
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 6 4236 – 4240

4236
IJRITCC | June 2015, Available @ http://www.ijritcc.org

Synchronization Algorithms for Multi-cores and Multiprocessors

Cherish G

M.Tech, Dept. of CSE

RNSIT

Bengaluru, India

e-mail: cherish.gn@gmail.com

Satish Kumar T

Asst. Professor, Dept. of CSE

RNSIT

Bengaluru, India

e-mail: satish.savvy@gmail.com

Abstract— A distributed system is a group of processors that do not allocate memory. As an alternative, each processor has its

own local memory, and the processors communicate with one another through communication lines such as local-area or wide-

area networks. The processors in a distributed system vary in size and function. Such systems may include small handheld or real-

time devices, personal computers, workstations, and large mainframe computer systems. Distributed systems, will have their own

set of unique challenges, including synchronizing data and creating sense of conflicts. Effective synchronization algorithms

performance depends on runtime factors that are rigid to predict. The designers have protocols to employ the synchronization

operation and waiting mechanisms to wait for synchronization delays. In this paper an effort is made to investigate

synchronization algorithm that vigorously select waiting mechanisms and protocols in response to runtime factors so as to attain

enhanced performance.

Keywords- Distributed Systems,Election Algorithms, Beowulf Cluster, Performance Evaluation

__*****___

I. INTRODUCTION

A distributed system is a collection of autonomous

computers that is perceptible to the users of the system as a

single computer. This definition has two features. The first

feature deals with hardware where the computers are

independent. The second feature deals with software where the

users think of the system as a distinct computer. Both are

crucial.

Synchronization in centralized systems is primarily

accomplished through shared memory. Some distributed

algorithms need the use of a coordinator. If the coordinator

fails, the system can carry on execution by restarting a new

replica of the coordinator. It can do so by maintaining a

backup coordinator that is ready to assume responsibility if the

coordinator fails. Another approach is to choose the new

coordinator after the coordinator has failed. The algorithms

that govern where a new copy of the coordinator must be

resumed are called election algorithms. Two algorithms, the

bully algorithm and the ring algorithm, can be used to choose

a new leader in case of failures.

In distinct CPU systems, mutual exclusion, critical regions

and other synchronization problems are usually interpreted

using techniques such as semaphores and monitors. These

techniques are not suitable to employ in distributed systems

since they consistently rely on the survival of shared memory.

For example, two processes that are cooperating by means of a

semaphore should be capable of using the semaphore. If they

are operating on the same computer, they can distribute the

semaphore by storing it in the kernel, and then accomplish

system calls to access it. Nevertheless if they are running on

various computers, this scheme no longer works and additional

techniques are required.

An appeal for highly consistent and synchronous systems is

viewed. As an outcome, there has been a reasonable change

from centralized systems to distributed systems. There are

only some disadvantages for this system. The major one is that

the different nodes preserve their individual time by means of

local clocks and their values in time may not be same for the

dissimilar nodes i.e. there is no global clock inside the system

so that variety of actions in the distributed atmosphere can be

synchronized. The variety of clocks in the system if set to an

ordinary time value at a moment, wander separately owing to

inevitable reasons. Therefore some sort of uninterrupted

mechanism for synchronization is required so that they can

organize and work mutually to accomplish the objectives of

the distributed system.

II. EXISTING SYSTEM

Leader election is the method of nominating a single

process as the coordinator of some task scattered across

several computers. Various distributed algorithms require one

process to operate as initiator, sequencer, coordinator or to

carry out some special role. We have already seen quite a few

examples, such as the coordinator in the centralized mutual

exclusion algorithm. Generally it does not subject to which

process takes on this control, but any one of the process is

allowed to do it.

The paper by Scott D Stoller [1] proposed a substantial effort

on self-stabilizing algorithms for leader election which shows

that the Bully Algorithm without difficulty can be modified for

asynchronous systems with exploiting a failure detector, as an

alternative of precise time-outs; this yields a standard way out

to leader election in synchronous systems.

http://www.ijritcc.org/
mailto:name@xyz.com
http://en.wikipedia.org/wiki/Process_%28computing%29

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 6 4236 – 4240

4237
IJRITCC | June 2015, Available @ http://www.ijritcc.org

Priyanka Gupta and Rajeev G.Vishwakarma [2] focused on

comparison of different available algorithms to support their

structure, assumptions and the complexity. Here the message

complexities of various algorithms from various papers are

taken. In this paper the newly proposed Bully algorithm uses

several nodes with its unique identification number.

Seema Balhara, Kavita Khanna [3] focuses on the information

about the various existing leader election mechanisms which is

used for selecting the leader in different problems. The leader

election is critical crisis in distributed system as data is

distributed amongst different nodes which are geographically

separated.

The paper by Vaibhav P. Gajre [4] compares Bully election

algorithms in distributed systems by various authors. In the

paper, comparison of base and systematic version of bully

algorithm to minimize the number of messages when electing

the coordinator is analyzed and deals with how a process

recovers from a crashed state in distributed systems.

Hetal Katwala, Prof. Sanjay Shah [6] proposed a comparative

analysis of the different election algorithms in distributed

system and shows different election algorithm with different

approach.

The election algorithm proposed by Sandipan Basu [7] is an

enhancement of original Bully algorithm proposed by Hector

Garcia-Monila proposed algorithm overcomes the overhead of

sending too many messages between nodes.

III. PROPOSED SYSTEM

Distributed systems consist of multiple processors that

communicate through a network. To control the

communication between different nodes and to interchange the

data between them, a leader among them is required. In the

paper, different election algorithms for selecting the leader in

distributed systems is being implemented and also analogizing

the performance of each of these election algorithms. These

election algorithms are implemented using the message

passing interface (MPI 1.4.2).

IV. DESIGN

The system architecture is shown in fig 1. The purpose of

the design is to plan the solution to the problem specified by

the requirements manuscript. This stage is the first step in

moving from problem to the solution domain.

The next layer is the implementation layer. Runtime

parameters are chosen and selected benchmark kernels are run.

Algorithms are synchronized to find out the optimal values for

these parameters. Statistical method is used to find out the

parameters which really affect the performance.

The third layer is the communication layer where the

messages can be passed through the network. A Beowulf

cluster is rigged up consisting of 4 nodes which can be

maximized as per the requirement. Open MPI is used for

passing messages between the master and the slave nodes.

File Handling Functions

Open MPI

Implementation

Layer

Benchmark

Programs

Synchronization

Algorithms

Communication

Layer
TCP/IP SSH NFS

Fig 1. System Architecture

Network File System (NFS) is used to allocate a

common folder containing the source code. Open MPI makes

use of SSH to communicate inside the nodes. Accordingly

open SSH has to be installed and the password authentication

has to be detached on all nodes. TCP/IP protocol is used for

the communication between the nodes.

A. ELECTION ALGORITHMS

Various distributed algorithms require one process to

operate as coordinator, initiator, sequencer, or if not to

achieve some unique role. In common, it does not subject to

which process takes on this control.

 If all processes are precisely the same, there is

no procedure to choose one of them as unique, without any

distinguishing characteristics. Accordingly, we will assume

that each process has a unique number, for example its

network address. In general, an election algorithm makes an

effort to find the process with the highest unique identification

number and elect it as coordinator.

 Moreover, we also assume that each process

knows the process identification number of all other process.

The processes do not know which ones are currently active

and which ones are currently inactive. The purpose of an

election algorithm is to make sure that when an election starts,

it concludes with all processes approving on who the new

coordinator is to be.

1. Bully algorithm

The bully algorithm is proposed by Garcia-Molina [G82] and

works on a completely connected network of processes. It

assumes that communication links are fault-free, processes can

fail only by stopping, and failures can be detected using

timeout. Each process has a unique id, Pi_UID. Once a

failure of the current leader is detected, the bully algorithm

allows the non-faulty process with largest id eventually to

choose itself as the leader. The algorithm uses three different

types of messages: election, reply, and leader.

Algorithm:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 6 4236 – 4240

4238
IJRITCC | June 2015, Available @ http://www.ijritcc.org

Begin

 Process P finds that coordinator is down.

 P initiates leader election by broadcasting

election message to all processes.

Each process replies with its unique, Pi_UID

 if Pi_UID > P then

 P waits for the response

 if there is no reply with Pi_UID then

 Promote that host to leader

 if Pi_UID < P then

 P initiates another election

end

2. Ring algorithm

An absolutely different approach to attain mutual exclusion in

a distributed system (e.g. Ethernet). In ring election algorithm

the nodes (the slaves and the master) are ordered in a coherent

ring in which they can only communicate with their consistent

neighbors. If the master node fails, only the direct neighbors of

the master will realize. The slave nodes will then proceed

messages around the ring of slaves to notice which one has the

highest unique identifier, UID (same as the bully algorithm)

and then it becomes the new coordinator.

Algorithm:

Begin

 Process P finds that coordinator is down.

 P initiates leader election by broadcasting

election message to its next process.

 if receiving process is down then

 Sender skips over it and sends election

message with its UID to all other processes

along the ring

 else

sender sends election message with its

UID to all other processes along the ring

 Repeat the above statements for each process

 along the ring.

 Process P determines the highest UID and

chooses it as new coordinator

end

3. LeLann-Chang-Roberts (LCR) algorithm

This algorithm is for ring networks. Each message in the

network goes from one process to another process, i.e. no

broadcasting. This means that each process knows exactly

about only one other process - its neighbor. This could be

viewed as linked list.

Assume clockwise unidirectional ring. One or more Pi’s where

Pi represents the number of processes along the ring that can

obtain the initiative and initiate an election, by forwarding an

election message containing their process id to Pi+1. When a

Pi unexpectedly or upon receiving a message goes in an

election, it chooses itself as a member. If the Pi receiving an

election message has a larger process id and is not already a

member, then it sends an election message with its own id to

Pi+1. If its own process id is smaller, it passes on the message

with the id it has received to the next node. If it receives a

message with its unique process id then it announces itself as

the leader.

Algorithm:

Begin

Send message with identifier = i to other processes

if identifier j of current process > i then

Send the message to neighbors with

identifier i

else

 Drop message with identifier i

 Send the message with identifier j to

neighbors

Continue this process until it receives back a message

with its identifier

 if a process receives a message with its id then

 Process = leader

 else

 return null

end

4. Hirschberg-Sinclair (HS) algorithm

This algorithm (1980) requires C = O(n log n) message

complexity for finding the largest (or smallest) of a set of n

uniquely numbered processors ordered in a circle. However,

we now allow bidirectional communication. Instead of sending

i
th

 identity all the way around the ring, a process p sends it in

both directions to travel some distance 2
k
 away, where k is

incremented in phases. Traveling identities are dropped and

passed as in Chang‐Roberts. Only if the identity comes back

from both directions, p proceeds to phase k+1. Otherwise, it

only relays messages between its neighbors.

Algorithm:

To initiate an election (phase 0):

Send (ELECTION (my_id, 0, 0)) to left and right;

Upon receiving a message ELECTION (j; k; d) from left

(right):

if ((j >my_id) ^ (d _ 2k)) then

send (ELECTION(j; k; d + 1)) to right (left);

if ((j >my_id) ^ (d = 2k)) then

send (REPLY(j; k)) to left (right);

if (my_id = j) then announce itself as leader;

Upon receiving a message REPLY (j; k) from left (right):

if (my_id!= j) then

send (REPLY(j; k) to right (left);

else

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 6 4236 – 4240

4239
IJRITCC | June 2015, Available @ http://www.ijritcc.org

if (already received REPLY(j; k))

 send (ELECTION (j; k + 1; 1)) to left and right;

B. EXPERIMENTAL SETUP

Table 1 show the system configuration used in setting up the

Beowulf cluster. All experiments undertake in this research

uses a set of 1 to 50 nodes respectively.

Table 1: Target Architecture

of nodes 1-50

of cores per node 4

Memory per node 4GB

Open MPI version 1.4.2

Make Dell 390 Optiplex

Processor Intel core i5

OS Ubuntu 12.04LTS

Clock Frequency: 2.5GHz

The beowulf cluster is configured as shown in figure 2.

Node

Network Switch

Node Node

Node Node Node

Master

Fig. 2 Beowulf Cluster

V. RESULTS

The performance of Bully algorithm, Ring algorithm,

LeLann-Chang-Roberts algorithm, Hirschberg-Sinclair

algorithm on the proposed architecture is represented using

graphs in figure 3 and figure 4.

Algorithm No. of

Procs

crash

process

Initiator

process

New

Coordi

-nator

Time

Bully

algorithm

7 7 3 6 34.0039

10 10 4 9 42.0047

50 50 23 49 126.011

100 100 21 99 334.027

200 200 56 199 594.047

Ring

algorithm

7 7 3 6 22.0016

10 10 4 9 26.0020

50 50 23 49 68.0053

100 100 21 99 172.013

200 200 56 199 302.022

Table 2: Performance of Bully vs. Ring algorithm

Table 2 shows the timing needed for Bully and Ring leader

election algorithms to choose a leader. Similarly in table 3

LCR vs. HS is shown. The table shows the number of

processors where at any point in time a process might be

crashed and an initiator is chosen for electing a leader.

Fig 3: Comparison of Bully vs. Ring algorithm

In figure 3, a comparison between Bully vs. Ring algorithm is

shown. Similarly in figure 4, the comparison of LCR vs. HS is

shown. The graph shows Ring algorithm out performing Bully

and LCR proving better than HS algorithms.

Algorithm No of

procs

Initiator

process

New

coordinator

Time

LCR

algorithm

10 Random

number

10 0.00022

50 Random

number

50 0.00046

100 Random

number

100 0.00090

200 Random

number

200 0.00132

Hirschber

g-Sinclair

algorithm

10 Random

number

10 0.00104

50 Random

number

50 0.00146

100 Random

number

100 0.00190

200 Random

number

200 0.00305

Table 3: Performance of LCR vs. HS algorithm

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 6 4236 – 4240

4240
IJRITCC | June 2015, Available @ http://www.ijritcc.org

Fig 4: Comparison of LCR vs. HS algorithm

VI. CONCLUSION

Basically the paper tries to enforce the implementation of

different kinds of distributed algorithms from which we can

achieve synchronization across network. The algorithms that

are implemented partly takes help of the underlying

technologies of OpenMPI way of working in order to exploit

the optimization of the code for implementing the set of

algorithms chose. Therefore this paper aims at simulating the

algorithms which are non-deterministic for the real time

implementation of it based on the kind of application and also

the kind of synchronization that needs to achieve. Hence we

can conclude that this paper aims in providing the algorithms

not only as a tool for implementation but also gives a proper

visualization graphically for understanding the working of the

implemented algorithms as a whole package and can even test

the algorithms with a click of mouse across different systems

assuming there’s a cluster or else runs on the host system

itself.

REFERENCES

[1] Abraham Silberschatz, “Communication and Synchronization in
Distributed Systems”, IEEE Transactions on software engineering, Vol.
se-5, No. 6, November 1979.

[2] Scott D. Stoller, “Leader election in Distributed systems with crash
failures”, Dept. of Computer Science, Indiana university, Bloomington,
IN 47405, USA, 17th July 1997.

[3] Priyanka Gupta, Rajeev G. Vishwakarma, “Comparison of Various
Election algorithms in Distributed System”, International Journal of
Computer Applications (0975 – 8887) Volume 53– No.12, September
2012.

[4] Seema Balhara, Kavita Khanna, “Leader Election Algorithms in
Distributed System”, International Journal of Computer Science and
Mobile Computing, IJCSMC, Vol. 3, Issue. 6, June 2014.

[5] Vaibhav P. Gajre, “Comparison of Bully Election Algorithms in
Distributed System”, International Journal of Scientific and Research
Publications, Volume 3, Issue 9, September 2013.

[6] Priyanka D. Bhute, “A New Approach for Electing a Coordinator in
Anonymous System”, International Journal of Computer Science and
Information Technologies, Vol. 5 (3), 2014.

[7] Hetal Katwala1, Prof. Sanjay Shah, “Study on Election Algorithm in
Distributed System”, IOSR Journal of Computer Engineering
(IOSRJCE), Volume 7, Issue 6 (Nov. - Dec. 2012).

[8] H. Garcia Molina, “Elections in a Distributed Computing System.” IEEE
Trans. Comp, 1982, vol.31, no. 1, pp.48-59.

[9] N. Fredrickson and N. Lynch, “Electing a Leader in a Synchronous
Ring.”J.ACM, 1987, vol.34, no.1, pp.98-115.

[10] S. Park, Y. Kim and J.S. Hwang, “An Efficient Algorithm for Leader-
Election in Synchronous Distributed Systems,” IEEE TENCON, 1999.

[11] Sandipan Basu, “An Efficient Approach of Election Algorithm in
Distributed Systems”, Indian Journal of Computer Science and
Engineering (IJCSE), vol. 2, No. 1, pp. 16-21.March 2011.

[12] Le Lann, G., "Distributed Systems – Towards a Formal Approach", in
Information Processing 77, B. Gilchrist, Ed.Amsterdam, The
Netherlands: North-Holland, pp. 155-160, 1977.

[13] M. S. Kordafshari, M. Gholipour, M. Jahanshahi, A.T. Haghighat,
“Modified Bully Election Algorithm In Distributed System”, Wseas
Conferences, Cancun, Mexico, May 11-14, 2005.

[14] Sinha P.K, Distributed Operating Systems Concepts and Design,
Prentice-Hall of India private Limited, 2008.

[15] A.Arghavani, E.Ahmadi, A.T.Haghighat, “Improved Bully Election
Algorithm in Distributed Systems”, 5th International Conference on IT
& Multimedia at UNITEN (ICIMU 2011) Malaysia, 2011.

[16] Sung-Hoon Park, “A Stable Election Protocol based on an Unreliable
Failure Detector in Distributed Systems”, Proceedings of IEEE Eighth
International Conference on Information Technology: New Generations,
pp. 976-984, 2011.

[17] Muhammad Mahbubur Rahman, Afroza Nahar, “Modified Bully
Algorithm using ElectionCommission”, MASAUM Journal of
Computing (MJC), Vol.1No.3, pp.439-446, October 2009, ISSN 2076-
0833.

[18] Andrew S and Tanenbaum, “Distributed Systems Principles and
Paradigms”, Beijing: Tsinghua University Press, pp.190–192, 2008.

[19] M.Gholipur, M.S.Kordafshri, M.Jahanshani, A.M.Rahmani,“ Modified
Bully Election Algorithm in Distributed Systems” 2005.

[20] Operating System Concepts (16 th Chapter Distibuted Synchronization)
GergGagne, Abraham Silberschatz, Peter B. Galvin.

[21] Tai Yun Kim,"A Leader Election Algorithm in a Distributed Computing
System", Department of Computer Science, Korea University-1, Ga,
Anam: Dong, Seoul, pp. 136-701.

[22] Chang-Young Kim, Sung-HoonBauk, “The Election Protocol for
Reconfigurable Distributed Systems”, ICWN, pp. 295-301, 2006.

[23] Prof. Sanjay Shah & HetaJasmin Jhaveri, “A Dynamic Election Strategy
in Distributed System”, International Journal of Engineering Research
and Technology (IJERT), Vol. 1 Issue 3, May – 2012.

[24] Md. Golam Murshed and Alastair R. Allen, “Enhanced Bully Algorithm
for Leader Node Election in Synchronous DistributedSystems”,
Computers 2012, Vol. 1, pp. 3-23.

[25] Masafumi Yamashita and Tsunehiko Kameda. "Leader Election Problem
on Networks in which Processor Identity Numbers Are NotDistinct",
IEEE Transactions on parallel and distributed systems vol 10, NO 9,
September 1999.

[26] Jeremie Chalopin, Emmanuel Godard, Yves Metivier, “Election in
partially anonymous networks with arbitrary knowledge in message
passing systems”, Springer-Verlag 2012.

[27] Chang , E. and Roberts, R. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Comm. ACM,
22, 5 (May 1979), 281-283.

[28] Hirschberg, D.S. and Sinclair, J.B. Decentralized extrema-finding in
circular configurations of processors. Comm. ACM, 23, 1 (Nov, 1980),
627-628.

[29] Pawan Kumar Thakur, Ram Kumar, Ruhi Ali and Rajendrakumar
Malviya ,“A New Approach of Bully Election Algorithm for Distributed
Computing”, Int. J. of Electrical, Electronics and Computer Engineering
(IJEECE) Vol 1(1): 72-79,2011.

[30] Sukumar Ghosh, Distributed systems: an algorithmic approach. Vol. 13.
Chapman & Hall/CRC, 2006.

http://www.ijritcc.org/

