Integrin 1 Mouse mAb MAB1959 Millipore 1:50 +
Integrin B1 Mouse mAb MAB2000 Millipore 1:50 +
Keratin 15 Mouse mADb sc-47697 Santa Cruz Biotechnology 1:10 +
Keratin 17 Mouse mAb E3 [73] straight +
Keratin 17 Rabbit mAb #4543 Cell Signaling 1:50 +
Keratin 19 Mouse mAb MAB1607 Millipore 1:10 +
Keratin 19 Mouse mAb MA1-35554 Thermo Scientific 1:10 +
Keratin 19 Rabbit pAb PA1-38014 Thermo Scientific 1:20 +
Keratin 19 Mouse mAb MAB1608 Millipore 1:10 +
Laminin B1 Rat mAb LT3 [74] straight +
Laminin 2 Mouse mAb C4 Developmental Hybridoma Bank straight +
Laminin y1 Rat mAb A5 [75] straight +
Laminin y3 Rabbit pAb R96 [76] 1:500 +
Laminin y3 Rabbit pAb sc-25719 Santa Cruz Biotechnology 1:20 -
Laminin y3 Goat pAb sc-16601 Santa Cruz Biotechnology 1:10 +
N-Cadherin Mouse mAb 3B9 Invitrogen 1:20 +
N-Cadherin Rabbit pAb 12221 Abcam 1:50 -
N-Cadherin Rabbit pAb sc-7939 Santa Cruz Biotechnology 1:20 +
Nidogen-1 Mouse mAb MAB2570 R&D Systems 1:50 +
Nidogen-2 Rabbit pAb 1080 [77] 1:200 +
Nidogen-2 Goat pAb sc-26132 Santa Cruz Biotechnology 1:25

Nidogen-2 Goat pAb sc-26133 Santa Cruz Biotechnology 1:25 -
ANp63 Goat pADb sc-8609 Santa Cruz Biotechnology 1:20 +
ANp63 Rabbit pAb 619001 Biolegend 1:50 -
P63a Rabbit pAb [23] 1:100 +
SOD2 Rabbit pAb sc-30080 Santa Cruz Biotechnology 1:10 +
Vimentin Goat pAb sc-7558 Santa Cruz Biotechnology 1:20 +
Frizzled 7 Rat mAb 1981 R&D Systems 1:20 +
Tenascin-C Mouse mAb BC2 [78] straight +

mADb, monoclonal antibody; pAb, polyclonal antibody.

overexpression. The data suggest that limbal compartment
may play an important role in diabetic corneal alterations that
can be corrected by gene therapy.

METHODS

Tissues: Age-matched normal, diabetic (with insulin-
dependent [IDDM] or non-insulin-dependent [NIDDM]
diabetes), and diabetic retinopathy (DR) autopsy human
corneas were obtained from the National Disease Research
Interchange (NDRI, Philadelphia, PA), within 24 (for ex vivo)
to 48 h after death. NDRI has a human tissue collection
protocol approved by a managerial committee and subject to
National Institutes of Health oversight. In this study (Table
1), 15 normal (from 13 donors, mean age 57.8+21.8 years)
and 13 diabetic (from 9 donors; mean age 71.2+6.3 years; 7
with IDDM, 2 with NIDDM, 4 with DR) ex vivo corneas, as
well as 13 pairs of organ-cultured diabetic corneas (from 13
donors; mean age 68.5+14.4 years; 6 with IDDM, 7 with
NIDDM, 4 with DR) were used. Mean ages in all groups as
well as mean disease durations for known cases in ex vivo and
organ culture diabetic groups did not differ significantly. The
corneas were embedded in Optimal Cutting Temperature
(OCT) compound (Sakura Finetek USA, Inc., Torrance, CA)

and stored at —80 °C for immunohistochemistry, or were
processed for organ culture.

Corneal organ culture and viral transduction: As described
previously [30,31], after filling the corneal concavity with
warm agar-collagen mixture, corneas were cultured in serum-
free medium with insulin-transferrin-selenite, antibiotics and
antimycotic (Invitrogen, Carlsbad, CA), at a liquid-air
interface with epithelium facing upwards. Organ-cultured
diabetic corneas were transduced for 48 h with 1.0-2.0x10%
plaque-forming units of recombinant adenoviruses, rAV-cmet
(harboring full-length c-met open reading frame) and the
fellow corneas with rAV-vector (no gene inserted) as a
control. Seventy-five pg/ml of sterile sildenafil citrate
(Viagra®; Pfizer Corp., New York, NY) was added to the
culture medium along with the viruses to increase rAV
transduction efficiency [31]. Some transduced corneas were
processed after 7-10 days in culture, some after wound
healing experiments [30]. They were embedded in OCT and
5 um cryostat sections cut for immunostaining on a Leica
CM1850 cryostat (McBain Instruments, Chatsworth, CA).

Immunohistochemistry: The list of primary antibodies to
putative stem cell markers is presented in Table 2. Different
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K15, normal K15, diabetic
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Figure 1. Keratin expression patterns in normal and diabetic ex vivo limbus. The staining intensity of K15, K17, and K19 was significantly
decreased in the diabetic limbus. Note a reduction of K17-positive cells in the diabetic limbus as well. Here and in all other figures, each
normal and diabetic pair was photographed at the same exposure times in the same staining experiments. e, epithelium, s, stroma. Bar=40

pm. 2180
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fixations such as 100% acetone at —20 °C for 10 min, 100%
methanol at —20 °C for 10 min, 1% formalin (0.37%
formaldehyde) in saline at room temperature for 5 min were
used for different antibodies. For each marker the same
exposure time was used when photographing stained sections
of fellow corneas using a MicroFire digital camera (Optronics,
Goleta, CA) attached to an Olympus BX40 microscope
(Olympus USA, Melville, NY) and operated using
PictureFrame software. Negative controls without a primary
antibody were included in each experiment.

Statistics: Immunostaining results were analyzed by unpaired
(for ex vivo corneas; n=15 for normal, n=13 for diabetic) or
paired (for organ cultured corneas; n=13 pairs) Student’s ¢-
test (InStat, GraphPad Software, San Diego, CA). Staining
intensity was scored arbitrarily as: 0 (negative), 0.5 (weak), 1
(distinct), 2 (moderate), 3 (strong), 4 (very strong). Most cases
were stained at least twice with good reproducibility between
experiments, and a mean intensity score from independent
experiments was used for each case. The mean scores between
groups (e.g., normal versus diabetic) were then compared. A
p-value <0.05 was considered significant. Data are expressed
as meantstandard error (SEM).

RESULTS

Distribution of putative stem cell markers in normal and
diabetic ex vivo corneas: The immunostaining patterns of
several limbal and/or putative stem cell markers were altered
in the ex vivo diabetic limbus compared to the normal one.
Figure 1, left column, shows the normal staining patterns of
cytoskeletal structural proteins of epithelial cells, keratins 15,
17, and 19 (K15, K17 and K19). These three keratins were
expressed in limbal compartment but not in central ex vivo
corneal epithelium, in good agreement with previous data
[17,32-34]. K15 and K19 were prominently expressed in the
basal limbal cells and in lesser amounts in the suprabasal and
superficial layers of the limbal epithelium (Figure 1). K17
protein was usually found in clusters of limbal basal cells
(Figure 1), as was vimentin (not shown here). As shown in
Figure 1, right column, in the diabetic limbus staining for all
three keratins decreased by both intensity and number of
positive cells; the latter was most pronounced for K17.
Decreased staining for these keratins in the diabetic limbus
reached significance. The most commonly used putative
LESC markers [20,23,35-37], ATP-binding cassette
transporter Berpl/ABCG2 and transcription factor ANp63a
isoform, were also significantly decreased in the diabetic
limbus (Figure 2 and Figure 3). The same was true for another
putative LESC marker [38], N-cadherin (Figure 3). B: Integrin
[39] that is found in basal cells as well as the suprabasal and
superficial layers of the corneal epithelium was expressed
much less in the diabetic limbus (Figure 4), although its
localization did not agree with the presence in LESC niche
only. In the diabetic limbus, reduced and discontinuous
immunostaining was observed for select ECM markers, such
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as laminin y3 chain (Figure 4), expressed mostly in the limbal
basement membrane [40,41]. Fibronectin staining was also
significantly decreased in the diabetic limbal basement
membrane (Figure 4). No significant changes were observed
in the diabetic limbal cells for total tenascin-C (Figure 3), a
ubiquitous laminin y1 chain, and putative LESC markers
superoxide dismutase 2 (SOD?2), vimentin, and a Wnt
receptor, frizzled 7 (data not shown).

Normalization of putative stem cell marker patterns upon c-
met overexpression:. We have recently shown that the
expression of certain markers altered in the ex vivo diabetic
corneas including integrin osfi;, some laminin chains,
nidogen-1, nidogen-2, and phosphorylated p38 MAP kinase
(p-p38) returned to almost normal patterns in the central
region of diabetic organ-cultured corneas after c-met
overexpression using rAV-driven c-met transduction [30]. As
shown in Figure 5, c-met transduction brought about an
increase in staining for some of these markers, such as integrin
oazBi and p-p38, so that they became closer to normal (see
[30]) in the diabetic limbus. We next examined if altered
expressions of putative LESC markers could also be
normalized by rAV-cmet transduction of diabetic organ-
cultured corneas. Indeed, c-met overexpression was
accompanied by increased limbal staining for K15 (did not
reach significance), K17, and K19, as well as ANp63a isoform
compared to vector-transduced corneas (Figure 6; compare
with Figure 1 and Figure 2), so that the staining became similar
to normal corneas. Some of these increases were significant
(Figure 7), although certain markers did not show an
appreciable change in staining intensity. It should be
mentioned that in organ-cultured diabetic corneas some K17
and K19 immunostaining could also be found in the
suprabasal layers of the limbal epithelium as well as in the
central cornea, whereas K15 was still expressed exclusively
in the limbus.

DISCUSSION

As a systemic disease, diabetes has significant impact on all
tissues. In the eye, the major vision-threatening effect is on
retina (DR), whereas the other ocular parts are generally
thought to be less affected [42,43]. However, more than a half
of diabetics suffer from corneal problems related to
neuropathy and epitheliopathy [44]. Various epithelial
abnormalities are present in diabetic corneas that appear to be
related to cell adhesion and basement membrane alterations,
decreased innervation, and poor wound healing [44-46].
Using adenoviral gene therapy with overexpression of c-met
that is downregulated in diabetic corneas [47], we were able
to bring basement membrane protein patterns and wound
healing times in organ-cultured diabetic corneas close to
normal [30]. Other possible ways to normalize these corneas
could be a restoration of normal signaling of the epidermal
growth factor receptor (EGFR) axis that is downregulated by
high glucose and diabetes [48,49], silencing of specific
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ANp63a, normal, P ANp63a, diabetic, P

Figure 2. Putative LESC marker expression patterns in normal and diabetic ex vivo limbus. Note a dramatic decrease in staining intensity and
the number of positive basal epithelial cells for ABCG2 and ANp63a in the diabetic limbus. ANp63a was revealed with two different antibodies
(Santa Cruz, SC) and Pellegrini (P) with the same result. e, epithelium, s, stroma. Bar=30 pm.

proteinases [31] or a blockade of opioid growth factor - opioid Mechanisms responsible for the epithelial changes in
growth factor receptor system with naltrexone [50]. diabetic corneas are still not well understood. One possibility
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Figure 3. Statistical analysis of changes in the staining for various markers in diabetic versus normal ex vivo limbus. Significant staining
decrease was observed for K15, K17, K19, ANp63a, N-cadherin, ABCG2, fibronectin, 31 integrin, and laminin y3 chain. Data are mean+SEM.
Normal, n=15; diabetic, n=13. *p<0.05; **p<0.01. Details are in the Methods section.

is that epithelial alterations could be triggered or exacerbated
by abnormal innervation, which may be the case with ulcers
[51]. However, several lines of evidence support direct
detrimental action of hyperglycemia in diabetes on corneal
epithelium. In diabetic rabbits, corneal wound healing is not
delayed [52], although corneal neuropathy develops [53]. In
human corneal organ culture where corneas are denervated,
delayed diabetic epithelial wound healing persists [30]. In
normal organ-cultured porcine corneas, high glucose causes
delayed epithelial wound healing [48]. Because LESC and
their immediate progeny (TA cells) play a key role in the
epithelial maintenance and renewal, these data support the
hypothesis that LESC and or/TA cells may be altered in the
course of diabetes. Using a large panel of antibodies to
putative LESC/limbal basal epithelial markers we tested this
hypothesis using ex vivo human corneas, as well as organ-
cultured diabetic corneas upon viral-induced c-met
overexpression.

In the ex vivo corneas, many tested markers including
keratins 15, 17 and 19, as well as Bcrpl/ABCG2, ANp63a
isoform, N-cadherin, laminin y3 chain, and B integrin were
significantly downregulated in diabetic compared to normal
limbus. In some cases, such as with integrin B; or laminin y3
chain, the immunostaining intensity was diminished. In other
cases, such as with K17, ABCG2, or N-cadherin, the number
of positive cells was markedly reduced in the diabetic limbus.
This is the first demonstration of changes in LESC marker
expression in a common disease that does not involve LESC
deficiency. It may be suggested that the observed differences
in marker expression between normal and diabetic corneal
limbus relate to functional abnormalities of stem cell niche in
diabetes. At present one can only speculate on what kind of
dysfunction such reduced marker expression would be related.
A plausible candidate would be impaired cell migration
translating into slower and incomplete wound healing in
diabetic corneas. The data support the idea that stem cell niche

alterations may underlie poor wound healing and other
epithelial abnormalities typical for diabetic corneas. It would
also be important to understand whether diabetes changes
marker expression in LESC, TA cells or both. The generally
even distribution of most studied putative LESC markers in
the limbal basal cells (comprised by LESC and TA cells)
would favor the hypothesis that reduced expression of these
markers in diabetic corneas is applicable to both LESC and
TA cells.

It was interesting to examine whether gene therapy that
can bring diabetic corneas closer to normal in terms of specific
protein expression and wound healing rates would also change
the expression of putative LESC markers in diabetic corneas
toward normal patterns. To this end, we used organ-cultured
diabetic corneas following gene therapy with c-met, which
had significantly improved epithelial wound healing and
expression of basement membrane markers and signaling
intermediates [30].

Compared to vector treatment, c-met treated corneas
displayed enhanced staining for several putative LESC
markers, which became similar to normal ex vivo limbus.
These data attest to the feasibility of using specific gene
therapy to normalize the functions of LESC in diabetic
corneas, which may be useful for LESC transplantation in
diabetics. However, not all the markers altered in diabetic ex
vivo corneas showed increased staining upon c-met gene
transduction (e.g., Pi integrin) suggesting that one-gene
therapy was not enough for corneal normalization.

A partial effect of c-met upregulation on LESC marker
expression could be related to the influence of this gene
therapy only on certain cell signaling pathways. As we
showed before [30], c-met overexpression in diabetic corneas
causes normalization of epithelial wound healing by restoring
signaling through p38. However, overexpression of
proteinases cathepsin F and matrix metalloproteinase-10
(MMP-10) in diabetic corneas or incubation of normal
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Figure 4. Integrin and basement membrane protein expression patterns in normal and diabetic ex vivo limbus. Integrin 1 staining is markedly
reduced in the diabetic limbus, which occurs in all epithelial layers. A limbal-specific laminin y3 chain staining is weak and discontinuous in
the diabetic limbal epithelial basement membrane (arrows). This is also true for fibronectin. e, epithelium, s, stroma. Bar=30 pm.

corneas in high glucose appear to reduce migration-promoting  preliminary data showed that a combined gene therapy with
EGFR signaling through Akt phosphorylation [31,48]. Our  c-metoverexpression and shRNA silencing of cathepsin F and
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Figure 5. Increased diabetic marker expression in the diabetic limbus in organ culture upon c-met overexpression. Both integrin a3p1 and p-
p38 staining in the limbal epithelium is increased upon c-met gene transduction and becomes similar to normal. e, epithelium, s, stroma.

Bar=30 pum.

MMP-10 brought diabetic corneas significantly closer to
normal in terms of epithelial protein expression, p38 and Akt
phosphorylation, and wound healing time than c-met
upregulation alone. Therefore, by a concerted acting on
several key signaling pathways, this combination could
possibly exert a greater positive effect on putative LESC
marker expression in the diabetic limbus.

Based on limbal location, little or no expression in the
central cornea, preferential expression in basal limbal
epithelial cells, various putative LESC markers have been
proposed, such as K8, K15, K17, K19, Berpl/ABCG?2,
ANp63a, N-cadherin, laminin y3 chain, B integrin, TCF4,
frizzled 7, SOD2, epiregulin, Notch-1, a-enolase, vimentin,

C/EBPS, SPONI, and nectin-3 [23,32,33,35,36,41,54-65].
However, despite numerous attempts, no single and reliable
LESC marker has been identified so far. This is in part due to
the fact that unambiguous identification of LESC has been
difficult. These cells are generally considered as largely non-
proliferating, or slow cycling. Based on this criterion many
authors agree that if corneal cultures or animal corneas in vivo
are labeled with tritiated thymidine or bromodeoxyuridine and
then chased for a while (at least several weeks), the few
corneal cells that retain the label should be considered LESC.
This promising strategy has been used to examine which
markers are expressed by these cells. They were found to stain
for K14, K15, CDH3 (P-cadherin), Wnt-4 [61], as well as to
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Figure 6. Increased putative LESC marker expression in the diabetic limbus in organ culture upon c-met overexpression. c-Met gene
transduction leads to elevated expression of K15, K17, and ANp63a in the limbus of organ-cultured diabetic corneas. The staining intensity
and regularity appear more normal (compare with Figure 1 and Figure 2). Note that in organ cultures keratins (especially K17) can also be
seen in suprabasal epithelial layers. e, epithelium, s, stroma. Bar=20 pm.

contain high levels of integrins 1 and B4 [60]. However, these ~ integrins) and thus cannot be considered specific for LESC.
markers are expressed not only in putative LESC but also in Additional experiments with label-retaining cells using a large
other limbal cells, as well as in central corneal cells (e.g., both  panel of antibodies are definitely needed to establish which

2186



http://www.molvis.org/molvis/v17/a236

© 2011 Molecular Vision

|:| c-Met
- Vector

Molecular Vision 20113 17:2177-2190 <http://www.molvis.org/molvis/v17/a236>

3.5 1

3.0 1
2.5 1

2.0 ] [ b

1.5 3

1.0 1
0.5 1

0.0

K15 K17 K19 ANp63a N-cadherin ABCG2 B4 Integrin

Figure 7. Statistical analysis of changes in the staining for various markers in the diabetic limbus in organ culture upon c-met overexpression.
Significant staining increase after c-met gene transduction was observed for K17, K19, and ANp63a. Changes in the expression levels of K15,
N-cadherin and 1 integrin did not reach significance. Data are mean+SEM. Thirteen pairs of c-met or vector treated organ cultured diabetic

corneas were used. *p<0.05. Details are in the Methods section.

existing markers are more specific for LESC. Currently, it is
generally agreed that a combination of several markers should
be used to characterize the presence of LESC in tissues and
cultures.

The problem of LESC markers has gained wide attention
because of recent success in transplantation of cultured limbal
epithelium to patients with LESC deficiency [26,66-71].
Unfortunately, not all such cultures, especially when only
small amounts of biopsied tissue were available for
autologous transplantation, have been characterized as to the
expression of putative LESC markers. Some authors,
however, to standardize the cultures for successful
transplantation, did examine one to several markers, e.g., p63
and K19 [69,70], confirming the presence of LESC-like cells
in the transplanted cultures. In line with low content of LESC
in corneal tissue, successful transplantations could be
achieved when the fraction of p63-positive cells exceeded 3%
[70].

In summary, we provide here the first account of
significant alterations of limbal stem cell compartment in
human diabetic corneas with respect to several commonly
used putative LESC markers. These abnormalities may lead
to diabetic LESC dysfunction and to clinically observed
epithelial problems in diabetics including poor wound
healing. Partial normalization of these pathological changes
by c-met overexpression may offer a possibility of improving
LESC function and general corneal health in diabetes by
specific gene therapy. Another promising approach could be
autologous transplantation of limbal epithelial cells to diabetic
patients with advanced disease after prior normalization of
their marker expression levels by gene therapy during culture.
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