
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 4148 – 4153

4148
IJRITCC | June 2015, Available @ http://www.ijritcc.org

Survey and Comparative Analysis of SQL Injection Attacks, Detection and

Prevention Techniques for Web Applications Security

Pooja Saini

 Department of Computer Science & Engg.

 Doon Valley Institute of Engg. & Technology

 Karnal, India

 poojasaini30@gmail.com

Sarita

Department of Computer Science & Engg.

Doon Valley Institute of Engg. & Technology

Karnal, India

saritachaudharydiet@gmail.com

Abstract— Web applications witnessed a rapid growth for online business and transactions are expected to be secure, efficient and reliable to the

users against any form of injection attacks. SQL injection is one of the most common application layer attack techniques used today by hackers

to steal data from organizations. It is a technique that exploits a security vulnerability occurring in the database layer of a web application. The

attack takes advantage of poor input validation in code and website administration. It allows attackers to obtain illegitimate access to the backend

database to change the intended application generated SQL queries. . In spite of the development of different approaches to prevent SQL

injection, it still remains a frightening risk to web applications. In this paper, we present a detailed review on various types of SQL injection

attacks, detection and prevention techniques, and their comparative analysis based on the performance and practicality.

Keywords- SQL injection attacks, prevention, detection, vulnerabilities.

__*****___

I. INTRODUCTION

Nowadays, web applications are common in the online world.

Nearly every major company or organization has a web

presence and use web applications to provide various online

services to users. Some of these web applications use database

driven content. Data and Information is the most important

business asset in today’s environment for achieving an

appropriate level of Information Security. Most of these web

applications are vulnerable to a variety of new security threats.

One of the most threats to web application is SQL injection

attack. An SQL Injection Attack (SQLIA) is a type of

intrusion whereby a crafted attacker adds malicious keywords

or operators into an SQL query and then injects it to a user

input box of a web application [1]. This allows the attacker to

have illegitimate and unrestricted access to the data stored at

the backend database which often contains confidential and

sensitive information such as security numbers, credit card

number, financial data, and medical data.

According to Open Web Application Security Project

(OWASP), SQL injection attacks (SQLIA) stands first in the

top 10 threats for web application security in 2013 [2]. Top 10

threats are SQLIA, Cross Site Scripting (XSS), Malicious File

Execution, Insecure Direct Object Reference, Cross Site

Request Forgery (CSRF), Information Leakage, Improper

Error Handling, Broken Authentication, Session Management,

and Insecure Cryptographic Storage. In SQL injection attack,

attacker provides SQL code rather than the legitimate input in

the input fields of the web application in order to vary the

meaning of the original SQL query issued by the backend

database. Once the attacker gains access to the database, it can

alter any sensitive information or even modify the web

application. To implement security guidelines inside or outside

of the database, database security needs to be monitored.

Detection and prevention of SQL injection attacks are a topic

of active research in the academia and industry. To achieve

these purposes, automatic tools and security system were

implemented, but none of them were complete or accurate

enough to guarantee an absolute level of security of web

applications. The aim of the paper is to review various types of

SQL injection vulnerabilities, attacks, and prevention

techniques and also present the comparative analysis of

various SQL injection prevention techniques and attack types.

II. SQL INJECTION BACKGROUND

A. Why SQL injection is a major threat to web application

security?

Injecting a web application is the synonym of having

access to the data stored in the database. The data sometimes

could be confidential and of high value like the financial secret

of a bank or list of financial transactions or secret information

of some kind of information system, etc. An unauthorized

access to this data by a crafted attacker can threat their

integrity, confidentiality and authority. As a result, the system

could bear heavy loss in giving proper services to its users or it

may face complete destruction. SQL injection is most

commonly used by hackers to steal data from information

systems of organizations. If it happens against the information

systems of a hospital, the confidential information of the

patients may be leaked out which could threaten their

reputation or may be a case of depreciation [3]. These attacks

are designed not only to crack the security and steal the entire

content of the database, but also, to make superficial changes

to both the database schema and contents. Hence, SQL

injection could be very threatening in many cases depending

on the platform where the attack is projected and it gets

success in injecting rogue users to the target system.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 4148 – 4153

4149
IJRITCC | June 2015, Available @ http://www.ijritcc.org

B. SQL Injection Vulnerabilities

An SQL injection is a kind of injection vulnerability in

which the attacker tries to inject arbitrary pieces of malicious

data into the input fields of an web application, when

processed by the application, causes that data to be executed as

a segment of code by the backend SQL server, thereby giving

undesired results which the developer of the web application

did not anticipate, leveraging almost a complete compromise

of system in most cases. Three types of the most common

security vulnerabilities - Type I, II and III are found in web

programming languages are presented in Table I.

TABLE I. TYPES OF VULNERABILITIES

Vulnerability

type
Description

Type I

Validation of the user supplied data is not properly
defined or sanitized and allowed to be executed with

intention. Attacker takes advantage of poor input

validation can utilize malicious code to conduct
attacks.

Type II

Lack of clear dissimilarity between data types

accepted as input in the programming language used
for the web application development.

Type III

Delay of operation analysis till the runtime phase

where the current variables are considered rather than
the source code expressions.

C. Types of SQL injection attacks

Seven different types of injection attacks are performed

together or sequentially depending on the goal of attacker [4].

For a successful SQLIA, the attacker should append a

syntactically correct command to the original SQL query. The

following seven types of SQLIAs are presented in Table II.

TABLE II. DIFFERENT TYPES OF SQL INJECTION ATTACKS

 Type of attack

Working Method

Tautologies

SQL injection queries are injected using the

conditional OR operator such that the query

always evaluates to be TRUE.

Logically Incorrect

Queries

The attacker tries to gather information from

the rejected error messages about the type and

structure of the backend database of a web

application to find useful data facilitating

injection to the database.

Union Query

This type of attack can be done by inserting a
UNION query into a vulnerable parameter

which returns a dataset that is the union of the

result of the original first query and the results
of the injected query.

Stored Procedure

Most of the databases have standard set of

procedures that extend the functionality of the

database and allow for interaction with the
operating system. The attacker tries to execute

store procedures using malicious SQL
injection codes.

Piggy-Backed

Queries

The attacker tries to inject additional malicious

queries along with the original query resulting

the database receives multiple SQL queries for

execution. Vulnerability of this kind of attack

is dependent of the kind of database.

Inference attack

 Blind Injection

The intruder changes the behaviour of a
database of web application.

- The attack is applied on well

secured databases which do not

 Type of attack

Working Method

 Timing Attacks

return any usable feedback or

descriptive error messages. The
attack is created in the style of

true/false statement.

- The attacker designs a conditional
statement and injects through the

vulnerable parameter and gather

information based on time delays in
the response of the database.

Alternate Encodings

The injected text is modified so as to avoid

detection by defensive coding practices and

also many automated prevention techniques. It
is usually combined with other attack

techniques.

III. DETECTION OF SQL INJECTION

There are two major tasks to protect a web application from

SQL Injection attacks [5]. Firstly, there is an extreme need of a

technique to detect and exactly identify SQL injection attacks.

Secondly, proficiency of SQL Injection Vulnerabilities

(SQLIVs) is a must for protecting a web application. So far,

many frameworks have been suggested to detect SQL injection

vulnerabilities in web applications. Here, some of the

pronounced solution and their working methods are discussed

in brief.

A. Shin et al.’s approach

In this approach the authors applies SQLUnitGen tool which

is compared with FindBugs, a static analysis tool.

SQLUnitGen, a static analysis based tool that automates testing

for identifying input manipulation vulnerabilities [6]. The

proposed approach is shown to be efficient as the fact that the

false positive was completely absent in the tests. However for

different schemes, false negatives at a small number were

noticed.

B. Fu et al approach

The authors suggested the Static Analysis Framework for

Discovering SQL Injection Vulnerabilities (called as SAFELI)

in order to detect SQL Injection Vulnerabilities during

compiling [7]. The static analysis tool performed a White-box

Static Analysis and used a Hybrid Constraint Solver. In case of

White-box we found the Static Analysis, the proposed

approach considered the byte-code and dealt mainly with

strings. While on the other hand, the Hybrid Constraint Solver

implemented the methods to an efficient string analysis tool

which is able to dealt with integer, Boolean and variables of

string.

C. Roichman and Gudes’s Scheme

This scheme was developed based on fine-grained access

control to the databases of web applications [8]. The database

access is monitored and supervised by the built in database

access control of web applications. This is a solution to the

vulnerability of the SQL session traceability. Moreover, it is a

framework applicable to almost all database applications. This

scheme is shown to be efficient in the fact that the security and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 4148 – 4153

4150
IJRITCC | June 2015, Available @ http://www.ijritcc.org

access control of the database of web applications is transferred

from the application layer to the database layer.

D. SQL-IDS Approach

Kemalis and Tzouraman proposed a specification based

mechanism for the detection of vulnerabilities of SQL injection

[9]. The query specific detection allowed the web application to

perform direct analysis at inconsequential computational

overhead without producing false positives or negatives. The

proposed approach is shown to be very efficient in operation;

however, it requires more analysis and comparison with

accessible detection techniques under a shared and flexible

benchmarking environment.

E. Thomas et al.’s Scheme

To remove SQL injection vulnerabilities this scheme

proposed an automated prepared statement generation

algorithm [10]. The research work was implemented using

using four open source proposals namely: (i) Net-trust, (ii)

ITrust, (iii) WebGoat, and (iv) Roller. On the basis of analysis

results, their prepared statement code was able to auspiciously

replace 94% of the SQL injection vulnerabilities in four open

source proposals. The analysis was carried out using only Java

with a limited number of proposals. Hence, the use of web

application of the same approach and tool for different settings

still remains an open research concern to explore.

F. Haixia and Zhihong’s Scheme

The authors proposed a protected database design testing

for web applications [11]. They suggested few methods:

detection of possible input points of SQL Injection, generation

of test cases automatically; then finally finding the database

vulnerability by running the test cases to make a simulation

attack to a web application. The proposed scheme is efficient

as it detect the input points of SQL injection exactly on

expected time.

G. Ruse et al.’s Approach

To detect SQL injection vulnerabilities Ruse et al.

proposed an approach that used automatic test case generation

[12]. The proposed framework is based on creating a specific

prototype that dealt with SQL queries axiomatically. This

scheme also identifies the dependency between sub-queries.

On the experimental basis, the proposed approach is shown to

be efficient to specifically identify the causal set and obtain

85% and 69% reduction respectively while analysis on few

samples.

IV. PREVENTIVE TECHNIQUES OF SQL INJECTION

A strong and effective preventive measure can remove or at

least block all the available vulnerabilities in a web application

and thus it could protect it against various types of attacks that

take advantage of the vulnerabilities. We enlist twelve

preventive techniques that could be employed before and

during running the system. It should be noted that these

approaches not only detect SQL Injection, but also take

necessary measures so that the vulnerabilities are not exploited

by the rogue entities. So, these are different from the

approaches mentioned in the earlier section in the point that

they do more than just detection of SQL Injection.

A. SQLrand Scheme

Boyd and Keromytis proposed a SQLrand approach using

randomized SQL query language, targeting a particular

Common Gateway Interface application [13]. This scheme

provides a framework that allows developers to create queries

using randomized instructions instead of normal SQL

keywords. The proxy filter prevents queries to the database

and de-randomizes the keywords. SQL code injected by an

attacker would not have been constructed using the

randomized instruction set. Therefore, injected commands

would result in a syntactically incorrect query. The proposed

scheme has a good performance: 6.5 ms is the maximum

latency overhead imposed on every query.

B. SQL DOM Scheme

McClure and Krüger suggested a framework SQL DOM (a

set of classes that are strongly-typed to a database schema)

[14]. They intently consider the current flaws while accessing

relational databases from the Object Oriented Programming

Languages point of view. They mainly target on identifying

the hindrance in the interaction with the database via Call

Level Interfaces. The SQL DOM object prototype is the

proposed solution to implement these issues through building

a protective environment for communication.

C. Parse Tree Validation Approach

Buehrer et al. compared the parse tree framework of a

particular statement at runtime and its original statement [15].

They terminated the execution of statement unless there is a

contest. This methodology was experimented on a web

application of student using SQLGuard. However, this

approach is shown to be efficient, but it has two major

limitations: additional overheard computation and listing of

black and white input.

D. SQLCHECK Approach

With SQLCHECK Su and Wassermann [16] implemented

their algorithm on a real time environment. This approach

checks whether the input queries approve to the expected ones

defined by the web application programmer. A confidential

key is applied for the user input delimitation. The experiment

of SQLCHECK shows no false positives or false negatives.

The overhead runtime rate is very less and could be executed

directly in many other web based applications using different

languages.

E. DIWeDa Approach

For the backend databases, Roichman and Gudes proposed

Intrusion Detection Systems [17]. Authors used DIWeDa

(Detecting Intrusions in Web Databases), a model which acts

at the session level rather than the SQL statement or

transaction stage, to detect the intrusions in web based

applications. The proposed approach is shown to be efficient

and could identify SQL injections and business logic

violations. There is a need to be tested against new types of

SQL injection attacks and requires a great need of accuracy

improvement.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 4148 – 4153

4151
IJRITCC | June 2015, Available @ http://www.ijritcc.org

F. Ali et al.’s Scheme

Ali et al proposed the hash value scheme to further

improve the user authentication method [18]. They used the

hash values of username and password. SQLIPA (SQL

Injection Protector for Authentication) model was developed

in order to test the framework. The hash values of username

and password are created and calculated at runtime for the first

time the particular user registered itself. On few sample data

the proposed framework was tested. This scheme had an

overhead of 1.3 ms, which requires more improvement to

reduce the overhead time and also requires to be tested with

larger amount of user’s record.

G. Manual Approach

MeiJunjin used manual approach to prevent SQLI (SQL

Injection Input) manipulation flaws [19]. In manual

approaches, code review and defensive programming are

applied. In code review, it is a low cost mechanism in

detecting bugs, however, this approach requires deep

knowledge on SQLIAs. In defensive programming, an input

filter is implemented to disallow users to input malicious

keywords or characters. This is attained by using white lists or

black lists.

H. Automated Approach

MeiJunjin [19] also used automated approaches. The

authors implemented two frameworks, Static analysis

FindBugs and web vulnerability scanning. Static analysis

FindBugs approach detects bugs on SQLIAs, gives message

when an SQL query is made of variable. However, for the web

vulnerability scanning, it uses software agents to poke, scans

web applications and detects the SQL injection vulnerabilities

by examining their observance to the attacks.

I. WebSSARI (Web application Security by Static Analysis

and Runtime Inspection)

The SQLIA prevention in stored procedures is executed by

a combining static analysis and runtime analysis [20]. In the

databases the stored procedures are subroutines which the web

applications can make call to. For commands identification the

static analysis used is achieved through stored procedure

parser and the runtime experiment by using a SQLChecker for

input identification. Huang et al. [21] proposed a combination

of runtime monitoring and static analysis to fortify the

protection of major vulnerabilities. The scheme was effective

and however it failed to abolish the SQLIVs. This scheme was

only able to list the input either white or black.

J. AMNESIA

Junjin suggested an AMNESIA (Analysis and Monitoring

for Neutralizing SQL Injection Attacks) mechanism that

combines runtime monitoring and static analysis [22]. In the

static phase, AMNESIA uses static analysis to build models of

different types of queries an application can legally generate at

each point of access to the database. In dynamic phase,

AMNESIA prevents all queries before they are sent to the

database and checks each query against the statically built

models. Queries that breach the model are identified as

SQLIAs and prevented from executing on the database. The

proposed framework is efficient considering the fact that it

emphasizes on attack input precision. The input of attack is

exactly matched with arguments method. The only limitation

of this scheme is that it involves a number of steps using

different tools.

K. Dynamic Candidate Evaluation Approach

Bisht et al. proposed CANDID (CANdidate Evaluation for

Discovering Intent Dynamically) [23] for automatic

prevention of SQL Injection attacks. The proposed approach

dynamically excerpts the query structures from every SQL

query location which are designed by the web application

programmer. Hence, it solves the matter of manually altering

the web application to create the prepared statements. Though

this framework is shown to be efficient for some cases, it fails

in many other cases. It is not efficient when dealing with

external functions and when applied at a wrong stages. Due to

limited capability of the approach sometimes it also fails.

L. Removing SQL query attribute values

Authors proposed an approach to detect SQL injection

attacks is based on static and dynamic investigation [24]. It

removes the attribute values of SQL queries at runtime and

compares them with the SQL queries analyzed in advance to

detect the SQL injection. When execute the application each

dynamical generated query is compared or performs XOR

operation.

V. COMPARATIVE ANALYSIS

 It would be difficult to give a clear finding which scheme

or approach is the best as each one has some confirm benefits

for specific types of settings (i.e., systems). We analyzed how

various schemes work against the identified SQL Injection

attacks. The symbol (√) is used for techniques that can

successfully detect all attacks of SQL injection type. The

symbol (X) is used for techniques that are not able to detect all

attacks of that type. Though many approaches have been

identified as detection or prevention techniques, only few of

them were implemented in practicality. Hence, this

comparison is based on analytical evaluation only.

TABLE III. COMPARATIVE ANALYSIS OF VAROIUS APPROACHES AND SQL

INJECTION ATTACKS

Approa

ch
Tautol

ogy

Logica

lly

Incorr

ect

Querie

s

Unio

n

Quer

y

Sto

red

Pro

ced

ure

Piggy

Backe

d

Queri

es

Infer

ence

Altern

ate

Encod

ings

SQLrand    X   

SQL

DOM
   X   

SQL

CHECK
   X   

DIWeDa X X X X X  X

SQLIPA  X X X X X X

Automat
ed

Approac

hes

   X   X

WEbSS

ARI
      

AMNES

IA
   X   

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 4148 – 4153

4152
IJRITCC | June 2015, Available @ http://www.ijritcc.org

Approa

ch
Tautol

ogy

Logica

lly

Incorr

ect

Querie

s

Unio

n

Quer

y

Sto

red

Pro

ced

ure

Piggy

Backe

d

Queri

es

Infer

ence

Altern

ate

Encod

ings

CANDI
D

 X X X X X X

SQLGua

rd
   X   

Remove

attrubute

value

      

 Table III shows the schemes and their defense capabilities

against various SQLIAs. This table shows the comparative

analysis of the SQL Injections prevention techniques and the

attack types. Two attack types, stored procedures and alternate

encodings, caused problems for most techniques. In case of

stored procedures, the code that generates the query is stored

and executed on the database. Many of the techniques

considered focused only on queries generated within the

application. Expanding the techniques to also enclose the

queries generated and executed on the database is not truthful

and would, in general, require substantial effort. For this

reason, attacks based on stored procedures are ambiguous for

many techniques. The attacks that are based on alternate

encoding are also difficult to handle. Only three techniques,

SQLCheck, AMNESIA, and SQLGuard precisely address

these types of attacks. The reason why these techniques are

advantageous against such attacks is that they use the database

parser to clarify a query string in the same way that the

database would. Other techniques that score well in this

section are either developer-based techniques (i.e.,

WebSSARI) or techniques that address the problem by using a

standard (Application Programming Interface) API (i.e., SQL

DOM). It is important to note that we did not take precision

into account in our assessment. Most of the techniques that we

consider are based on some conservative analysis or

assumptions that may result in false positives.

TABLE IV. COMPARATIVE ANALYSIS OF VARIOUS APPROACHES AND

TYPES OF TASKS

Approach
Tasks

Detection
Prevention

SQLrand  

SQL DOM  

SQL CHECK  X

DIWeDa  

SQLIPA  X

Automated Approaches  

WEbSSARI  

AMNESIA  

CANDID  X

SQLGuard  X

Removing SQL query

attrubute value
 X

 Table IV shows the major approaches to deal with SQL

injection and classify them based on their features. For the

comparison purpose, we split the techniques into two groups:

prevention focused and detection focused techniques.

Prevention focused techniques are techniques that statically

identify SQL injection vulnerabilities in the code, propose a

different development criterion for applications that generate

SQL queries, or add checks to the application to enforce best

defensive coding practices. Detection focused techniques are

techniques that detect attacks mainly at runtime. The

prevention focused techniques adequately handle all of the

attack types considered. We believe that, overall, the

prevention focused techniques performed well because they

integrate the best defensive coding practices in their

prevention mechanisms. Most of the detection focused

techniques perform fairly uniformly against the various SQL

injections attack types.

VI. CONCLUSION

 In this paper we have presented a detailed survey on

various types of SQL Injection attacks, vulnerabilities, and

detection and prevention techniques and evaluated techniques

based on their performance and practicality. We compared

SQL injection detection and prevention techniques

analytically. We also compared these techniques in terms of

their deployment and evaluation criteria. This research

outcome helps to measure the security level of web

applications using proposed tools, to detect vulnerabilities of

online applications and to protect applications against using

proposed secure coding approaches. As a future work, we

would like to develop a hash function based authentication

scheme that can efficiently tackle the innovative SQL injection

attacks and fix as much vulnerability as possible.

ACKNOWLEDGMENT

 I am sincerely thankful to Er. Sandeep Jain, Head and

staff of Department of Computer science and Engg, Doon

Valley Institute of Engg. & Technology, Karnal. We also wish

to thank all the anonymous reviewers for their valuable

suggestions, who helped in improving the manuscript.

REFERENCES

[1] Kindy, D.A. and Pathan, A.-S.K., “A Survey on SQL Injection:
Vulnerabilities, Attacks, and Prevention Techniques”,
(Poster)Proceedings of The 15th IEEE Symposium on Consumer
Electronics (IEEE ISCE 2011), June 14-17, Singapore 2011, pp. 468-
471.

[2] Top 10 2013-A1-Injection, available at:
http://www.owasp.org/index.php/Top_10_2013- A1-Injection, last
accessed 11 June, 2013.

[3] Bojken, A. Shqiponja, A. Marin, and Xh. Aleksander,"Protection of
Personal Data in Information Systems",International Journal of
Computer Science, Vol. 10, No. 2,July 2013, ISSN (Online): 1694-0784.

[4] Prasant Singh Yadav, Pankaj Yadav, K.P.Yadav “A Modern Mechanism
to Avoid SQL Injection Attacks in Web Applications”, IJRREST:
International Journal of Research Review in Engineering Science and
Technology, Volume 1, Issune1, June 2012.

[5] A. Tajpour; M. JorJor Zade Shooshtari, "Evaluation of SQL Injection
Detection and Prevention Techniques," Proc. of CICSyN, 2010, pp.216-
221, 28-30 July 2010.

[6] Y. Shin, L. Williams and T. Xie, "SQLUnitGen: Test Case Generation
for SQL Injection Detection," North Carolina State Univ., Raleigh
Technical report, NCSU CSC TR 2006-21, 2006.

http://www.ijritcc.org/
http://www.owasp.org/index.php/Top_10_2013-

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 6 4148 – 4153

4153
IJRITCC | June 2015, Available @ http://www.ijritcc.org

[7] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. “A Static
Analysis Framework for Detecting SQL Injection Vulnerabilities”,
COMPSAC 2007, pp.87-96, 24-27 July 2007.

[8] Roichman, A., Gudes, E.” Fine-grained Access Control to Web
 Databases”.In: Proc. of 12th SACMAT Symposium, France 2007.

[9] K. Kemalis, and T. Tzouramanis, “SQL-IDS: A Specification based

 Approach for SQLinjection Detection”, SAC’08. Fortaleza,
 Ceará,Brazil, ACM: pp. 2153 2158, 2008.

[10] S. Thomas, L. Williams, and T. Xie, “On automated prepared statement

 generation to remove SQL injection vulnerabilities. Information and
 Software Technology” 51, 589–598, 2009.

[11] Y. Haixia, N. Zhihong, "A database security testing scheme of web

 application," Proc. of ICCSE '09 , pp. 953-955, 25-28 July 2009.
[12] M. Ruse, T. Sarkar and S. Basu. “Analysis & Detection of SQL

 Injection Vulnerabilities via Automatic Test Case Generation of

 Programs”, 10th Annual International Symposium on Applications and

 the Internet pp.31 – 37, 2010.
[13] S. W. Boyd and A. D. Keromytis. “SQLrand: Preventing SQL Injection

 Attacks” In Proceedings of the 2nd Applied Cryptography and Network

 Security Conference, pages 292–302, June 2004.
[14] R.A. McClure, and I.H. Kruger, "SQL DOM: compile time checking of

 dynamic SQL statements," Software Engineering, 2005. ICSE 2005.

 Proceedings. 27th International Conference on, pp. 88- 96, 15-21 May
 2005.

[15] G. Buehrer, B.W. Weide, P.A.G. Sivilotti, “Using Parse Tree

 Validation to Prevent SQL Injection Attacks”, In: 5th International
 Workshop on Software Engineering and Middleware, Lisbon,

 Portugal, pp.106–113. 2005.

[16] Z. Su and G. Wassermann “The essence of command injection attacks
 in web applications”. In ACM Symposium on Principles of

 Programming Languages (POPL’2006), January 2006.

[17] A. Roichman, E. Gudes, “DIWeDa - Detecting Intrusions in Web
 Databases”. In: Atluri, V. (ed.) DAS 2008. LNCS, vol. 5094, pp.

 313–329. Springer, Heidelberg 2008.

[18] S. Ali, SK. Shahzad and H. Javed, “SQLIPA: An Authentication
 Mechanism Against SQL Injection,” European Journal of

 Scientific Research ISSN 1450-216X Vol.38 No.4, pp 604-611, 2009.

[19] Mei Junjin, "An Approach for SQL Injection Vulnerability
 Detection," Proc. of ITNG '09, pp.1411-1414, 27-29 April 2009.

[20] K. Amirtahmasebi, S. R. Jalalinia, S. Khadem, "A survey of SQL

 injection defense mechanisms," Proc. Of ICITST 2009, vol., no.

 pp.1-8, 9-12 Nov. 2009.

[21] Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., and Kuo, S.-

 Y. “Securing Web Application Code by Static Analysis and Runtime

 Protection”, Proc. of 13th International Conference on World Wide

 Web, NewYork, NY, pp. 40-52, 2004.

[22] M. Junjin, “An Approach for SQL Injection Vulnerability
 Detection,” Proc. of the 6th Int. Conf. on Information Technology:

 New Generations, Las Vegas, Nevada, pp. 1411-1414, April 2009.

[23] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan. “CANDID:
 Dynamic Candidate Evaluations for Automatic Prevention of SQL

 Injection Attacks”, ACM Trans. Inf. Syst. Secur., 13(2):1–39, 2010.

[24] I. Lee, S. Jeong, S. Yeoc, J. Moond, “A novel method for SQL

 injection attack detection based on removing SQL query attribute”,

 Journal Of mathematical and computer modeling, Elsevier 2011.

http://www.ijritcc.org/

