
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 6 4190 – 4193

4190
IJRITCC | June 2015, Available @ http://www.ijritcc.org

Revisting SQL Query Recommender System Using Hierarchical Classification

Shruti Y. Patil

Department of Computer Science

S. S. G. B. College

Bhusawal, India

shrutiypatil@gmail.com

Prof. Dinesh D. Patil

Department of Computer Science

S. S. G. B. College

Bhusawal, India

dineshonly@gmail.com

Abstract— For analytical purposes, lots of data are gathered which are gathered and explored in data warehouses. Even to handle

such a large data is a tough task for expert people. For non-expert users or for users who are not familiar with the database

schema, handling such a voluminous data is more difficult task. The aim of this paper is to facilitate this class of users by

recommending them SQL queries that they may use. By following the users past behavior and comparing them with other users,

these SQL recommendations are selected. Initially, users may not know from where they can start their exploration. Secondly,

users may overlook queries which help them to retrieve important data. Using hierarchical classification, the queries are recorded

and compared which is then re-ranked according to relevance. Using users querying behavior, the relevant queries are retrieved.

To issue a series of SQL queries, users use a query interface which aim to analyze the data and mine it for interesting information.

Keywords- Data Mining, Data discovery, Interactive data exploration, Query personalization.

__*****___

I. INTRODUCTION

Now days, database systems are more popular. These systems

support for interactive exploration of large volumes of data.

The example such as Genome browser which gives access to

the genomic database and SkyServer contains large volumes of

astronomical measurements. These databases allows user to

submit queries and retrieve the results.

The need for data discovery tools increases as the

data are increases vastly. Over large databases, despite the

availability of querying tools, the users often have difficulties

in understanding the underlying complicated schema and

formulating queries. For example, the study on Hive. The data

warehouse platform used in Facebook, come up with the

following: Because of the heavy usage, a lot of tables are

generated in data warehouse which in turn vastly increased the

need for data discovery tools. Even when users have the

capability to issue complex queries over large data sets, the

task of knowledge discovery remains a big challenge.

Moreover, a complete exploration of such databases is not

practically feasible due to the continuously increasing size of

the data.

To support the non-expert user for retrieving

interesting information, query recommender system is used.

Recommender Systems are software tools and techniques

which provides suggestions to users for items to be of their

use. The suggestions provided help the users in various

decision-making processes, such as what items to buy, which

music to listen, or what news to read. For online users,

recommender systems have proven to be valuable means to

deal with the information overload and have become one of

the most powerful and popular tools in electronic commerce.

The interest of the user is drawn out and makes

recommendations accordingly by the Query Recommender

systems. Those recommended queries can be used as templates

and submitted as it is instead of composing new ones or they

can be further edited. In an attempt to identify previous users

with similar information needs, this system continuously

monitors the user’s querying behavior and finds matching

patterns in the system’s query log. Subsequently, query

recommender system uses these “similar” users and their

queries to recommend queries that the current user may find

interesting.

In this work, the query is stored in the query log.

When the active user fired a query, his query is stored in the

log and matched with the past users queries in query log with

cosine similarity method. If queries are matched then those

queries are recommended to active user so that they may be of

user interest. This motivation draws from Web Recommender

System. The principle on which the system is built is simple: If

user A and user B placed the same queries then the other

queries of each user may be of interest of each other.

 This idea is projected with the help of collaborative

filtering. A collaborative Query Management System is placed

on new, large scale, shared data environments. Collaborative

filtering method makes automatic predictions (filtering) about

the interest of the user by collecting preferences information

from many users. This method requires (1) user’s active

participation, (2) an easiest way to represent user’s interest to

the system, and (3) methods that are able to match people with

similar interests. The system should also mine its query log

and actively recommend queries to users, thus help them

further pull the previously performed analysis.

II. RELATED WORK DONE

A keyword based query interface is provided by web databases

which suffers from the empty answer or too many answers

problems. In such case, it is critical to provide the correct

answer to each user rather than the exact one to everyone for

the same query. Preferences may be expressed qualitatively or

quantitatively by embedding into relational query languages a

special operator or by re-ranking or filtering the results of the

original query respectively. Recently, as an additional

personalization parameter, context has been added in such

systems. The common denominator of these works with ours

is that all can be categorized under the query personalization

area.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 6 4190 – 4193

4191
IJRITCC | June 2015, Available @ http://www.ijritcc.org

A multidimensional query recommendation system is

already present. In this work, for generating OLAP query

recommendations, the authors propose a framework for the

users of a data warehouse. Although this work has some

similarities to our, the techniques and algorithms used in the

multidimensional development are very different to the ones

we propose.

III. PROPOSED SYSTEM

Database systems provide the critical infrastructure to access

and analyze large volumes of data in a variety of applications.

For accessing the data from database, user uses querying tools.

However new or not expert users face difficulties in

understanding the underlying schema and formulating queries.

This system provide help to database user, such as

recommending the past user queries and also giving authority

to execute or to edit recommended queries. When the structure

of the queries is wrong then also our system provides similar

recommend queries and gives authority to execute these

queries.

The abstract framework is fundamentally a workflow, as

shown in Figure 1.

Figure 1. Architecture of Query Recommender System

The active user’s queries are forwarded to both the database

management system and the Recommendation Engine. The

Database Management System processes each query and

returns a set of results. At a time, the query is stored in the

Query Log. The Recommendation Engine combines the

current user’s input with information gathered from the

database interactions of past users, as stored in the Query Log,

and generates a set of query recommendations that are

returned to the user. If the query is nested then the

recommended queries are re-ranked before returned to the

user.

IV. FLOW OF SYSTEM

The Query recommender system recommends the query as per

user interest. The flow of proposed system is as shown in

Figure 2.

Figure 2. Flow of Query Recommender System

User needs to first register and login to a system. After that,

he enters his query. If fired query is nested query then it will

collect all nested queries from log. These queries are then

classified using hierarchical algorithm. The most matching

class will be then find out using cosine similarity method. All

the queries from this class is collected and sorted. These sorted

queries are then displayed as recommendations. If query is not

nested then it will check for log and scheme filter. It will

check that is there individual or collaborative log. It will also

check for scheme filter i.e. fragment based or tuple based in

combination with log filter. It will find and collect matching

queries for selected filters using cosine similarity method.

These queries are then sorted and display to user as

recommendation.

V. IMPLEMENTATION

A. Tuple and Fragment Based Recommendation

In tuple based approach, the result based scheme is used.

User fired query’s result is stored in the user log in the form of

tuples. The resultset of active user query are matched with the

past user queries using cosine similarity method. The queries,

whose threshold value for similarity is greater than 0.5, are

then recommended to the users.

Fragment based approach is based on the pair-wise

similarity of query fragments i.e. on attributes, tables, joins

and predicates. We need to identify fragments that co-appear

in several queries posed by same or different users.

 Query Fragmentation

The user fired query is split into fragments with

respect to the keywords such as select, from, where,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 6 4190 – 4193

4192
IJRITCC | June 2015, Available @ http://www.ijritcc.org

group by, having, order by etc. These fragmented

query attributes are then stored in the fragment table.

 Query Filter

The active user’s query is fragmented using fragment

based approach. The query is compared with the
already recorded fragments in query log. If the

queries match, the fragments of old query are deleted

and the fragments of new query are inserted to avoid

duplication. If the queries don’t match, the new

fragments are updated in the query log.
 Query Suggestion Engine

The query suggestion engine gives a set of

recommended queries for the given input SQL query.

The input query is first fragmented and the

fragmented query is stored in a table. The fragmented

query is compared with the queries in log. If the

fragmented query matches with the queries in log,

then matched queries are recommended to the user

otherwise, the result of the input query is returned.

B. Recommendation for Nested Query Using Hierarchical

Classification

The recommendation for the nested queries is done by

matching the query of active users with the recorded queries in

query log of past users with the help of cosine similarity

method.

The cluster of the most matching queries is formed

for recommendation. For the clustering, we are using

hierarchical classification. The proposed algorithm for

hierarchical classification is as follows in Figure 3:

Figure 3 . Proposed Algorithm

VI. PROPOSED SYSTEM

The query recommender system recommends queries as per

user interest. This system helps to non-experts users for

analyzing and extracting the information of their interest in

data warehouse.

User needs to first register himself for the use of this

system. As shown in Figure 4, after clicking on the button

‘Execute a Query’, user can fired a query. At the time of firing

of query, user gets recommendation according to his interest.

He can select any of the recommended queries to execute or he

can be able to edit that query as per need.

Figure 4 Execution of Query with Collaborative Log and Fragment

Based Filter

When user fired nested query then it will match with

database query with the help of cosine similarity method. And

all the matching queries are recommended to the user Here, we

are not using any filter. It is as shown in Figure 5.

The users who is first time going to fired a query may

not know the definition schema of the selected table. The user

first needs to select the table name of which user wants to see

the definition. After clicking on the button ‘Schema

Browser’,it will displayed the column names and data types of

that column of the selected table.

If user wants to see the history of his queries i.e. if he

want to see which queries he fired previously then it can

shown by ‘My History’. By clicking on button ‘My History’ ,

it will display all the queries fired by that user previously.

Figure 5. Recommendation for Nested Query Using Hierarchical

Classificatioin

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 6 4190 – 4193

4193
IJRITCC | June 2015, Available @ http://www.ijritcc.org

VII. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed

technique, we have used two measures which are Precision

and Recall. Precision and recall are the most popular metrics

which are widely used in evaluating search strategies.

Precision is defined as the ratio of the number of

queries that correctly retrieved to the total number of queries

retrieved.

Precision =
Number of relevant queries retrieved

Total number of queries retrieved

While recall is the ratio of the number of queries that retrieved

correctly to the total number of queries in log.

Recall = Number of relevant queries retrieved

Total relevant queries in log

High precision means less irrelevant queries are

returned or more relevant queries are retrieved. The

performance of the system, by plotting precision and recall

graph is as shown in Figure 6, in which precision values are

plotted against recall values.

Figure 6. Comparision Graph of Existing and Proposed System

CONCLUSION

Recommendation system is a well-known field of the

data mining used to pull out the essential knowledge from a

huge amount of user query logs. Query recommender system

supports users for analyzing and mining interesting

information. A query recommendation system using fragment

based approach helps the users to execute simple SQL query

and proposed recommender system using hierarchical

classification helps users to execute nested queries. The

proposed system is shown to outperform previous fragment

based approach.

ACKNOWLEDGMENT

The completion of this paper would not have been

possible without the support and guidance of

Prof. Dinesh D. Patil. He has been a constant of motivation and

has encouraged me to pursue this project. With my deep sense of

gratitude, I thank my respected teachers for supporting this of my

project. This project report provides me with an opportunity to put

in the knowledge of advanced technology. I thereby take the

privilege opportunity to thank my guide and my friends whose

helps and guidance made this study possibility.

REFERENCES

[1] Magdalini Eirinaki, Suju Abraham, NeoklisPolyzotis, and

NaushinShaikh, “QueRIE: Collaborative Database Exploration”

IEEE transactions on knowledge and data engineering, vol. 26, no.
7, July 2014.

[2] A. Thusooet al., “Hive - A petabyte scale data warehouse using
hadoop,” in Proc. IEEE 26th ICDE, Long Beach, CA, USA,

Mar.2010, pp. 996–1005.

[3] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis, “Collaborative
filtering for interactive database exploration,” in Proc. 21st Int.Conf.

SSDBM, New Orleans, LA, USA, 2009, pp. 3–18.

[4] S. Mittal, J. S. V. Varman, G. Chatzopoulou, M. Eirinaki, and N.

Polyzotis, “QueRIE: A recommender system supporting interactive

database exploration,” in Proc. IEEE ICDM, Sydney, NSW,
Australia, 2010.

[5] J. Akbarnejadet al., “SQL QueRIE recommendations,” PVLDB, vol.
3, no. 2, pp. 1597–1600, 2010.

[6] E. Cohen, “Size-estimation framework with applications to transitive

closure and reachability”, J. Comput. Syst. Sci,vol. 55, no. 3, pp.
441–453, 1997.

[7] G. Linden, B. Smith, and J. York, “Amazon.com recommendations:
Item-to-item collaborative filtering,” IEEE Internet Comput., vol. 7,

no. 1, pp. 76–80, Jan./Feb. 2003.

[8] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica, “Relaxing join
and selection queries,” in Proc. 33nd Int. Conf. VLDB, Seoul,

Korea, 2006, pp. 199–210.

[9] B. M. X. Jin and Y. Zhou, “Task-oriented web user modeling for

recommendation,” in Proc. User Modeling, Edinburgh, U.K., 2005.

[10] K. Stefanidis, G. Koutrika, and E. Pitoura, “A survey on
representation, composition and application of preferences in

database systems,” ACM Trans. Database Syst., vol. 36, no. 4,

Article 19, 2011.

[11] G. Koutrika and Y. Ioannidis, “Personalized queries under a

generalized preference model,” in Proc. 21st ICDE, Washington,
DC, USA, 2005.

[12] J. Levandoski, M. Mokbel, and M. E. Khalefa, “A Demonstration of

FlexPref: Extensible Preference Evaluation Inside the DBMS
Engine,” in Proc. IEEE ICDE, Long Beach, CA, USA, 2010.

[13] A. Giacometti, P. Marcel, and E. Negre, “Recommending
multidimensional queries,” in Proc. 11th Int. Conf. DaWaK, Linz,

Austria, 2009.

[14] A. Giacometti, P. Marcel, E. Negre, and A. Soulet, “Query

recommendations for OLAP discovery driven analysis,” IJDWM,

vol. 7, no. 2, pp. 1–25, 2011.

[15] G. Koutrika, B. Bercovitz, and H. Garcia-Molina, “FlexRecs:

Expressing and combining flexible recommendations,” in Proc.

SIGMOD Conf., New York, NY, USA, Jun. 2009, pp. 745–757.

[16] M. Drosou and E. Pitoura, “ReDRIVE: Result-driven database

exploration through recommendations,” in Proc. CIKM, Glasgow,
U.K., 2011, pp. 1547–1552.

[17] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu,

“SnipSuggest: Context-aware autocompletion for SQL,” PVLDB,
vol. 4, no. 1, pp. 22–33, 2011.

http://www.ijritcc.org/

