Nonparametric Regression with Trapezoidal Fuzzy Data
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Abstract- This paper is an investigation into nonparametric fuzzy regression with crisp input and asymmetric trapezoidal fuzzy output. It
analyzes the a nonparametric techniques in statistics, namely local linear smoothing (L-L-S) with trapezoidal fuzzy data to obtain the best
smoothing parameters. In addition, it makes an analysis on one real-world datasets and calculates the goodness of fit to illustrate the application

of the proposed method.
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l. INTRODUCTION

Since the fuzzy regression was introduced by Tanaka et
al.[1], several fuzzy regression approaches have been
proposed, including the mathematical programming based
methods [1], least squares based methods [2] and other
methods [3]. In many real-world problems, it may be
unrealistic to predetermine a fuzzy parametric regression
relationship especially for a large dataset with a complicated
underlying variation trend. Along this line of consideration,
some other approaches have been developed to handle the
fuzzy regression problems without predefining a specific
form of the underlying regression relationship. For instance,
Ishibushi and Tanaka [4] have suggested several fuzzy
nonparametric regression methods by using the traditional
back propagation networks. Also, statistical nonparametric
smoothing  techniques have achieved  significant
development in recent years [5]. These smoothing
techniques are especially useful to handle the nonparametric
regression problems and therefore there may be other
promising tools for developing fuzzy nonparametric
regression. In this aspect, Cheng and Lee [3] have extended
the k-nearest neighbor (K-NN) and kernel smoothing (K-S)
methods for the context of fuzzy nonparametric regression.
In Wang et al. [6], the local linear smoothing method, the
special case of the local polynomial smoothing technique, is
fuzzified to handle the fuzzy nonparametric regression with
crisp input and LR fuzzy output based on the distance
measure proposed by Diamond [7]. Farnoosh et al. [8] used
ridge estimation in nonparametric regression with triangular
fuzzy data.

In this paper, we propose to fuzzify and analyze the three
nonparametric regression techniques in statistical regression,
namely local linear smoothing (L-L-S), the K- nearest
neighbor smoothing (K-NN) and the kernel smoothing
techniques (K-S) with trapezoidal fuzzy data.
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1. PRELIMINARIES

A fuzzy number Ais a convex normalized fuzzy subset of
the real line R with an upper semi-continuous membership
function of bounded support [7].

Definition 2.1. An asymmetric trapezoidal fuzzy number Z\
,denoted by A= (a®,a®,a® a) is defined as:

(2)
a® —x )
L& X X <a®
NENE
A(x)={4 1 a® <x <a®
3)
X —a
RS2 )  x>a®
NORINE)

“

where a® a®a® a® are four parameters of the
asymmetric trapezoidal fuzzy number.

Definition 2.2. Suppose that A= (@®,a?,a®,a")
and B =0®,b@ b® b®Y) are two trapezoidal fuzzy

numbers. Diamond distance between A and B can be
expressed as:

d Z(A“’ B~) _ (a(l) _b(l))2 +(a(2) _b(2))2
+ (a(3) _b(3))2 + (a(4) _b(4))2
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This distance measures the closeness between two
trapezoidal ~ fuzzy =~ membership  functions  when

d?(A,B) =0

It means that the membership functions of A and B are
equal.

L F =Y =@ y@y®yO

a set of all trapezoidal fuzzy numbers. The following
univariate fuzzy nonparametric regression model is

considered by Y = F (X){"‘} € . In this model, X is

a crisp independent variable (input) and Y is a symmetric
trapezoidal fuzzy dependent variable (output). & is an error

term, and {+} is an operator whose definition depends on
the fuzzy ranking method used.

In this paper, for the nonparametric regression techniques,
K-N-N and K-S are based on the concept of local averaging.
In other words, the estimated value of the regression surface

at point ko is the weighted average of the responses of the

observations in the neighborhood of ko .

Definition 2.3. Let Ki 1 =12,...,N Wwhere the index

is in ascending order, then the smoothing function based on
local averaging can be represented as:

S(K =K;)= AVE ()=

i~k <j<itk

AVE W @ e @
i—ksjsi+k(y1 YT YY)

where AVE denotes the mean, median or any weighted
average.

1. Smoothing methods for trapezoidal fuzzy
numbers

The basic idea of smoothing is that if a function f is fairly
smooth, then the observations made at and near x should
contain information about value of x. Thus, it should be
possible to use local averaging of the data x to construct an

estimator for F (X ) which is called the smoother. There
are several smoothing techniques. We proposed K-nearest
neighbor smoothing (K-NN), kernel-smoothing (K-S) and
local linear smoothing (L-L-S) methods for trapezoidal
variable in this section.

In the following discussion, asymmetric trapezoidal fuzzy
numbers are applied as asymmetric trapezoidal membership
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functions for deriving nonparametric regression model based
on the smoothing parameters.

These models are considered univariate fuzzy nonparametric
regression model as:

Y =F(x ){+}e = )
(Y B x)y @x)y @x)y @ (x )){+}g

where Y is a trapezoidal fuzzy dependent variable as
output. X is a crisp independent variable as input, X €] |

and X domain is assumed to be D. F (X) is a mapping

D — F . The definition of the smoothing method for
trapezoidal fuzzy variables is as follows:

- Local linear smoothing method (L-L-S)

In the following discussion, Razzaghnia et al. [9] proposed
the first linear regression analysis with trapezoidal
coefficients. Asymmetric trapezoidal fuzzy numbers are
applied as asymmetric trapezoidal membership functions for
deriving bivariate regression model. A univariate regression
model can be expressed as:

~

Vi = Ao+ A = (ool ol
Hal? % " )x, @

This model can be rewritten as

Y =@ +a®x; ,al? +al?x;,al"
+a1(3)Xi ,a(()4) +a1(4)Xi)

where 1 =1,...,N and N s the sample size.

~ 1 2 3 4
Y. :(Yi()’Yi( )’Yi()’Yi( ))

and | is an

A A

observed value fori =1,- .N . so Y i.L and Y i.R are
the left bound and right bound of the predicted Yi at
membership h level. Also Yi,|_ and Yi,R are left

bound and right bounds of observed Yi at membership
h level.

Thereupon,
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A, L _ha(())+ha1( )X +
(1—h)aO +(1—h)a1 X

YQi R = ha((f) + hal(e)Xi +
- h)aé“’ +(1-hjaf*)x;
Yio=hy,@+@a-ny®

Yir =hY,@ +@-hy,®

Let (X i A i ) be a sample of the observed crisp inputs and

trapezoidal fuzzy outputs with underlying fuzzy regression
function of model (2).

F (X) isestimated atany X € D based on (Xi Y )

for 1 =1...,N.When the local linear smoothing
technique is used, we shall estimate

Y W)Y D)y O (x) g ¥ @) for

each X € D by using the distance proposed by Diamond
[7] as a measure of the fit ( Definition 2.2).
This distance is used to fit the fuzzy nonparametric model

(1).
Let Y (1)(X),Y () (x)Y (3)()() and Y @ (x)

have continuous derivatives in the domain X € D . Then
for a given Xg € D and Taylors  expansion,

Y (1)()( ),Y (2) (x ),Y (3)(X) and Y ) (X) can

be locally approximated in neighborhood of Xg
respectively by the following linear functions:

Y W) oY @ (x )=y @ (x,)+
D (x0)(x ~xo) (3

Y @)y @ (x)=y @ (x,)+
Y @ (x0)(x =xo) (4)
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Y @)oY @)=y & (x,)+

Y @ (xo)(x =xo) (5)

Y W) oy @ (x )=y W (x,)+
Y W (x0)(x =xo) (6)

where Y '@ (X 0),Y () (X 0),Y @) (X 0) and
) (Xo) are respectively, the derivatives of

Y (1)(X),y (2)(x),Y (3)(x) g Y (4)(x)
based on Diamond distance (Definition 2.2) and the local
linear smoothing method is estimated at X g ,

by minimizing

iZil:d 2 [Y“i ,

n

Y:i j = Zd 2 ((Y i(l) Y i(z)’Y i(3) Y i(4))7

(7550 Pk, G -
(7

With  respect to Yi(l),Yi(z),Yi(S),Yi(4) and
YAi(l) ’YAi(Z) ,YAi(S) ,YAi(4)
smoothing

for the given kernel k(.) and
parameter h, where

[Xi =Xo|

Kh(‘xi —XO‘):k + for

I =1,...,n are a sequence of weights at X .Two

commonly used kernel functions are parabolic shape
functions:

if \x \ <1
otherwise

g2
kl(x):{ o.(7)5(1 x 2)

and Gaussian function:
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2

X
5 )

Ky (x)=(27) 72 exp(=

Also, by substituting (3), (4), (5) and (6) at (7), the
following can be obtained
n —
D d 2(\fi Y ):
i=1
n

Z d?2 ((Y i(l) Y i(2) Y i(S) Y i(4) ),

i=1

(Y“.(l) YAy Py ))K 2 (X —Xo))

:Z(Yi(l) _y (1)(x0)—Y '(1)(Xo)

i=1

(Xi_xo»ZthXi_XOD

+Z(Yi(2)_ 2) Xo)-Y '(2)(XO)
i=1

(Xi—xo»thqu—XoD

+Z(Y

0)=Y ¥ (xo)

(x; _Xo)) Ky (i =Xo)

n . 2
3 (Yi(4)— ) (x0)=Y @ (x0)(x, —xo))
i=1
Kh(‘xi —Xo‘) (8)

By solving this weighted least-squares problem, the
following can be obtained

Yy W(x).y @(x)y (3)(x),Y @ (x),
Y W)Y B (x0),y B (x),y @ (x)

at X . So the estimation F (X) atXg is:
Y (x0)=¢ W (x,).Y

~(2) (X0)1
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Equation (8) has eight unknown parameters
Y (1)(x),Y (2) (x).,Y ®) (x).Y (4)(x),
Y ’(1)(xo),Y '(2)(XO)’Y ’(3)(xo),Y ’(4)(x0)

to derive a formula for the unknown parameters
nonparametric regression based on minimizing this distance,
the derivatives (8) with respect to the eight unknown
parameters need to be derived, set to zero and solve the eight
unknown parameters.

According to the principle of the weighted least-squares and
utilizing matrix notations, we can obtain

)Y =T (%) (@)
W (X)X (X0 )) ™" X T (Xxg) W (Xo;h)Y @
CE)Y BN =xT (xo)  @0)
W (xg:h)X (xo )X T (Xg) W (x;)Y @
)Y PO =T (x0) @y
W (Xg;h)X (Xo )X T (Xg) W (x;h)Y @
)Y BN =xT (x0) (12
W (Xxg:h)X (Xo )X T (Xg) W (x;h)Y )
where
Yl(l)
1 X;—X v
X (Xg)={1 Xp—Xo [,Y®=]"2 |
1 X, —Xp Yn(l)
Y(Z) Y1(3)
y@_|Y ,(2) Y@ = Yoo :
Yn(z) Yn-(3)
Y1(4)
@) Y2(4)
Yn(4)
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W (x,;h)=Diag(K, (|X1_XO|)’
and (Jx2 =Xo)s--- K (|xn =o))

is a n x n diagonal matrix with its diagonal elements being

Kin(Xi =Xo|) for i =1,...,n and symbol T is
transpose of a matrix. If we suppose € = (L0)" and
H (xo;h)=(X" (Xxq )W (xg;h)

X (X)X T (X)W (xg;0)

The estimate of F (X) at X o is

=@ H (xo;h )Y @ el H (x:h )Y @,
el H (xo:h)Y ¥ el H (xg:h )Y W) (13)
- Smoothing parameters selection

The most important aspect for averaging techniques and
local linear smoothing method is selecting the size of
neighborhood to average k and parameter h. There are
different methods for selecting parameter h such as the
cross-validation method, and generalized cross validation
which are used to obtain parameter h. Let

Y (x;.h)=¢ @ (x;,h) Y @ (x;,h),
Y & (x;,h)Y @ (x;,h)

The fuzzified cross-validation procedure (CV) for selecting
parameter h local linear smoothing method based on
Diamond distance is defined as:

ov -5 i)

lz (D oy 0y,
n i=1

v i(2) Y @y 4y i(3) Y, @2
{9y (16)
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as its minimization gives the h optimal value.

CV (hg)=min,_,CV (h)

In fact, we may compute CV (h ) for a series of value of
h to search for h.

So selected optimal value of h by the Ccv (h) nearly
depends on the degree of smoothness of Y iL and Y iR .

Large value of h leads to lack-of-fit and small value of h
makes over-fit.

V. Numerical Example

In this section, there are an example in which the input is a
crisp number and the output is a trapezoidal fuzzy number.
We estimate the values by using three smoothing methods.
Then these methods can be compared with each other and
for this purpose, their GOF and their charts are used.

Example : This example is a generated dataset in the same
way as that in Cheng and Lee [3]. The following function is

x 2 X
_ 10
considered f (X ) - 5 +2e

So x; is uniformly generated within the interval [0, 1] and
i=1,...,100,

Y~i _ (Yi(l) ’ Yi(Z) ’ Yi(3) ’ Yi(4) ) _

l

1 2
(Yi —€,Yi +§ei Yi +§ei Yi +€;)
So

yi =f (X;)+rand[-0.5,0.5] and
e; =1/4f (X;)+rand[0,1].

Local Linear smoothing method is applied to the fitting
model. So Gauss and Parabolic shape kernel are used to
produce the weight sequence for local linear smoothing
Table 3 shows smoothing parameter selected by cross-
validation procedure results from different methods. Figures
4, 5 and 6 show the results of three methods. These results
can be compared using figure 3 and table 3. Like the
previous example, L-L-S method is better than K-NN, and
K- S methods. In table 3, GOF of L-L-S method is lower
than K-NN, K- S methods.
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Table 1

The obtained results of different methods for sample 2

method kernel Smoothing GOF
parameter
Gauiss 0.43 0.0045
LLS -
Parabolic 12 0.0046
shape
301

v — (v 2 (3 (@)
% = (.02, v ) /

24 B 8 10

Figurel: Obtained results by L-L-S method with Gausian

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

kernel for h=0.43
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