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Abstract- This paper is an investigation into nonparametric fuzzy regression with crisp input and asymmetric trapezoidal fuzzy output. It 

analyzes the a nonparametric techniques in statistics, namely local linear smoothing (L-L-S) with trapezoidal fuzzy data to obtain the best 

smoothing parameters. In addition, it makes an analysis on one real-world datasets and calculates the goodness of fit to illustrate the application 

of the proposed method. 
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I. INTRODUCTION 

Since the fuzzy regression was introduced by Tanaka et 

al.[1], several fuzzy regression approaches have been 

proposed, including the mathematical programming based 

methods [1], least squares based methods [2] and other 

methods [3]. In many real-world problems, it may be 

unrealistic to predetermine a fuzzy parametric regression 

relationship especially for a large dataset with a complicated 

underlying variation trend. Along this line of consideration, 

some other approaches have been developed to handle the 

fuzzy regression problems without predefining a specific 

form of the underlying regression relationship. For instance, 

Ishibushi and Tanaka [4] have suggested several fuzzy 

nonparametric regression methods by using the traditional 

back propagation networks. Also, statistical nonparametric 

smoothing techniques have achieved significant 

development in recent years [5]. These smoothing 

techniques are especially useful to handle the nonparametric 

regression problems and therefore there may be other 

promising tools for developing fuzzy nonparametric 

regression. In this aspect, Cheng and Lee [3] have extended 

the k-nearest neighbor (K-NN) and kernel smoothing (K-S) 

methods for the context of fuzzy nonparametric regression. 

In Wang et al. [6], the local linear smoothing method, the 

special case of the local polynomial smoothing technique, is 

fuzzified to handle the fuzzy nonparametric regression with 

crisp input and LR fuzzy output based on the distance 

measure proposed by Diamond [7]. Farnoosh et al. [8] used 

ridge estimation in nonparametric regression with triangular 

fuzzy data. 

In this paper, we propose to fuzzify and analyze the three 

nonparametric regression techniques in statistical regression, 

namely local linear smoothing (L-L-S), the K- nearest 

neighbor smoothing (K-NN) and the kernel smoothing 

techniques (K-S) with trapezoidal fuzzy data. 

 

II. PRELIMINARIES 

 

A fuzzy number A
~

is a convex normalized fuzzy subset of 

the real line R with an upper semi-continuous membership 

function of bounded support [7]. 

Definition 2.1. An asymmetric trapezoidal fuzzy number A
~

, denoted by ),,,(
~ )4()3()2()1( aaaaA   is defined as:  
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where )4()3()2()1( ,, aaaa  are four parameters of the 

asymmetric trapezoidal fuzzy number. 

Definition 2.2. Suppose that ),,,(
~ )4()3()2()1( aaaaA   

and 
(1) (2) (3) (4)( , , , )B b b b b  are two trapezoidal fuzzy 

numbers. Diamond distance between A and B can be 

expressed as:  
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This distance measures the closeness between two 

trapezoidal fuzzy membership functions when 

2( , ) 0d A B  .  

It means that the membership functions of A  and B are 

equal. 

 

Let  (1) (2) (3) (4): ( , , , )F Y Y y y y y   be 

a set of all trapezoidal fuzzy numbers. The following 

univariate fuzzy nonparametric regression model is 

considered by  ( )Y F x   . In this model, X is 

a crisp independent variable (input) and Y is a symmetric 

trapezoidal fuzzy dependent variable (output).  is an error 

term, and    is an operator whose definition depends on 

the fuzzy ranking method used.  

In this paper, for the nonparametric regression techniques, 

K-N-N and K-S are based on the concept of local averaging. 

In other words, the estimated value of the regression surface 

at point 0k  is the weighted average of the responses of the 

observations in the neighborhood of 0k .  

Definition 2.3. Let , 1, 2, ,iK i n  where the index 

is in ascending order, then the smoothing function based on 

local averaging can be represented as: 

(1) (2) (3) (4)

( ) ( )

( , , , )

i j
i k j i k

j j j j
i k j i k

S K K AVE Y

AVE y y y y

   

   

  

 

where AVE denotes the mean, median or any weighted 

average. 

III. Smoothing methods for trapezoidal fuzzy 

numbers 

The basic idea of smoothing is that if a function f is fairly 

smooth, then the observations made at and near   should 

contain information about value of  . Thus, it should be 

possible to use local averaging of the data   to construct an 

estimator for ( )F x which is called the smoother. There 

are several smoothing techniques. We proposed K-nearest 

neighbor smoothing (K-NN), kernel-smoothing (K-S) and 

local linear smoothing (L-L-S) methods for trapezoidal 

variable in this section.  

In the following discussion, asymmetric trapezoidal fuzzy 

numbers are applied as asymmetric trapezoidal membership 

functions for deriving nonparametric regression model based 

on the smoothing parameters. 

These models are considered univariate fuzzy nonparametric 

regression model as:
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where
 
Y is a trapezoidal fuzzy dependent variable as 

output. x is a crisp independent variable as input , x  , 

and x domain is assumed to be  .
 
 ( )F x  is a mapping

D F . The definition of the smoothing method for 

trapezoidal fuzzy variables is as follows: 

- Local linear smoothing method (L-L-S) 

In the following discussion, Razzaghnia et al. [9] proposed 

the first linear regression analysis with trapezoidal 

coefficients. Asymmetric trapezoidal fuzzy numbers are 

applied as asymmetric trapezoidal membership functions for 

deriving bivariate regression model. A univariate regression 

model can be expressed as:  
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This model can be rewritten as 
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where 1, ,i n   and n  is the sample size. 

and  (1) (2) (3) (4)
, , ,i i i i iY Y Y YY 

 is an 

observed value for 1, ,i n   . So .

ˆ
i LY and .

ˆ
i RY  are 

the left bound and right bound of the predicted 
ˆ
iY  at 

membership h  level. Also ,i LY and ,i RY  are left 

bound and right bounds of observed iY  at membership 

h level.  

Thereupon,  
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(2) (1)
, (1 )i L i ihY hY Y    

(3) (4)
, (1 )i R i ihY hY Y   . 

Let  ,i iX Y  be a sample of the observed crisp inputs and 

trapezoidal fuzzy outputs with underlying fuzzy regression 

function of model (2).  

( )F x  is estimated at any x D  based on  , iix Y

for 1, , .i n  When the local linear smoothing 

technique is used, we shall estimate 

           1 2 3
, ,Y x Y x Y x  and 

(4) ( )Y x for 

each x D  by using the distance proposed by Diamond 

[7] as a measure of the fit ( Definition 2.2).  

This distance is used to fit the fuzzy nonparametric model 

(1). 

Let 
           1 2 3

, ,Y x Y x Y x  and 
(4) ( )Y x  

have continuous derivatives in the domain x D . Then 

for a given 0x D  and Taylors expansion, 

           1 2 3
, ,Y x Y x Y x  and 

(4) ( )Y x  can 

be locally approximated in neighborhood of 0x  , 

respectively by the following linear functions: 
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where 
(1) (2) (3)

0 0 0( ), ( ), ( )Y x Y x Y x    and 

(4)
0( )Y x  are respectively, the derivatives of 

           2 31
, ,Y x Y x Y x  and 

   4
Y x

based on Diamond distance (Definition 2.2) and the local 

linear smoothing method is estimated at 0x , 
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With respect to 
       1 2 3 4
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       2 3 41
, , ,i i i iY Y Y Y  for the given kernel k(.) and 

smoothing parameter h, where 
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  for 

1, ,i n   are a sequence of weights at 0x .Two 

commonly used kernel functions are parabolic shape 

functions: 
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and Gaussian function: 
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Also, by substituting (3), (4), (5) and (6) at (7), the 

following can be obtained   
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By solving this weighted least-squares problem, the 

following can be obtained 
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at 0x . So the estimation ( )F x  at 0x  is:                                                                                          
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Equation (8) has eight unknown parameters 
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to derive a formula for the unknown parameters 

nonparametric regression based on minimizing this distance, 

the derivatives (8) with respect to the eight unknown 

parameters need to be derived, set to zero and solve the eight 

unknown parameters. 

According to the principle of the weighted least-squares and 

utilizing matrix notations, we can obtain  
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and 
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is a     diagonal matrix with its diagonal elements being 

( )h i oK x x  for 1, ,i n   and symbol T is 

transpose of a matrix. If we suppose 1 (1,0)Te  and 
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- Smoothing parameters selection  

The most important aspect for averaging techniques and 

local linear smoothing method is selecting the size of 

neighborhood to average k and parameter h. There are 

different methods for selecting parameter h such as the 

cross-validation method, and generalized cross validation 

which are used to obtain parameter h. Let  
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The fuzzified cross-validation procedure (CV) for selecting 

parameter h local linear smoothing method based on 

Diamond distance is defined as: 
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as its minimization gives the h optimal value. 

   0 minh oCV h CV h  

In fact, we may compute  CV h  for a series of value of 

h to search for h.  

So selected optimal value of h  by the  CV h  nearly 

depends on the degree of smoothness of iLY  and iRY . 

Large value of h leads to lack-of-fit and small value of h 

makes over-fit. 

IV. Numerical Example 

In this section, there are an example in which the input is a 

crisp number and the output is a trapezoidal fuzzy number. 

We estimate the values by using three smoothing methods. 

Then these methods can be compared with each other and 

for this purpose, their GOF and their charts are used.  

Example : This example is a generated dataset in the same 

way as that in Cheng and Lee [3]. The following function is 

considered  
2

102
5

x
x

f x e   

So    is uniformly generated within the interval [0, 1] and 

i=1,…,100, 

 (1) (2) (3) (4)
i i i i iY ,Y ,Y ,Y

1 2
( , , , )

3 3
i i i i i i i i

Y

y e y e y e y e

 

   
,  

So 

   [ 0.5,0.5]i iy f X rand   and 

 1/ 4 [0,1].i ie f X rand 
 

Local Linear smoothing method is applied to the fitting 

model. So Gauss and Parabolic shape kernel are used to 

produce the weight sequence for local linear smoothing 

Table 3 shows smoothing parameter selected by cross-

validation procedure results from different methods. Figures 

4, 5 and 6 show the results of three methods. These results 

can be compared using figure 3 and table 3. Like the 

previous example, L-L-S method is better than K-NN, and 

K- S methods. In table 3, GOF of L-L-S method is lower 

than K-NN, K- S methods. 
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Table 1 

The obtained  results of different  methods for  sample 2 

method kernel 
Smoothing 

parameter 
GOF 

LLS 

Gauss 

Parabolic 

shape 

0.43 

1.2 

0.0045 

0.0046 

 

 

Figure1: Obtained results by L-L-S method with Gausian 

kernel for h=0.43 
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