
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 4177 – 4180

4177
IJRITCC | June 2015, Available @ http://www.ijritcc.org

Performance Study of the Running Times of well known Pattern Matching

Algorithms for Signature-based Intrusion Detection Systems

S. Manohar Naik, Research Scholar,

Department of Computer Science & Technology,

Sri Krishnadevaraya University,

Anantapur - 515003, India.

manoharamen@gmail.com

Dr. N. Geethanjali, Associate Professor,

Department of Computer Science & Technology,

Sri Krishnadevaraya University,

Anantapur - 515003, India.

geethanjali.sku@gmail.com

Abstract— Intrusion detection system (IDS) is the basic component of any network defense scheme. Signature based intrusion

detection techniques are widely used in networks for fast response to detect threats. One of the main challenges faced by

signature-based IDS is that every signature requires an entry in the database, and so a complete database might contain hundreds

or even thousands of entries. Each packet is to be compared with all the entries in the database. This can be highly resource-

consuming and doing so will slow down the throughput and making the IDS vulnerable. Since pattern matching computations

dominate in the overall performance of a Signature-based IDS, efficient pattern matching algorithms should be used which use

minimal computer storage and which minimize the searching response time. In this paper we present a performance study of the

running times of different well known pattern matching algorithms using multiple sliding windows approach.
Keywords- Network security, Intrusion detection, Pattern matching, Network performance

__*****___

I. INTRODUCTION

In the past, we have seen computer worms spread
themselves without any human interaction and launched the
most destructive attacks against computer networks [2]. As an
example, in January 2003, the SQL Slammer worm, also
known as sapphire, was released into the Internet exploiting a
weakness into Microsoft SQL servers. In only 10 minutes the
worm spread worldwide consuming massive amount of
bandwidth and bringing down 5 of the 13 root DNS servers [3].
Amongst worm defensive mechanisms, IDS are the most
widely deployed techniques that utilize the self-duplicating
repetitive and recurring nature of computer worms to detect the
patterns and signatures of theses malicious codes in the
network traffic. Consequently IDSs have become an integral
part of the security infrastructure of organizations. These
systems based on the parameters used for detection, are broadly
divided to signature-based and anomaly-based IDSs [4].

Signature-based detection is normally used for detecting
known attacks. There are different definitions of attack
signatures. No knowledge of normal traffic is required but a
signature database is needed for this type of detection systems.

Signature based IDS systems require that their data bases
need to be updated regularly at different time intervals so as to
detect the imminent threats generated on the network. This
process is a quite time consuming and requires a quick
underlying system to update the database. If the signature
database is not updated timely, then new threats will not be
detected using this model. Therefore one of the main
challenges of Signature-based IDS is to control the huge traffic
volume where each packet needs to be compared to with the
known signatures database and reduce the comparison time of
signatures in it.

The rest of the paper is organized as follows. Section II
describes the contributed characterization of pattern matching
in network security such as signature-based NIDS; Section III
describes survey on the existing pattern matching algorithms;
Section IV covers the performance analysis of some pattern
matching algorithms using multiple sliding windows approach.

Finally, the conclusion and the future work are presented in
Section V.

II. CHARACTERIZATION OF PATTERN MATCHING IN NIDS

Signature matching is one of the most computationally
intensive tasks of IDS. Performance of IDS suffers as
signatures or rules grow in data volume. In order to increase the
performance of NIDS, one of approach is to improve the
performance of signatures detection engine by increasing the
efficiency of pattern matching algorithm.

Pattern matching is a pivotal theme in computer research
because of its relevance to various applications such as web
search engines, computational biology, virus scan software,
network security and text processing [5].

Pattern matching focuses on finding the occurrences of a
particular pattern P of length ‘m’ in a text ‘T’ of length ‘n’.
Both the pattern and the text are built over a finite alphabet set
called Σ of size σ.

Generally, pattern matching algorithms make use of a
single window whose size is equal to the pattern length. The
searching process starts by aligning the pattern to the left end of
the text and then the corresponding characters from the pattern
and the text are compared. Character comparisons continue
until a whole match is found or a mismatch occurs, in either
case the window is shifted to the right in a certain distance [6].
The shift value, the direction of the sliding window and the
order in which comparisons are made varies in different pattern
matching algorithms.

To reduce the number of comparisons, the matching
process is usually divided into two phases. The pre-processing
phase and the searching phase. The pre-processing phase
determines the distance (shift value) that the pattern window
will move. The searching phase uses this shift value while
searching for the pattern in the text with as minimum character
comparisons as possible.

A good pattern matching algorithm aims to decrease the
searching phase during each attempt and to increase the shifting
value of the pattern. Hence several pattern matching
algorithms have been developed with a view to enhance the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 4177 – 4180

4178
IJRITCC | June 2015, Available @ http://www.ijritcc.org

searching processes by minimizing the number of comparisons
performed [7-9].

III. SURVEY ON THE EXISTING ALGORITHMS

This section includes survey of the main pattern matching
algorithms. Table I summarize and compare these algorithms.
String matching algorithms can be classified into seven
categories according to the preprocessing function in the
algorithm [10].

The first category, e.g. the Brute Force algorithm (BF) [11],
shifts the pattern only one position at each attempt. The second
category, which includes the Boyer-Moore algorithm (BM)
[12]-[14] and the Fast Search algorithm (FS) [15], uses two
preprocessing functions. The third category, a good example of
which is the Boyer Moore Horspool algorithm (BMH) [16]-
[18], uses one preprocessing function based on the rightmost
character in the current window. The fourth category, e.g. the
Quick Search algorithm (QS) [19], uses one preprocessing
function based on the character next to the current window. The
fifth category, such as the Berry–Ravindran algorithm (BR)
[20], uses one preprocessing function based on the next two
characters to the current window. The sixth category, e.g. the
Karp-Rabin algorithm (KR) [21] and the Zhu Takaoka
algorithm (ZT) [22], uses a preprocessing hashing function.
The final category uses hybrid algorithms and includes the
SSABS [23], TVSBS [24], ZTMBH [25], BRFS [26], BRBMH
[27], BRQS [10], TSW [28], OE [29], RS-A [30], ERS-A [31]
and the EERS-A [32] algorithms.

IV. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of four
algorithms, i.e., Fast-Search, TVSBS, SBNDM and FSBNDM
algorithms. Table II, Table III, Table IV and Table V shows
experimental results obtained by comparing multiple sliding
windows variants of the above algorithms. Running times are
expressed in mille-seconds and best values are underlined and
boldfaced.

TABLE II. RUNNING TIME OF MULTIPLE SLIDING WINDOWS VARIANTS OF

THE FAST-SEARCH ALGORITHM

m 2 4 8 16 32 64

σ = 16

FS-W(1) 16.20 10.93 8.27 7.19 6.95 6.63
FS-W(2) 13.56 9.43 7.32 6.57 6.27 6.16

FS-W(4) 15.56 10.54 8.02 7.0 6.66 6.57

FS-W(6) 15.84 10.67 8.17 7.2 6.76 6.67
FS-W(8) 15.96 10.78 8.69 7.32 6.93 6.78

σ = 32

FS-W(1) 14.81 10.14 7.46 6.42 6.06 6.10

FS-W(2) 12.30 8.15 6.73 6.02 5.85 6.01

FS-W(4) 13.35 9.15 7.17 6.38 6.33 6.21

FS-W(6) 12.96 9.12 7.12 6.41 6.22 6.33

FS-W(8) 14.10 10.13 7.59 6.73 6.5 6.44

Σ = 128
FS-W(1) 16.52 9.46 6.91 6.01 6.01 6.15

FS-W(2) 9.85 7.17 6.1 5.8 5.77 5.97

FS-W(4) 11.06 8.11 6.46 6.06 6.37 6.09
FS-W(6) 10.91 7.9 6.45 6.13 6.54 6.07

FS-W(8) 11.17 8.03 6.74 6.21 6.18 6.12

Table II and Table III shows that the best results are

obtained for k = 2, and k = 6 respectively. Table IV and Table
V shows that the best results are obtained for k = 4.

TABLE III. RUNNING TIME OF MULTIPLE SLIDING WINDOWS VARIANTS OF

THE TVSBS ALGORITHM

TABLE IV. RUNNING TIME OF MULTIPLE SLIDING WINDOWS VARIANTS OF

THE SBNDM ALGORITHM

TABLE V. RUNNING TIME OF MULTIPLE SLIDING WINDOWS VARIANTS OF

THE FSBNDM ALGORITHM

m 2 4 8 16 32 64

σ = 16

FSBNDM–W(1) 12.32 9.73 7.73 6.73 6.13 6.14

FSBNDM–W(2) 11.46 8.37 7.78 6.74 6.15 6.54

FSBNDM–W(4) 11.48 10.37 7.52 6.57 6.12 6.10

FSBNDM–W(6) 13.23 9.75 8.46 7.12 6.28 6.36

σ = 32

FSBNDM–W(1) 12.32 10.02 8.24 6.87 5.97 6.06

FSBNDM–W(2) 11.63 10.20 8.24 5.85 6.14 6.12

FSBNDM–W(4) 10.26 9.94 8.14 5.83 5.81 5.70

FSBNDM–W(6) 10.32 10.89 8.79 6.16 5.91 6.13

σ = 128

FSBNDM–W(1) 9.93 7.52 6.33 6.09 5.76 6.30

FSBNDM–W(2) 8.32 8.06 6.29 5.69 5.86 6.05

FSBNDM–W(4) 8.21 7.43 6.20 5.35 5.69 5.86

FSBNDM–W(6) 8.56 7.58 6.22 5.89 5.98 5.97

m 2 4 8 16 32 64

σ = 16
TVSBS-(1) 15.71 14.48 10.23 8.23 7.58 7.24

TVSBS-(2) 17.9 12.49 10.3 8.33 7.48 7.2

TVSBS-(4) 15.61 12.3 10.92 8.61 7.62 7.68
TVSBS-(6) 16.96 13.1 9.71 7.78 6.86 6.6

TVSBS-(8) 20.12 14.38 10.54 8.56 7.83 7.94

σ = 32

TVSBS-(1) 18.92 17.7 13.34 11.59 10.16 9.82

TVSBS-(2) 19.26 15.88 13.85 11.97 11.5 10.87

TVSBS-(4) 20.39 16.31 13.62 12.03 11.35 10.93

TVSBS-(6) 18.48 16.14 13.0 11.21 10.12 9.63

TVSBS-(8) 19.34 16.78 13.74 11.87 11.83 10.76

σ = 128
TVSBS-(1) 20.82 16 11.53 9.39 7.74 7.24

TVSBS-(2) 18.7 14.69 11.82 9.7 8.8 8.05

TVSBS-(4) 16.78 14.07 10.98 9.32 8.57 7.98
TVSBS-(6) 15.12 12.62 10.59 9.07 8.34 8.02

TVSBS-(8) 16.55 13.47 12.15 9.49 8.48 7.96

m 2 4 8 16 32 64

σ = 16

SBNDM–W(1) 17.92 12.90 8.40 6.70 6.05 6.10

SBNDM–W(2) 13.25 11.40 9.55 6.98 9.08 9.02

SBNDM-W(4) 12.29 10.56 9.96 7.89 8.32 14.33

SBNDM–W(6) 16.33 11.24 11.52 8.83 12.50 13.28

σ = 32
SBNDM–W(1) 16.85 12.59 8.30 8.09 5.90 6.98

SBNDM–W(2) 14.06 8.77 8.19 8.14 7.67 9.41

SBNDM–W(4) 11.26 7.18 8.09 8.16 9.48 10.35
SBNDM–W(6) 11.34 8.92 10.60 8.71 14.01 10.56

σ = 128

SBNDM–W(1) 12.94 13.31 8.82 6.28 7.86 6.39
SBNDM–W(2) 11.30 8.20 6.85 6.04 5.85 6.79

SBNDM–W(4) 10.34 7.59 7.24 5.77 5.60 6.39

SBNDM–W(6) 10.78 8.95 7.61 6.17 6.61 6.35

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 4177 – 4180

4179
IJRITCC | June 2015, Available @ http://www.ijritcc.org

TABLE I. SUMMRY AND MAIN CHARACTERSTICS OF PATTERN MATCHING ALGORITHMS IN LITERATURE

Algorithm

Name
Year

Comparison

Order

Preprocessing

Time

Searching

Time

Main

Characteristics

Brute
Force

Algorithm

Very

Old

From left to

right
N/A O(mn)

Shifts the pattern only a position each attempt. Not an optimal algorithm
since it does not use the information that could be gained from the last

comparison made

Knuth-

Morris-
Pratt

Algorithm

1974
From left to

Right
O(m) O(mn)

Uses the notion of the border of the string. It increases performance,

decreases delay, and decreases searching time compared to the Brute

Force algorithm. It is efficient for large alphabets

Boyer-
Moore

Algorithm

1977
From right

to left
O(m+σ) O(mn)

Uses two preprocessing functions; the good-suffix shift and the bad-

character shift. It is not very efficient for small alphabets

Horspool

Algorithm
1980

From left to

Right
O(m+σ) O(mn)

Uses the Horspool bad-character preprocessing function based on the
rightmost Character in the current window. It is a simplification of the

Boyer-Moore algorithm. It is faster than, and easier to implement than

the Boyer-Moore algorithm

Karp-
Rabin

Algorithm

1984
From left to

Right
O(m) O(mn)

Uses the Karp-Rabin preprocessing hashing function. It is very
effective for multiple pattern matching in one-dimensional string

matching

Zhu-
Takaoka

Algorithm

1989
From right

to left
O(m+σ2) O(mn)

Uses the Zhu-Takaoka preprocessing hashing function. It is very
effective for multiple pattern matching in two-dimensional string

matching

Quick-

Search
Algorithm

1990
From right

to left
O(m+σ) O(mn)

Uses the Quick-Search bad-character preprocessing function based on

the next character to the current window. It is especially fast for short
patterns

Berry–

Ravindran
Algorithm

1999
From left to

Right
O(m+σ2) O(mn)

Uses the Berry-Ravindran preprocessing function based on the next two

characters after the current window in order to increase the shifting
value of the pattern

Fast

Search

Algorithm

2003
From right

to left
O(m+σ2) O(mn)

Uses the bad-character function only if the mismatching character is

the last character of the pattern, otherwise the good-suffix function is

to be used. It is efficient in very short patterns

SSABS
Algorithm

2004
From right

to left
O(m+σ) O(m(n-+1))

Uses the Quick-Search bad-character preprocessing function. It scans

the pattern with the text starting from the right most then it scans the

next last character and goes backward to the left

TVSBS
Algorithm

2006 From right to left O(m+σ2)
O(m(n – m

+

1))

A combination of the Berry-Ravindran and the SSBAS algorithms. It
scans the pattern with the text using the searching phase of the SSABS

algorithm. Uses the Berry-Ravindran preprocessing function

ZTMBH

Algorithm

2008

From left to

Right

O(m+σ2)

O(mn)

A combination of the Zhu Takaoka and the Boyer-Moore Horspool
algorithms. It scans the pattern using the searching phase of the BMH

algorithm. Uses the Zhu-Takaoka preprocessing hashing function.

BRFS
Algorithm

2008
From right

to left
O(m+σ2) O(mn)

A combination of the Berry-Ravindran and the Fast Search algorithms.

It scans the pattern using the searching phase of the FS algorithm. Uses

the Berry-Ravindran Preprocessing Function.

BRBMH

Algorithm
2008

From left to

Right
O(m+σ) O(mn)

Enhances the preprocessing Berry-Ravindran algorithm and combines

it with the BMH algorithm. It scans the pattern using the searching

phase of the BMH algorithm. Uses the enhanced Berry-Ravindran
Preprocessing Function.

BRQS

Algorithm
2008 From right to left O(m+σ) O(mn)

Uses the enhanced Berry-Ravindran Preprocessing Function and
combines it with the QS algorithm. It scans the pattern using the

searching phase of the QS algorithm

TSW

Algorithm

2008

Two parallel windows from

left to right and from right

to left

O(m+σ2)

O(mn)

TSW uses two sliding windows rather than using one sliding window to
scan all text characters as in Berry-Ravindran algorithm. Uses two one

dimensional arrays to store shift values rather two dimensional array in

original BR algorithm.

OE

Algorithm
2009

From right

to left
O(m+σ) O(mn)

Combines an enhanced Preprocessing phase from Berry-Ravindran

algorithm with the proposed new searching phase procedure

RS-A
Algorithm

2012
From right

to left
O(m+σ2) O(mn)

After each attempt, the window is shifted to the left using the shift value
computed for the four consecutive characters immediately.

ERS-A
Algorithm

2013

Two parallel windows from

left to right and from right

to left

O(2(m-3)) O(mn)
Uses two sliding windows rather than one to scan all the text characters.
Two one dimensional arrays are used to store the shift values.

EERS-A

Algorithm
2015

Two parallel windows from
left to right and from right

to left

O(2(m-3)) O(mn)
Used two sliding window to scan the text from both sides at the same
time; also comparisons between the pattern and the text happened from

both sides of the pattern.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 4177 – 4180

4180
IJRITCC | June 2015, Available @ http://www.ijritcc.org

V. CONCLUSIONS

In this research we extensively studied and analyzed the
various pattern matching algorithms and their running time
performances for NIDS. We conclude from our general
performance studies on pattern matching algorithms using
multiple sliding windows approach and this approach turns out
to be simple to implement and leads to very fast algorithms in
practical cases, especially in the case of large alphabets and
natural language texts as shown in the experimental results.

REFERENCES

[1] R.Bace and P.Mell. “Intrusion Detection Systems,” National Institute of
Standards and Technology (NIST), Special publication 800-31, 2001.

[2] S. Chen and Y. Tang, “Slowing down internet worms,” in Proceedings
of 24th International Conference on Distributed Computing Systems, pp.
312-319, 2004.

[3] M. Uddin, K. Khowaja, and A.A. Rehman, “Dynamic multi-layer
signature based intrusion detection system using mobile agents,”
International Journal of Network Security & Its Applications (IJNSA),
vol. 2, no. 4, pp. 129-141, 2010.

[4] G. Coretez, Fun with Packets: Designing a Stick, Endeavor Systems, Inc,
2002.

[5] Wang, Y. and H. Kobayashi, “High performance pattern matching
algorithm for network security,” IJCSNS, 6: 83-87, 2006.

[6] Charras, C. and T. Lecroq, Handbook of Exact String Matching
Algorithms. First Edition. King’s College London Publications. ISBN:
0954300645, 2004.

[7] Hume, A. and D. Sunday, Fast string searching. Software Practice
Experience, 21: 1221-1248, 1991. doi: 10.1002/spe.4380211105.

[8] Lecroq, T., Experimental results on string matching algorithms.
Software-practice and Experience, 25: 727-765, 1995. doi:
10.1002/spe.4380250703.

[9] Davies G., and Bowsher S., Algorithms for pattern matching, Software-
Practice and Experience,16:575-601, 1996. doi:10.1002/spe.4380160608

[10] A. F. Klaib and H. Osborne, “BRQS Matching Algorithm for searching
Protein Sequence Databases,” unpublished.

[11] J. Mettetal. (2004, September 16). Brute Force Algorithms: Motif
Finding. Available: http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-
417Fall-2004/8BA92AB3-A9CD-4719-A4AC-1AAFDB8AE5A0/0/lect
ure_03.pdf

[12] G. Plaxton, (Fall 2005). String Matching: Boyer-Moore Algorithm.
Available: http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/Strin
gMatching-4.pdf

[13] O. Danvy and H. K. Rohde, “Obtaining the Boyer-Moore String-
Matching Algorithm by Partial Evaluation,” Information Processing
Letters, vol. 99, pp. 158–162, 2006.

[14] R. S. Boyer, J. S. Moore, “A fast string searching algorithm,”
Communications of ACM, vol. 20, no. 10, pp.762–772, 1977.

[15] Cantone, S. Faro, “Fast-search: A new efficient variant of the Boyer–
Moore string matching algorithm”, Lecture Notes in Computer Science,
vol. 2647, pp. 47–58, 2003.

[16] M. Régnier and W. Szpankowski, “Complexity of Sequential Pattern
Matching Algorithms” Lecture Notes in Computer Science, vol.
1518, pp. 187-199, 2004.

[17] T. RAITA, “Tuning the Boyer–Moore–Horspool String Searching
Algorithm,” Software-Practice and Experience, vol. 22, pp. 879-884,
1992.

[18] R. N. Horspool, “Practical fast searching in strings,” Software-Practice
and Experience, vol. 10, no. 6, pp. 501-506, 1980.

[19] Sunday, "A very fast substring search algorithm," CommonACM, no.
33, pp. 132–142, 1990.

[20] Berry and Ravindran, "Fast string matching algorithm and experimental
results,", Proceedings of the Prague Stringology Club, pp. 16–26, 2001.

[21] C. Charras, T. Lecroq, Handbook of exact string matching Algorithms.
Available: http://www-igm.univ-lv.fr/~lecroq/string/.

[22] R.F. Zhu, T. Takaoka, “On improving the average case of the Boyer-
Moore string matching algorithm,” Journal of Information
Processing, vol. 10, no. 3, pp. 173–177, 1987.

[23] S. S. Sheik, S. K. Aggarwal, A. Poddar, N. Balakrishnan and K. Sekar,
“A fast pattern matching algorithm,” Journal of Chemical
Information and Computer Sciences, no. 44, pp. 1251–1256,
2004.

[24] R. Thathoo, A. Virmani, S. S. Lakshmi, N. Balakrishnan and K. Sekar,
“TVSBS: A fast exact pattern matching algorithm for biological
sequences,” Current Science, vol. 91, no. 1, pp. 47–53, 2006.

[25] Y. Huang, X. Pan, Y. Gao, and G. Cai, "A Fast Pattern Matching
Algorithm for Biological Sequences," IEEE, pp. 608 – 611, 2008.

[26] Y. Huang, L. Ping, X. Pan, and G. Cai, "A Fast Exact Pattern Matching
Algorithm for Biological Sequences," International Conference on
BioMedical Engineering and Informatics, pp.8-12, 2008

[27] A. F. Klaib and H. Osborne. “Searching Protein Sequence Database
Using BRBMH Matching Algorithm,” International Journal of Computer
Science and Network Security (IJCSNS), vol. 8, no. 12, pp. 410-414,
2008.

[28] Hudaib, A., R. Al-khalid, D. Suleiman, M. Itriq and A. Al-Anani, “A
Fast Pattern Matching Algorithm with Two Sliding Windows (TSW)”
Journal of Computer Science 4 (5): 393-401, 2008

[29] A. F. Klaib and H. Osborne, “OE Matching Algorithm for Searching
Biological Sequences”. In: International Conference on Bioinformatics,
Computational Biology, Genomics and Chemoinformatics (BCBGC-09).
ISRST, Orlando, Florida, pp. 36-42. 2009

[30] Senapati, K.K., S. Mal and G. Sahoo, “RS-A Fast Pattern Matching
Algorithm for Biological Sequences” , International Journal of
Engineering and Innovative Technology (IJEIT), 1(3): 116-118.

[31] Suleiman, D., Hudaib, A., Al-Anani, A., Al-Khalid, R. and Itriq, M.
“ERS-A Algorithm for Pattern Matching”. Middle East Journal
Scientific Research, 15, 1067-1075, 2013

[32] Suleiman, D., Itriq, M., , A., Al-Anani, Al-Khalid, R,, and Hudaib,
A., “Enhancing ERS-A Algorithm for Pattern Matching (EERS-A)”,
Journal of Software Engineering and Applications, 8, 143-153,
2015.

http://www.ijritcc.org/

