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Abstract— Domain Analysis says that activity occurring before system analysis provides domain model. Domain model is input to 

the system analysis to the designer‘s tasks. Domain analysis is the procedure of identifying, organizing, analyzing, and modeling 

features common to a specific domain. The complete process is very time consuming and more man power is required for it. 

There are various projects which require extensive domain analysis activities. In proposed method, recommended system is used 

to reduce human efforts of performing domain analysis. It is not easy to discover relationship between items in a large database of 

sales transactions but there are some algorithms for solving this problem. Data mining techniques are used to discover common 

features across products as well as relationships among those features .Incremental diffusive algorithm is used to extract features. 

Bi-Partity Distribution technique is used for feature recommendations during the domain analysis process  

Keywords: Domain Analysis, Clustering, Incremental Diffusive Clustering (IDC), Recommender systems, Bi-Paritity Distribution.  

__________________________________________________*****_________________________________________________ 
I. INTRODUCTION 

Domain analysis is the process of identifying, organizing, 

analyzing, and modeling features common to a particular 

domain [3], [4]. It is conducted in primary stage of the software 

development life-cycle (SDLC) to produce ideas for a product, 

to find out similarities and differences in a domain, and to 

identify opportunities for reuse. It is a leading element of the 

software engineering process. Most domain analysis 

techniques, such as the feature-oriented domain analysis 

(FODA) [5] or the feature-oriented reuse method (FORM) [6] 

depend on analysts manually reviewing the existing 

requirement specifications or participant’s product brochures 

and websites, and are quite labor intensive. The 

accomplishment of these methods is reliant on  the accessibility 

of relevant documents or access to the existing project 

repositories, as well as the knowledge and capability of the 

domain analyst. Other approaches such as the domain analysis 

and reuse environment (DARE)[7] utilize data mining and 

information retrieval methods to provide automated support for 

feature identification and extraction, but have a tendency to  

focus their efforts on only a small  requirements specifications. 

The extracted features are limited by the scope of the available 

specifications. In this paper, address these limitations through 

presenting a new approach for finding a larger set of applicant 

features. In previous methods that extract features from 

exclusive project repositories, this approach extracts raw 

feature descriptions. It analyzes the relationships between 

features and products, and utilizes this information to 

recommend features for an explicit project. This method takes 

as input to initial product description, examines this 

description, and then produces related feature recommendations 

utilizing Bi-Paritity distribution Techniques. Previously 

introduced feature recommender system is useful for limited 

domain with comparatively small-sized software products. 

Antivirus software, multimedia, and photography applications 

are some of the software products.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig1: Example of feature Recommendations 

In proposed system we extend this prior work by making 

several extra contributions. Firstly, provide a more detailed 

analysis of our technique for mining features from online 

product listings utilizing incremental diffusive clustering (IDC) 

[15][16] algorithm and then Bi-Partity distribution is used for 

feature recommendations.  

Step #1 : Enter Initial product description 

Amiti Free Antivirus is an effective and easy to use 

free antivirus for your PC. Protects against viruses, 

trojans, worms and malware. Amiti Antivirus has 

built-in real-time memory shields, scheduling, 

multiple skin and translations support. Uses famous 

clamav antivirus engine library. 

 

Step #2:Confirm Features 

We have identified the following features from your 

initial product description. Please confirm 

Easy to use 

Protects against viruses, worms, viruses, Trojans , 

Malware 

Real time memory shields 

Scheduling, multiple skin and translations support. 

 

 

Step #3: Recommended Features 

Based on the features you have already selected we 

recommended the following three features. Please 

confirm 

×     Network intrusion detection 

Real time monitoring 

Web history and cookies management 
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The final output is a set of recommended features which is 

input for the requirements engineering process to help project 

stakeholders who define the features for a specific software 

product or product line. In this approach, the user can 

interrelate with the system to provide response on candidate 

features. In this example scenario, the user rejects network 

intrusion; however, file monitoring and web history is added 

to the initial product profile. Additional recommendations are 

then generated based on this profile 

The remainder of this paper is laid out as follows: Section 

II describes old methods for domain analysis. Section III 

describes implementation details of proposed system. Section 

IV describes datasets. Section V describes results. Finally 

Section VI describes conclusions. 

 

II.LITERATURE SURVEY 

This work fills the difference between automated feature 

detection and recommender systems. So, this section provides 

a brief background survey on each of these areas.  

At the beginning, there is no any policy for domain 

analysis, domain analysis is conducted manually [3]. Domain 

analysis is carried out with help of data flow diagrams. 

Domain analysis can be considered as a process which is 

occurring previous to system analysis. [3]. Organized 

detection and use of cohesion across related software systems 

is required for successful software reuse. Domain analysis 

offer, a general report of the necessities of that class of 

structures and a set of methods for their implementation with 

the help of observing related software systems. FODA [5] 

create methods for accomplishment a domain analysis and 

define the products of the domain analysis process. The 

important technical condition for completing effective 

software reuses efficient detection and use of unity across 

related software systems. In FORM [5], inspection of a class 

of related systems and the cohesion of primary systems exist. 

It is possible to achieve a set of reference models. FORM 

starts with an analysis of agreement among applications in a 

particular domain in terms of services, operating 

environments, domain tools. The feature model (FM)[5] is 

defined as construction during the analysis is called feature 

model. Feature model captures commonality. Domain 

Analysis and Reuse Environment [6] is CASE tool which 

helps in domain analysis of finding and recording the 

similarities and differences of related software systems. DARE 

[6] helps to capture of domain information from experts in a 

domain. Captured domain information is stored in a domain 

catalog, which is enclosed a general architecture for the 

domain and domain specific components. We also studied the 

problem of finding out association rules amongst items in huge 

database of sales transactions. There are two algorithms i.e. 

Apriori and Apriori-TID [7, 8] algorithm for Association Rule 

Mining (ARM) which is well known algorithm to find 

Association rules which are used for affinities among items 

[7,8].The process of estimating items through the views of 

other people is called as Collaborative filtering (CF)[9] .CF 

technology fetches organized views of large interrelated 

publics on the web which supporting filtering of large amounts 

of data. We studied the very important part of collaborative 

filtering, its key uses for users of the principle and exercise of 

CF [9] algorithms. We also studied challenges of a CF 

recommendation system and evaluation of Collaborative 

Filtering [10]. 

III. SYSTEM IMPLEMENTATION 

     The proposed framework is organized into two phases, 

Offline phase and Online phase respectively. The system 

architecture is as shown in fig.2 

Offline phase: Dataset i.e. product descriptions are collected 

from sourceforge.net Collected dataset is passed through the 

preprocessing, IDC algorithm, post processing, and creation of 

Product × Feature matrix. This is stage used for feature 

extraction. 

Preprocessing 

        Initial feature descriptors are first preprocessed by 

converting them into a set of keywords; eliminating commonly 

occurring words i.e. stop words, and stemming the remaining 

keywords to their root form i.e., terms. Given the vocabulary 

of all such terms T ={t1,t2,..,tw}each feature descriptor, fi, is 

represented as a vector of terms, vi={fi,1,fi,2,..,fi,w} where fij is a 

term weight representing the number of occurrences of term tj 

in the feature descriptor fi. These term weights are then 

converted using a standard term frequency-inverse document 

frequency(tf-idf) method [13] Such that tf-idf(fij)=fi 

j.log2(D/dfj) where D denotes the total number of feature 

descriptors and dfj denotes the number of feature descriptors 

containing term tj. Finally the converted vector(with tf-idf 

weights) is normalized to a unit vector resulting in the vector 

vi=(Fi,1, Fi,2, Fi,W) 

The following steps are then executed to identify features. 

A. Granularity 

In order to decide how many features or clusters to produce for 

a given product category, IDC [15], [16]    uses a revised 

version of Can’s metric [17] which considers the degree to 

which each feature descriptor distinguishes itself from other 

feature descriptors. The ideal number of clusters K is 

computed as follows: 

K=  
     

     

 
    

     

  
    

  
    
 

  

 
           

where Nj represents the total number of occurrences of 

term tj. 

B. Clustering 

The feature descriptor vectors extracted in the 

preprocessing stage is automatically clustered using the 

incremental diffusive clustering algorithm (IDC) [15], [16] to 

extract a meaningful and cohesive set of final features. In each 

iteration, IDC first automatically clusters the feature 

descriptors, and then, it detects and keeps as it is the highest 

cluster. Once this cluster has been selected, its dominant terms  
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Fig: Flow of System 

 

are recognized and removed from all clusters. In our initial 

version of IDC, a consensus-based spherical K-means 

clustering methodology [16] was used in each iteration to 

increase the cohesiveness of intermediate clusters. We 

clustered feature descriptors in each of the sourceforge 

categories separately, and then merged similar clusters across 

the categories.  

C. Selecting the Best Cluster 

In each iteration, IDC stimulates the best cluster to the 

status of a feature. Based on initial interpretations, the best 

cluster from a set L={C1,C2,….,CK}  is one that has high levels 

of cohesion with wide coverage of the topics. To measure 

cohesion for a cluster Ci = {vi,1,vi,2,..,vi,r} with centroid    . The 

similarity between the feature descriptors and their associated 

centroids is computed and averaged as, 

                  
               ……………………..(2) 

While topic coverage is computed as, 

                
             ………………………(3) 

 Cohesion and topic coverage scores are added together, 

and the cluster with the highest combined score is selected as 

the best cluster and promoted to the status of a feature. 

Remember that if cohesion itself used to select the best cluster, 

the algorithm would have been biased towards small clusters. 

D. Removing Dominant Terms 

In order to remove dominant terms, terms exhibiting 

weights above a predefined threshold (0.15) in the centroid 

vector of the “best” cluster are selected. Since the centroids are 

also normalized, this threshold is held constant. These terms 

are then removed from all descriptors in the data set. For 

example, if dominant terms are identified as instant, e-mail, 

and encrypt, then a descriptor originally specified as Encrypt 

e-mail messages before transmission is reduced to messages 

before transmission with the word before also removed as a 

stop word. Future rounds of clustering are then performed on 

the reduced version of descriptors. This process is repeated 

until the targeted number of features, determined previously in 

step 1, has been identified. 

 

E. Post processing 

A post processing step is performed to enhance the 

identified features. This step involves the four tasks of  

1. Removing misfits 
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2. Recomputing centroids, 

3. Checking for missing members, and finally 

4. Merging similar features. 

Misfits are removed by computing the similarity score 

between each centroid and feature descriptor in the 

corresponding cluster. Descriptors whose similarity to the 

centroid drop below a given threshold value (set to 0.35 based 

on experiential observations) are removed from the cluster. 

Centroids are then shifted according to the remaining feature 

descriptors using the same SPK algorithm adopted in the 

initial clustering step. Missing feature descriptors are 

recognized by re-computing the cosine similarity between 

every feature descriptor not currently assigned to a cluster, and 

the centroid of that cluster. Any feature descriptor showing a 

similarity score higher than a given threshold (set to 0.35) is 

added to that cluster. Finally, similar clusters are merged by 

computing the cosine similarity between each pair of 

centroids. Any pair of clusters showing a score above a given 

threshold (set to 0.55) is finally merged into a single feature. 

F. Feature Naming 

Each feature is named by identifying the medoid, defined 

as the descriptor which is most representative of the feature’s 

theme. The medoid is identified by first calculating the cosine 

similarity between each feature descriptor and the centroid of 

the cluster, and then averaging all term weights in the feature 

descriptor vector above a certain threshold (0.1). The cosine 

similarity and the average of dominant term weights are then 

added together to produce the score of each feature descriptor. 

The feature descriptor scoring the highest value is selected as 

the medoid and the corresponding original feature descriptor 

(from sourceforge) is selected as the name for the feature. This 

approach produces relatively meaningful names. As an 

example, a feature based on the theme of updat, databas, 

automat, viru was subsequently named Virus definition update 

and automatic update supported. 

G. Merging Category Clusters 

This method includes processing each product category 

separately, and then merging them into a single product-by- 

feature matrix. This directly meets scalability issues of dealing 

with large numbers of features, and has the additional 

extensibility benefit of allowing new product categories to be 

added incrementally. Merging is accomplished through 

computing the cosine similarity between each pair of features, 

and then merging features exhibiting  

Online phase: online phase is used for feature 

recommendation which is based upon the clusters generated 

using IDC, we create a binary product-by-feature matrix, 

M         where P represents the number of products, F is 

the number of identified features and mij is 1 if and only if the 

feature j includes a descriptor originally mined from the 

product i. This matrix, which contains the complete set of 

recommendable features referred to as the feature pool from 

now on, is used to generate feature recommendations in the 

following steps.  

 

1. Creating Initial Product Profile 

First an initial product profile is built in a format 

compatible with the feature model. To achieve this, the 

domain analyst creates a short textual description of the 

product, which is then processed to match elements of the 

description to features in the feature pool. This matching is 

accomplished by first performing basic preprocessing, such as 

tokenization, stemming, and removal of stop words, and then 

converting the product description p to a term vector 

p=(w1,p,w2,p,….,wn,p) where each dimension corresponds to a 

separate term. We used the standard term frequency-inverse 

document frequency approach [13], also known as tf-idf, 

which calculates the weight for each term based on the 

normalized term frequency and the inverse document 

frequency.  

Once the product description is converted to term vector 

form, it is compared to the term vector representation of each 

feature in the feature pool using a standard information 

retrieval metric such as the cosine similarity. Features are then 

ranked according to their similarity to the product description, 

and presented to the analyst for confirmation. As a result of 

this step, an initial product profile is appended to the product-

by-feature matrix. 

2. Feature Recommendations Using Bi-Paritity 

Distribution  

1. Calculate cosine similarity between term vector and 

feature pool. 

Sim (dj,dk) = 
          
 
   

         
 

                 
  

………(4) 

Where , 

a. fi is i
th 

feature, 

b. dj is j
th 

descriptor, 

c. dk is k
th 

descriptor.  

2. Rank features with respect to their weights. 

3. Find fractions of number of occurrences of each 

feature  to the total number .of occurrences. 

4. Calculate Point Of Distribution (POD).  

POD=   
       
   

   
             

Where, 

w is weight associated with feature. 

5. Partition the ranked feature vector around POD. 

6. Label Upper partition as Confirmed features and 

Lower  partition as Recommended features  
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IV. DATASET 

Proposed method evaluated in the context of four different 

data sets collected from sourceforge
1,
 sourceforge

2 

sourceforge
3, 

sourceforge
4
. Dataset is stored in text file.

 

1. Antivirus product descriptions extracted from 

sourceforge
1
 

2. Multimedia video product descriptions extracted from 

sourceforge
2
 

3. I-pod application product descriptions extracted from 

sourceforge
3  

    
4. Photography product descriptions extracted from 

sourceforge
4 

 

1.
http://sourceforge.net/directory/os:windows/freshness:recentl

y-updated/?q=antivirus     

 

2
.http://sourceforge.net/directory/os:windows/freshness:recentl

y-updated/?q=multimedia 

 

3
.http://sourceforge.net/directory/os:windows/freshness:recentl

y-updated/?q=ipod%20application   

 

4.
http://sourceforge.net/directory/os:windows/freshness:recentl

y-updated/?q=ipod%20application   

 

 

V. RESULTS 

5.1 Upload Dataset 

 

5.2 Clustering 

 
5.3 Find Best Cluster 

 

5.4 Remove Dominant Terms 
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5.5 Feature Naming 
 

 
 

5.6 Product × Feature Matrix 

 

 
5.7 Confirmed Features and Recommended Features.  

 

 
 

VI. CONCLUSIONS 

In proposed method presented a new feature recommender 

system to support the domain analysis process. This is a 

critical early phase part of the software development lifecycle 

and is essential in both application development and product 

line development. This system mines feature descriptors for 

hundreds of products from publicly available software 

repositories of product descriptions and uses this data to 

discover features and their associations. For feature discovery, 

this method proposed a new incremental diffusive clustering 

algorithm. In this method we use the Bi-Paritity Distribution 

approach to make additional recommendations. This has the 

advantage of expanding an initially light product description 

before making a more wide set of recommendations. 
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