
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4359 - 4365

4359
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Scattered,Simulteneous and Autonomous Access to Encrypted Database

Sagar.R.Jadhav

 Dept.of Computer science

Vathsalya Institute of Science and Technology
Telangana, India

srjadhav6@gmail.com

Prof. Ajaykumar Kurra

Dept.of Computer Science

Vathsalya institute of science and Technology
Telangana, India

 ajaykumarkurra@gmail.com

Abstract—Put the important data on cloud i.e Cloud provider Storage, It should giving the guarantee of security without loss of data while data

in use or not in use. Much of the option are available for providing storage services. We decelop an best architecture which integrates data over

the cloud and execute multiple operation simultaneously on Encrypted cloud. We are connecting multiple client those are physically distributed.

An another advantage we are eliminating the proxies for best performance .the architecture based on theoretical basis. We are providing the

prototype to the different client & Network delay.

Keywords-Security,cloud,database,secureDBaaS.

__*****___

I. INTRODUCTION

In a cloud,in which important data is stored at untrusted
third parties so here confidentiality of data important
parameter.this required meaningful data management
choices.Original data should be access by trusted parties
excluding internet and cloud providers;in untrusted network
information must be encrypted.here different types of cloud
services define different level of complexities to satisfying
these goals.in this paper ,we propose SecureDBaas that allows
cloud to take full benefits of DBaaS qualities ,without showing
unencrypted information to the cloud provider

The construction modeling outline was persuaded by a

triple objective: to permit various, free, and topographically

circulated customers to execute simultaneous operations on

scrambled information, including SQL explanations that alter

the database structure to safeguard information privacy and

consistency at the customer and cloud level; to take out any

middle of the road server between the cloud customer and the

cloud supplier. The likelihood of consolidating reliability,

what's more, versatility of a run of the mill cloud DBaaS with

information secrecy is exhibited through a model of

SecureDBaaS that backings the execution of simultaneous

what's more, free operations to the remote scrambled database

from numerous geologically conveyed customers as in any

decoded DBaaS setup. To accomplish these objectives,

SecureDBaaS coordinates existing cryptographic plans,

separation instruments, and novel procedures for

administration of encoded metadata on the untrusted cloud

databases. In paper contains a hypothetical exchange about

answers for information consistency issues because of

simultaneous and free customer gets to encoded information.

In this setting, we can't apply completely homomorphic

encryption plans [7] as a result of their extreme compu our

tational intricacy.

The SecureDBaaS construction modeling is customized to

cloud stages and does not present any middle person

intermediary on the other hand representative server between

the customer and the cloud supplier. Wiping out any trusted

middle of the server to permits SecureDBaaS to accomplish

the same accessibility, irresolute quality, and flexibility levels

of a cloud DBaaS. Other recommendations (e.g., [8], [9], [10],

[11]) in view of middle of the road server(s) were viewed as

impracticable for a cloud-based arrangement in light of the

fact that any intermediary speaks to a solitary purpose of

disappointment and a framework bottleneck that confines the

principle advantages (e.g., adaptability, accessibility, and

flexibility) of a database administration sent on a cloud stage.

Not at all like SecureDBaaS, architectures depending on a

trusted transitional intermediary don't bolster the most

commonplace cloud situation where geologically scattered

customers can simultaneously issue read/compose operations

and information structure adjustments to a cloud database.

A substantial arrangement of examinations taking into

account genuine cloud stages show that SecureDBaaS is early

material to any DBMS in light of the fact that it obliges no

adjustment to the cloud database administrations. Different

studies where the proposed construction modeling is liable to

the TPC-C standard benchmark for diverse quantities of

customers and system latencies demonstrate that the execution

of simultaneous read and compose operations not changing the

SecureDBaaS database structure is equivalent to that of

decoded cloud database. Workloads including changes to the

database structure are likewise bolstered by SecureDBaaS,

however at the cost of overheads that appear to be satisfactory

to accomplish the wanted level of information classifiedness.

The inspiration of these outcomes is that system latencies,

which are average of cloud situations, have a tendency to veil

the execution expenses of information encryption on reaction

time. The general conclusions of this paper are critical in light

of the fact that interestingly they exhibit the materialness of

encryption to cloud database benefits as far as practicality and

execution.

II. RELATED WORK

SecureDBaaS gives a few unique components that

separate it from past work in the field of security for remote

database administrations.

 It promises information classifiedness by permitting a

cloud database server to execute simultaneous SQL

operations (read/compose, as well as changes to the

database structure) over encoded information.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4359 - 4365

4360
IJRITCC | July 2015, Available @ http://www.ijritcc.org

 It gives the same accessibility, flexibility, and

versatility of the first cloud DBaaS on the grounds

that it does not oblige any moderate server. Reaction

times are influenced by cryptographic overheads that

for most SQL operations are conceal by system

latencies.

 Different customers, conceivably geologically

disseminated,can get to simultaneously and freely a

cloud database administration.

 It doesn't oblige a trusted intermediary or a trusted

intermediary in light of the fact that occupant

information and metadata put away by the cloud

database are constantly encoded.

 It is perfect with the most mainstream social database

servers, and it is material to diverse DBMS usage in

light of the fact that every single embraced

arrangement are database rationalist.

Cryptographic record frameworks and secure capacity

arrangements speak to the most punctual works in this field.

We don't detail the few papers and items (e.g., Sporc [3],

Sundr [4], Station [5]) on the grounds that they don't bolster

calculations on scrambled information.

 Distinctive methodologies ensure some secrecy (e.g., [12],

[13]) by appropriating information among distinctive suppliers

and by exploiting mystery sharing [14].In such a way, they

keep one cloud supplier to peruse its segment of information,

however data can be reproduced by conniving cloud suppliers.

A stage forward is proposed in [15], that makes it conceivable

to execute range inquiries on information what's more, to be

vigorous against tricky suppliers. SecureDBaaS varies from

these arrangements as it doesn't oblige the utilization of

various cloud suppliers, and makes utilization of SQL-mindful

encryption calculations to bolster the execution of most basic

SQL operations on scrambled information.

 SecureDBaaS relates all the more nearly to works utilizing

encryption to secure information oversaw by untrusted

databases. In such a case, a primary issue to address is that

cryptographic methods can't be naı¨vely connected to standard

DBaaS since DBMS can just execute SQL operations over

plaintext information.

Some DBMS architecture offer the likelihood of

scrambling information at the filesystem level through the

supposed Transparent Information Encryption highlight [16],

[17]. This element makes it conceivable to assemble a trusted

DBMS over untrusted stockpiling. On the other hand, the

DBMS is trusted and unscrambles information some time

recently their utilization. Subsequently, this methodology is

not appropriate to the DBaaS setting considered by

SecureDBaas, in light of the fact that we expect that the cloud

supplier is untrusted.

Different arrangements, for example, [18], permit the

execution of operations over encoded information. These

methodologies save information classifiedness in situations

where the DBMS is most certainly not trusted; in any case,

they oblige a changed DBMS engine what's more, are not

good with DBMS programming (both business and open

source) utilized by cloud suppliers. Then again, SecureDBaaS

is good with standard DBMS engine, and permits occupants to

manufacture secure cloud databases by utilizing cloud DBaaS

benefits as of now accessible. Thus, SecureDBaaS is more

identified with [9] and [8] that save information privacy in

untrusted DBMSs through encryption strategies, permit the

execution of SQL operations over scrambled information, and

are perfect with regular DBMS engine. On the other hand, the

building design of these arrangements is in view of a

transitional and trusted intermediary that intervenes any

association between every customer and the untrusted DBMS

server. The methodology proposed in [9] n by the creators of

the DBaaS model [6] meets expectations by encoding squares

of information rather than every information thing. At

whatever point an information thing that has a place with a

square is obliged, the trusted intermediary requirements to

recover the entire piece, to decode it, and to channel out

superfluous information that fit in with the same square. As a

result, this configuration decision obliges substantial

alterations of the first SQL operations created by each

customer, therefore bringing on noteworthy overheads on both

the DBMS server and the trusted intermediary. Different

works [10], [11] present streamlining and speculation that

broaden the subset of SQL administrators bolstered by [9],

however they share the same intermediary based structural

planning and its natural issues. On the other hand,

SecureDBaaS permits the execution of operations over

encoded information through SQL-mindful encryption

calculations. This system, at first proposed in CryptDB [8],

makes it conceivable to execute operations over encoded

information that are like operations over plaintext information.

By and large, the question arrangement executed by the

DBMS for scrambled and plaintext information is the same.

 The dependence on a trusted intermediary that

classifies [9] and [8] encourages the execution of a protected

DBaaS, and is appropriate to multitier web applications are

primary core interest. Then again, it causes a few downsides.

Since the intermediary is believed, its capacities can't be

outsourced to an untrusted cloud supplier. Thus, the

intermediary is intended to be executed and oversaw by the

cloud occupant. Accessibility, multiplicity, and flexibility of

the entire secure DBaaS administration are then limited by

accessibility, multiplibity, what's more, flexibility of the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4359 - 4365

4361
IJRITCC | July 2015, Available @ http://www.ijritcc.org

trusted intermediary, that turns into a solitary purpose of

disappointment and a framework conjection. Since high

accessibility, multithreading, and flexibility are among the

preeminent reasons that prompt the selection of cloud

administrations, this restriction blocks the pertinence of [9]

what's more, [8] to the cloud database situation. SecureDBaaS

settles this issue by letting customers unite specifically to the

cloud DBaaS, without the need of any middle part also,

without presenting new bottlenecks and single purposes of

disappointment.

III. 3.ARCHITECTURE DESIGN

SecureDBaaS is intended to permit various and autonomous

customers to unite specifically to the untrusted cloud DBaaS

with no middle of the server. Fig. 1 depicts the general

building design. We accept that an occupant association gets a

cloud database administration from an untrusted DBaaS

supplier. The inhabitant then sends one or more machines

(Customer 1 through N) and introduces a SecureDBaaS

ustomer on each of them. This customer allows a client to

unite with the cloud DBaaS to manage it, to peruse and

compose database, and indeed, even to make and change the

database tables after creation.

The data oversaw by SecureDBaaS incorporates plaintext

information, encoded information, metadata, and scrambled

metadata. Plaintext information comprise of data that an

occupant needs to store and process remotely in the cloud

DBaaS. To keep an untrusted cloud supplier from disregarding

classifiedness of inhabitant information put away in plain

shape, SecureDBaaS receives different cryptographic systems

to change plaintext information into encoded occupant

information and scrambled inhabitant information structures in

light of the fact that even the names of the tables and of their

segments must be encoded. SecureDBaaS customers deliver

likewise an arrangement of metadata comprising of data

needed to encode and decode information and additionally

other organization data. Indeed, even metadata are encoded

furthermore, put away in the cloud DBaaS.

SecureDBaaS moves far from existing architectures

that store only inhabitant information in the cloud database,

and recovery metadata in the customer machine [9] or split

metadata between the cloud database and a trusted proxy [8].

At the point while considering situations where different

customers can get to the same database simultaneously, these

past arrangements are wasteful. For instance, sparing metadata

on the customers would require grand systems for metadata

synchronization, and the strange possibility of permitting

different customers to get to cloud database benefit freely.

Arrangements of a trusted intermediary are more possible,

however they present a framework bottleneck that decreases

accessibility, flexibility, and multitasking of cloud database

administrations.

3.1 Data Management

We are considering tenant data are saved in a

relationaldatabase. We have to save the confidentiality of

thestored data and even of the database infrastrcture because

tableand column names may outcome information about saved

data.We distinguish the types for encrypting the information

structures and the inhabitant data

Encoded inhabitant information are put away through

secure tables into the cloud database. To allows

straightforward execution of SQL commands, each plaintext

table is changed into a protected table in light of the fact that

the cloud databases is untrusted. The name of a safe table is

created by scrambling the name of the comparing plaintext

table. Table names are encoded by method for the same

encryption calculation and an encryption key that is known not

the SecureDBaaS customers. Henceforth, the scrambled name

can be processed from the plaintext name. Then again, section

names of secure tables are haphazardly created by

SecureDBaaS;hence, regardless of the possibility that

distinctive plaintext tables have segments with the same

names, the names of the section of the comparing secure tables

are distinctive. This configuration decision enhances privacy

by keeping an antagonistic cloud database from speculating

relations among diverse secure tables through the

distinguishing proof of segments having the same encoded

name.

The information sort speaks to the kind of the

plaintext information (e.g., int, varchar). The encryption sort

recognizes the encryption calculation that is utilized to figure

all the information of a section. It is picked among the

calculations upheld by the SecureDBaaS executions. As in [8],

SecureDBaaS influences a few SQL-mindful encryption

calculations that permit the execution of proclamations over

scrambled information. It is imperative to watch that every

calculation bolsters just a subset of SQL administrators. These

components are examined in Appendix C, accessible in the

online supplemental material. At the point when SecureDBaaS

makes a scrambled table, the information kind of every

segment of the encoded table is dictated by the encryption

calculation used to encode inhabitant information. Two

encryption calculations are characterized good on the off

chance that they create encoded information that require the

same segment information sort.

The field confidentiality parameter allows a tenant to

define explicitly which columns of which secure table should

share the same encryption key (if any). SecureDBaaS offers

three field confidentiality attributes

 Column (COL) is the default confidentiality level that

should be used when SQL statements operate on one

column; the values of this column are encrypted

through a randomly generated encryption key that is

not used by any other column.

 Multicolumn (MCOL) should be used for columns

referenced by join operator, foreign keys, and other

operation involving two columns; the two columns

are encrypted through the same key.

 Database (DBC) is recommended when operations

involve multiple columns; in instance, it is

convenient to utilise the special encryption keys that

is generated and implicitly shared among all the

columns of the databases characterized by the same

secure type.

 The selection of the field confidentiality levels makes it

possible to execute SQL statements over encrypted data while

allowing a tenant to minimize key sharing.

3.2 Metadata Management

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4359 - 4365

4362
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Metadata generated by Secure DBaaS contain all the

in data that is necessary to manage SQL statements over the

encrypted database in a way transparent to the users. Metadata

managements strategies represent an original idea because

SecureDBaaS is the first architecture storing all metadata in

the untrusted cloud database together with the encrypted

inhabitant data. SecureDBaaS uses two types of metadata.

 Database metadata are related with the whole

databases.There is only one instance of this metadata

type for each database.

 Table metadata are associated with one secure

table.Each table metadata contain all information that

is necessary to encrypt and decrypt data of the

associated secure table.

Database metadata have the encryption keys that are

used for the secure types having the field confidentiality

set to database. A multiple encryption key is associated

with all the possible combinations of data type and

encryption type.Hence, the database metadata represents a

keyring and do not contain any information about tenant

data.

The structure of a table metadata is shown in Fig. 2.

Table metadata contain the name of the related secure table

and the unencrypted name of the related plain text table.

Moreover, table metadata include column metadata for each

column of the related secure tables. Each column metadata

contain the following information.

 Plain name: the name assign corresponding column

of the plaintext tables.

 Coded name: the name allocated column of the secure

table. This is the only data that links a column

to the corresponding plain texts column because

column names of secure tables are randomly

generated.

 Secure type: the secure type of the column, as

describe in Section 3.1. This allows a SecureDBaaS

client to be notify about the data type and the

encryption policies associated with a column.

 Encryption key: the key used to encode and decode

all the information stored in the column.

 SecureDBaaS stores metadata in the metadata

storage table that is situated in the untrusted cloud as the

database. This is a unique decision that increases adaptability,

yet opens two novel issues as far as effective information

recovery and information classifiedness. To permit

SecureDBaaS customers to control metadata through SQL

articulations, we spare database and table metadata in an even

shape. Indeed, even metadata secrecy is ensured through

encryption. The structure of the metadata stockpiling table is

indicated in Fig. 3. This table uses one line for the database

metadata, and one column for every table metadata.

Database and table metadata are encoded through the

same encryption key before being commit. This encryption

key is known as an master key. Just trusted customers that

definitely know the master key can unscramble the metadata

and gain data that is important to encode and decode

inhabitant information. Every metadata can be recovered by

customers through a related ID, which is the essential key of

the metadata stockpiling table. This ID is figured by applying

a Message Authentication Code (MAC) capacity to the name

of the item (database or table) depicted by the relating line.

The utilization of a deterministic MAC capacity permits

customers to recover the metadata of a given table by knowing

its plaintext name.

IV. OPERATIONS

In this area, we layout the setup setting operations did

by a database manager (DBA), and we describe the execution

of SQL operations on encoded information in two situations: a

naive setting described by a client, and reasonable connections

where the database administrations are gotten to by

simultaneous customer

4.1 Setup Phase

We define how to initialize a SecureDBaaS

architecture from a cloud database service adapted by a

inhabitant from a cloud provider. We consider that the DBA

make the metadata stockpiling tables that toward the starting

contains only the database metadata, and is not the table

metadata. The DBA introduces the database metadata through

the SecureDBaaS client by using randomly generated

encryption keys for any combinations of data types and

encryption types, and save them in the metadata storage tables

after encryption through the master key. Then, the DBA

sprades the master key to the legitimate users. User access

control olicies are administrated by the DBA through some

standard data control language as in any unencrypted database.

For example, if the database has to support a join

statement among the value of T1.C2 and T2.C1, the DBA

must be use the MCOL field confidentiality for T2.C1 that

references T1.C2 (solid arrow). In such a way, SecureDBaaS

can be retrieve the encryption key specified in the column

metadata of T1.C2 from the metadata table M1 and can be use

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4359 - 4365

4363
IJRITCC | July 2015, Available @ http://www.ijritcc.org

the similar key for T2.C1. The solid arrow from M2 to M1

denotes that they explicitly share the encryption algorithm and

the key.

At the point when operations (e.g., arithmetical,

request comparison)involve more than two segments, it is

helpful to embrace the DBC field secrecy. This has a twofold

advantage:we can utilize the unique encryption key that is

created and verifiably shared among every one of the sections

of the database portrayed by the same secure sort; we restrict

conceivable consistency issues in a few situations described by

simultaneous customers (see Appendix B, accessible in the

online supplemental material). For instance, the sections

T1.C3,T2.C3, and T3.C1 in Fig. 4 have the same secure sort.

Hence,they reference the database metadata, as spoke to by the

dashed line, and utilize the encryption key connected with

their information and encryption sorts. As they have the same

information and encryption sorts, T1.C3, T2.C3, and T3.C1

can utilize the same encryption key regardless of the

possibility that no immediate reference exists between them.

The database metadata as of now contain the encryption key K

connected with the information and the encryption sorts of the

three segments, in light of the fact that the encryption keys for

all mixes of information and encryption sorts are made in the

introduction stage. Subsequently, K is utilized as the

encryption key of the T1.C3, T2.C3, and T3.C1 segments and

replicated in M1, M2, and M3.

4.2 Sequential SQL Operations
 The first connection of the client with the cloud

DBaaS is for validation purposes. SecureDBaaS depends on

standard validation and approval systems gave by the first

DBMS server. After the authentication,a client interfaces with

the cloud database through the SecureDBaaS customer.

SecureDBaaS dissects the first operation to distinguish which

tables are included and to recover their metadata from the

cloud database. The metadata are retrive through the master

key and their data is utilized to decipher the first plain SQL

into an inquiry that works on the scrambled database.

4.3 Concurrent SQL Operations
 The support to simultaneous execution of SQL

articulations issued by numerous autonomous customers is a

standout amongst the most essential advantages of

SecureDBaaS regarding best in class arrangements. Our

construction modeling must ensure consistency among

scrambled inhabitant information and encoded metadata on the

grounds that defiled or outdated metadata would keep

customers from interpreting scrambled occupant information

bringing about changeless information misfortunes. An

exhaustive investigation of the conceivable issues and

arrangements identified with simultaneous SQL operations on

scrambled occupant information and metadata is contained in

Appendix B, accessible in the online supplemental material.

Here, we comment the significance of recognizing two classes

of explanations that are upheld by SecureDBaaS: SQL

operations not bringing on adjustments to the database

structure,such as read, compose, and upgrade; operations

including changes of the database structure through creation,

evacuation, and alteration of database tables.

V. EXPERIMENTAL RESULT

We describe the applicability of SecureDBaaS to

differents cloud DBaaS outcomes by implementing and

handling encrypted database operations on emulated and real

cloud architecture. The present version of the SecureDBaaS

prototype handles PostgreSQL, MySql, and SQL Server

relational databases. As a first outcome, we can be analyse that

porting SecureDBaaS to different DBMS required minor

changes related to the database connector, and nominal

updations of the codebase. We refers to Appendix C, available

in the online supplemental materials, for an in-depth

description of the prototype implementation.

Different tests are situated to confirm the operations

of SecureDBaaS on distinctive cloud database suppliers.

Examinations are done in Xeround [22], Postgres Plus Cloud

Database [23], Windows SQL Azure [24], furthermore on an

IaaS suppliers, similar to Amazon EC2 [25], that needs a

manual setup of the database. The main gathering of cloud

seller offer prepared to-utilize answers for occupants, however

they don't permit a full access to the database framework. For

e.g, Xeround gives a standard MySql interface and exclusive

APIs that adaptability and accessibility of the cloud database,

yet don't permit an immediate access to the machine.This

confine the establishment of extra programming apparatuses,

and any customization. On the positive side,SecureDBaaS

utilizing simply standard SQL charges can scramble inhabitant

information on any cloud database administration. Some best

in class reckoning on encoded information may require the

establishment of custom libraries on the cloud

architecture.This is the situation of Postgres Plus Cloud that

gives SSH access to enhance the database with extra

capacities. We utilise the Emulab [26] testbed that provide us a

controlled environment with several machines, ensuring

repeatability of the experiments for the variety of scenarios to

consider in terms of workload models, number of clients, and

network latencies.

In first part we introduce secure DBaas & client

evaluate SQL command an encrypted database via LAN.To

evaluate performance overhead to encrypt SQL operations.we

concentrate on most frequently executed

SELECT,INSERT,UPDATE and DELETE operation

statement of TPC-C benchmark.in fig 6 & 7,we compare

response time.Y-axis gives knowledge about response time in

ms,X-axis represent SQL operation.Each data manipulation

command have its own response time.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4359 - 4365

4364
IJRITCC | July 2015, Available @ http://www.ijritcc.org

In second part of experiment we evaluate effect of

network latency and simultaneously on the utilization of cloud

database from distinct client ,to this reason we identify

network delay via metwork traffic shaping via Linux kernel

by synthesize delay about 20 to 150 ms in client – server

architecture.

VI. CONCLUSION

We propose an imaginative building design that

ensures privacy of information put away out in the open cloud

databases.Unlike best in class approaches, our answer does not

depend on a middle of the road intermediary that we consider

a solitary purpose of disappointment and a bottleneck

restricting accessibility and adaptability of ordinary cloud

database administrations. A substantial piece of the

examination incorporates answers for backing simultaneous

SQL operations (counting articulations adjusting the database

structure) on scrambled information issued by heterogenous

and potentially geologically scattered customers. The proposed

structural engineering does not oblige changes to the cloud

databases, and it is promptly appropriate to existing cloud

DBaaS, for example, the tested PostgreSQL Plus Cloud

Database [23], Windows Azure [24], and Xeround [22]. There

are no hypothetical and down as far as possible to extend our

answer for different stages and to incorporate new encryption

calculations.

It merits watching that trial results of the TPC-C

standard benchmark demonstrate that the execution effect of

information encryption on reaction time gets to be

insignificant on the grounds that it is conceal by system

latencies that are run of the mill of cloud situations.

Specifically, simultaneous read and compose operations that

don't change the structure of the encoded database cause

insignificant overhead.Dynamic situations portrayed by

(conceivably) simultaneous adjustments of the database

structure are upheld, however at the cost of high

computational expenses. These execution results open the

space to future enhancements that we are researching.

ACKNOWLEDGMENT

I feel great in expressing our deepest sense of gratitude to
our guide and HOD Prof. Ajaykumar Kurra for his
encouragement and enlightened comments throughout this
project work. His appreciative suggestion always motivated us
for putting most willing efforts on my study during project

report. We are also thankful to the concerned authorities who
directly or indirectly helped us in the project.

REFERENCES

[1] M. Armbrust et al., “A View of Cloud Computing,” Comm.
of the ACM, vol. 53, no. 4, pp. 50-58, 2010.

[2] W. Jansen and T. Grance, “Guidelines on Security and
Privacy in Public Cloud Computing,” Technical Report
Special Publication 800-144, NIST, 2011.

[3] A.J. Feldman, W.P. Zeller, M.J. Freedman, and E.W.
Felten, “SPORC: Group Collaboration Using Untrusted
Cloud Resources,” Proc. Ninth USENIX Conf. Operating
Systems Design and Implementation, Oct. 2010.

[4] J. Li, M. Krohn, D. Mazie`res, and D. Shasha, “Secure
Untrusted Data Repository (SUNDR),” Proc. Sixth
USENIX Conf. Opearting Systems Design and
Implementation, Oct. 2004.

[5] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M.
Dahlin, and M. Walfish, “Depot: Cloud Storage with
Minimal Trust,” ACM Trans. Computer Systems, vol. 29,
no. 4, article 12, 2011.

[6] H. Hacigu¨mu¨ s¸, B. Iyer, and S. Mehrotra, “Providing
Database as a Service,” Proc. 18th IEEE Int’l Conf. Data
Eng., Feb. 2002.

[7] C. Gentry, “Fully Homomorphic Encryption Using Ideal
Lattices,” Proc. 41st Ann. ACM Symp. Theory of
Computing, May 2009.

[8] R.A. Popa, C.M.S. Redfield, N. Zeldovich, and H.
Balakrishnan, “CryptDB: Protecting Confidentiality with
Encrypted Query Processing,” Proc. 23rd ACM Symp.
Operating Systems Principles, Oct. 2011.

[9] H. Hacigu¨mu¨ s¸, B. Iyer, C. Li, and S. Mehrotra,
“Executing SQL over Encrypted Data in the Database-
Service-Provider Model,” Proc. ACM SIGMOD Int’l Conf.
Management Data, June 2002.

[10] J. Li and E. Omiecinski, “Efficiency and Security Trade-
Off in Supporting Range Queries on Encrypted Databases,”
Proc. 19th Ann. IFIP WG 11.3 Working Conf. Data and
Applications Security, Aug. 2005.

[11] E. Mykletun and G. Tsudik, “Aggregation Queries in the
Database-as-a-Service Model,” Proc. 20th Ann. IFIP WG
11.3 Working Conf. Data and Applications Security,
July/Aug. 2006.

[12] D. Agrawal, A.E. Abbadi, F. Emekci, and A. Metwally,
“Database Management as a Service: Challenges and
Opportunities,” Proc. 25th IEEE Int’l Conf. Data Eng.,
Mar.-Apr. 2009.

[13] V. Ganapathy, D. Thomas, T. Feder, H. Garcia-Molina, and
R. Motwani, “Distributing Data for Secure Database
Services,” Proc. Fourth ACM Int’l Workshop Privacy and
Anonymity in the Information Soc., Mar. 2011.

[14] A. Shamir, “How to Share a Secret,” Comm. of the ACM,
vol. 22, no. 11, pp. 612-613, 1979.

[15] M. Hadavi, E. Damiani, R. Jalili, S. Cimato, and Z. Ganjei,
“AS5: A Secure Searchable Secret Sharing Scheme for
Privacy Preserving Database Outsourcing,” Proc. Fifth Int’l
Workshop Autonomous and Spontaneous Security, Sept.
2013.

[16] “Oracle Advanced Security,” Oracle Corporation,
http://www.
oracle.com/technetwork/database/options/advanced-
security, Apr. 2013.

[17] G. Cattaneo, L. Catuogno, A.D. Sorbo, and P. Persiano,
“The Design and Implementation of a Transparent
Cryptographic File System For Unix,” Proc. FREENIX
Track: 2001 USENIX Ann. Technical Conf., Apr. 2001.

[18] E. Damiani, S.D.C. Vimercati, S. Jajodia, S. Paraboschi,
and P. Samarati, “Balancing Confidentiality and Efficiency
in Untrusted Relational Dbmss,” Proc. Tenth ACM Conf.
Computer and Comm. Security, Oct. 2003.

[19] L. Ferretti, M. Colajanni, and M. Marchetti, “Supporting
Security and Consistency for Cloud Database,” Proc.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 7 4359 - 4365

4365
IJRITCC | July 2015, Available @ http://www.ijritcc.org

Fourth Int’l Symp. Cyberspace Safety and Security, Dec.
2012.

[20] “Transaction Processing Performance Council,” TPC-C,
http:// www.tpc.org, Apr. 2013.

[21] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,
and P. O’Neil, “A Critique of Ansi Sql Isolation Levels,”
Proc. ACM SIGMOD, June 1995.

[22] “Xeround: The Cloud Database,” Xeround,
http://xeround.com, Apr. 2013.

[23] “Postgres Plus Cloud Database,” EnterpriseDB, http://
enterprisedb.com/cloud-database, Apr. 2013.

[24] “Windows Azure,” Microsoft corporation, http://www.
windowsazure.com, Apr. 2013.

[25] “Amazon Elastic Compute Cloud (Amazon Ec2),” Amazon
Web Services (AWS), http://aws.amazon.com/ec2, Apr.
2013.

[26] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An
Integrated Experimental Environment for Distributed
Systems and Networks,” Proc. Fifth USENIX Conf.
Operating Systems Design and Implementation, Dec. 2002.

[27] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D.
Shasha, “Making Snapshot Isolation Serializable,” ACM
Trans. Database Systems, vol. 30, no. 2, pp. 492-528, 2005.

[28] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-
Preserving Encryption Revisited: Improved Security
Analysis and Alternative Solutions,” Proc. 31st Ann. Conf.
Advances in Cryptology (CRYPTO ’11), Aug. 2011.

[29] “IP Latency Statistics,” Verizon,
http://www.verizonbusiness. com/about/network/latency,
Apr. 2013.

http://www.ijritcc.org/

