
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2962 - 2966

2962
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Automatic Class Timetable Generation using a Hybrid Genetic and Tabu

Algorithm

1
A Kavya Reddy,

2
Nagambika A,

Dept. of Computer Science and Engineering,

BMSCE

Bangalore, India
1
kavyaatla93@gmail.com,

2
nagambika.a@gmail.com,

 3Akash J Castelino,
4
Deeksha CS

Dept. of Computer Science and Engineering

BMSCE

Bangalore, India
3
castelino.akash@gmail.com,

4
deekshagowda03@gmail.com

Mrs. K Panimozhi,
Assistant Professor

Dept. of Computer Science and Engineering,

BMSCE

 Bangalore, India.

panimozhi.cse@bmsce.ac.in

Abstract – Timetable generation is a combinatorial optimization problem. Meta Heuristic methods and Evolutionary Algorithms have given the

best results when it comes to solving the problem of timetable generation. In our paper the problem of timetable generation for the Computer

Science and Engineering Dept. of BMS College of Engineering is solved with the help of Genetic Algorithm and Tabu Search which belong to
the class of Evolutionary Algorithms and Meta – Heuristics respectively. Genetic Algorithms help in finding multiple optimal solutions in one

iteration but they can get stuck at local optima. This can be avoided by using Tabu Search procedure.

Key Words - Course timetabling, Genetic Algorithm, Tabu Search.

__*****___

I. INTRODUCTION

 Timetable generation is a very intriguing problem

belonging to the class of NP- hard problems. Timetable

generation is nothing but the allocation of subjects, lecturers

and students into appropriate timeslots and classrooms in such

a way that they satisfy a predefined set of constraints. Since

timetabling is a NP-hard problem, it is not possible to solve it

using conventional optimization techniques like backtracking

or constraint logic programming as they fail to generate

optimum solutions [1]. In recent times a lot of research has

been done in the field of Evolutionary computation algorithms

and Meta- Heuristics. Genetic Algorithms and Tabu Search

which belong to the above mentioned methods are the most

preferred ways of solving the University course timetabling

problem as it not only eliminates the violation of the essential

constraints but also ensures reaching global maxima.

II. PROBLEM DESCRIPTION

 The timetables considered in this paper are generated for

the undergraduate courses of the Computer Science and

Engineering Dept. of BMS College of Engineering.

Timetables are generated for the courses that belong either to

the odd semester group or the even semester group (i.e.,

Semester 3, Semester 5, Semester 7 or Semester 4, Semester 6,

Semester 8). Classes are conducted on 6 days of the week i.e.,

from Monday to Saturday. The duration of each timeslot is 55

minutes. The number of lectures and labs to be allotted to a

course depends on the credits assigned to that course.

III. PROBLEM DEFINITION

 The course timetabling problem can be articulated as

follows:

P = {A, B, C, D, E} where A = {a1,a2,a3,...am} is the set of

subjects, B = {b1,b2,...bn} is the set of teachers, C ={ c1, c2, c3,

c4, ..c6} where each ci (for i = 1 to 6) represents the set of

timeslots available during each day of the week. D = {d1, d2,,

..dt} is the set of classrooms and E = {e1,e2,….ef} is the set of

constraints. Constraints can be classified as:

Hard Constraints:

E1) One teacher cannot take two classes at the same time.

E2) A group of students cannot attend two classes at the same

time.

E3) Two different classes cannot be held at the same room at

the same time.

E4) There cannot be any classes beyond the schedule of the
college.

Soft constraints:

E5) Make sure that a group of students don’t have to come to

college only to attend one class.

E6) Not more than two continuous slots should be allocated for
a particular subject.

E7) No class must be allotted during break time.

E8) Two sessions of the same subject should not have a break

between them.

E9) The weekly lecture hours must be within the maximum

allowed hours.

E10) The number of classes allotted per week for a subject

must be determined by its credits.

In our problem we use a combination of Genetic Algorithm

and Tabu Search Technique.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2962 - 2966

2963
IJRITCC | May 2015, Available @ http://www.ijritcc.org

IV. FLOW CHART

Figure 1. Proposed flow of the algorithm.

V. ALGORITHMS

 A. Genetic Algorithm (GA)

 The concept of Genetic Algorithms was presented by J.H.

Holland. Genetic Algorithms imitate the process of natural

evolution. They can be used to solve problems whose solution

lies in large solution spaces. The advantage of Genetic

Algorithms is that they reach global optima. To begin with, a

set of initial solutions is generated. This set is called the

population. Each population consists of a set of chromosomes.

In this paper each chromosome represents a timetable. Each

chromosome is made up of several genes. Here each gene is

nothing but a course and its allotted time slot and classroom

[21]. These chromosomes are represented by bit strings. This is

done to increase the efficiency of the algorithm. It also

simplifies the process of mutation and crossover. An example

of this binary encoding is shown in Table I.

TABLE I. BINARY REPRESENTATION OF CHROMOSOMES.

Chromosome

1

0 1 1 0 0

Chromosome

2

1 1 1 0 1

The next step is to optimize the initial solutions in the

subsequent iterations [3]. Each chromosome has a parameter

attached to it, which is the fitness. Fitness is a determinant of

the number of constraints violated by each timetable [6]. Once

the initial set of solutions are generated, the fitness of each

chromosome is calculated by the fitness function. Now, the

fittest of the chromosomes are selected for generating the next

generation of timetables. For this purpose the selection operator

of Genetic Algorithm is used. Here the concept of Evolution is

used [7]. In the simulation of evolution, only the fittest

individuals survive and the inferior individuals go extinct [20].

Thus only the fittest individuals in each generation survive. The

evolution process is carried out by the selection, crossover and

mutation operators. [2]. There is a small probability that the

best solution can be eliminated during the selection process. In

order to avoid this, a mechanism is devised to protect the best

solution and ensure its presence in the gene pool. This is called

elitism [2]. In this paper tournament selection is used as it

ensures elitism. The next step is to perform crossover.

Crossover provides structured yet randomized information

exchange between individuals [4]. The crossover operator

makes use of two individuals to create the next generation of

off springs. Here, two point crossover is used. Selection and

crossover can lead to local optima. In order to avoid this, the

mutation operator is used. The percentage of mutation is

decided by the user. Mutation does the following things [5]:

1. Select an event which is causing collisions and assign

it to a different slot.

2. Select and event randomly and assign it to a different

time slot.

3. Select an event randomly and change only the room

allotted to it.

The process of selection and crossover is used until a fixed

number of generations are created and the optimal solution is

obtained [8].

Algorithm 1: Genetic Algorithm ()
 Input: current generation a

 Size of population b

 Rate of elitism c

 Rate of mutation d

 Number of iterations e

 Output: x

 //Initial solutions

 1. Generate b solutions randomly

 2. Save them in the population p

 3. for i = 0 to e do

 //Selection on the basis of elitism

 4. Number of elite chromosomes (f) = b*c

 5. Select the best f solutions from p & store them in p1

 //Crossover

 6. Number of crossover (cr) = (b-f)/2

 7. for j = 0 to cr do

 8. Randomly select 2 solutions x1, x2 from p1

 9. Generate x3, x4 by applying 2-point crossover to x1 &

x2

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2962 - 2966

2964
IJRITCC | May 2015, Available @ http://www.ijritcc.org

 10. Save x3, x4 to p2

 11. End for

 //mutation

 12. for j = 0 to cr do

 13. Select a solution xj from p2

 14. Mutate xj under rate of d & generate new solution xj’

 15. If xj’ is unfeasible

 16. Update xj’ with a feasible solution by repairing xj’

 17. End if

 18. Update xj with xj’ in p2

 19. End for

 //updating

 20. Update p = p1 +p2

 21. End for

 22. Return the best solution x in p

B. Tabu Search:

 Tabu search is one of the most popular local search

methods based on the neighborhood search algorithm. Fred

Glover proposed the Tabu search in 1986.

Tabu search can be applied to any kind of optimization

problem to get near optimal or optimal solution to the problem

[17] . Thus the Tabu search would be one of the few ideal

search techniques that is used to solve the combinatorial

optimization problem of timetable scheduling. This is a kind

of heuristic search technique that has the advantage of internal

memory [15] . This internal memory is called the Tabu List.

Tabu list is a First in First out list which contains the best

solutions found so far. The major kind of moves used here are

the neighborhood search moves [19] . One of the main

advantages of Tabu search is that it does not get stuck at local

optima. This is achieved by allowing non-improving moves

when it gets trapped at local optima. Non-improving moves

directs the search away from local optima. The basic idea

behind Tabu search is the 'Tabu', which means not-allowed.

Tabus are used to prevent cycling of the same solutions when

moving away from local optima [18]. But sometimes tabus are

too powerful; they may prohibit useful moves even when there

is no danger of using them. Such moves also can be allowed

using Tabu search if they satisfy a criterion called the

'Aspiration criteria' [10].

In order to obtain the best Timetable schedule for our

university we produce a group of candidate timetable solutions

 from the initial timetable. The initial timetable solution is

obtained by applying greedy techniques or from the timetable

obtained from the Genetic Algorithm method. This initial

timetable obtained using Genetic Algorithm method is not so

fit and it is the fittest solution that can be obtained using

Genetic Algorithm [16]. The quality of this solution can be

improved greatly by using Tabu Search method.

From this initial solution a group of candidate solutions is

generated by applying neighborhood search techniques. We

then pick the best solution from the group of candidate

solutions. Then we again obtain a list of candidate timetable

solutions from the best solution by again applying

neighborhood search techniques [9]. This method is then

repeated for a fixed number of iterations.

At each iteration the best solution is added to the Tabu list and

this solution remains there for a certain number of iterations

called the Tabu tenure. The Tabu tenure Tb , is the square root

of the total number of courses in the timetable problem and its

value is randomly chosen between 0.25 Tb to 0.50 Tb . The

best of the new solutions is selected again and is tested for the

Tabu list entry and the aspiration criteria [11]. They are put in

the Tabu list if they pass the former test or if they satisfy the

aspiration criteria. The Tabu search uses its memory ability to

prevent cycling of the previously visited timetable solutions.

At each iteration the best timetable solution is selected based

on an evaluation function. This is a function of the soft

constraint violation and the penalty incurred for the violation

of each soft constraint is considered for calculation the value

of this function. This is called the objective function. The main

aim of the objective function is to minimize the cost of

violation the soft constraints.

 f = ∑ Vi Wi. (1)

Where Wi is the penalty incurred for each soft constraint

violation and Vi is the number of students involved in the soft

constraint violation. Vi is equal to zero if no students are

involved in the violation of the soft constraint.

The major kind of moves used in the Tabu search is the

neighborhood moves. These neighborhood moves are basically

of the types N1, N2, N3 and N4.

The neighborhood search is going to make swaps depending

on the lengths of the lectures (some lectures are one hour long

and some are two hour long) [12].

N1: This is a simple move where one lecture of a course is

moved from the current period to a clash free period position.

N2: Here two lectures belonging to two different periods,
rooms and days are swapped.

N3: Two different lectures in the same room but different

periods are swapped.

N4: Two lectures that belong to different slots on the same day

are swapped.

For each best solution obtained we define a neighborhood N(s)

which has all the feasible solutions that are obtained by

applying the neighborhood search method. Whenever a

feasible solution has been reached we generate a subset V* of

N(s) and we obtain the best solution s* in V* [13].

 Algorithm 2: Tabu Search()

1. Sol* = Sol;

2. f(Sol*) = f(Sol);

3. Set up Tabu List, TL;

4. I = Total number of iterations;

5. Set iteration I;

6. Do While (i < I OR f(Sol*) = 0)

7. Determine complete Neighborhood N (N1, N2, N3,
N4) of current solution Sol;

8. Choose the best non-tabu solution Sol* form N;

9. Sol* = newly obtained Sol*;

10. Add Sol* to the Tabu List TL;

11. Update the best found solution;

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2962 - 2966

2965
IJRITCC | May 2015, Available @ http://www.ijritcc.org

12. End

13. Return the best found Solution.

The Tabu search process is stopped when the best solution

found so far satisfies all the soft and hard constraints or the

total number of iterations has reached say 3000 or if the total

consecutive unimproved iterations is say 1000.

Thus the combination of Tabu search and Genetic Algorithm

technique can be efficiently used for the automated scheduling

of the timetabling problem which was previously done

manually.

VI. IMPLEMENTATION

The implementation was done on Visual Studio 2012 and C#

was used as the coding language. Also SQL Server

Management Studio was used. Figures 2 and 3 represent the

time tables generated using the methods mentioned in this

paper. The time tables generated were found to satisfy all the

hard constraints. The slots show teacher’s name, subject and

the room allotted. Timetables were generated for 2 sections of

every semester under consideration.

Figure 2. Timetable generated for semester IV.

Figure 3. Timetable generated for semester VI.

VII. EXPERIMENTAL RESULTS:

 The below figure 4 shows the comparison of rate of

convergence of Genetic Algorithm and Tabu Search for the

Time Table Generation Problem. The initially generated

solutions have the Objective value in the range of 150 to 450.

Figure 4. Convergence of Genetic Algorithm and Tabu Search.

VIII. FUTURE ENHANCEMENT

 In the future we plan to make it more efficient by trying to

satisfy all the mentioned soft constraints. This results in a

timetable that is more optimum. Also, more soft constraints

will be added to satisfy all the requirements. An option would

be provided to increase the number of classrooms available so

that timetables for more classes can be generated. An edit

feature can be added so that a slot which causes inconvenience

can be shifted to any other desired slot on a different day.

IX. CONCLUSION

 Solving the problem of Timetable Scheduling using

Genetic Algorithm has proven to give good results. But the

disadvantage of this approach is that it gets stuck in local

optima. The quality of the solution obtained using Genetic

Algorithm can be highly improved by using a Hybrid Search

technique that combines the qualities of Genetic Algorithm

and Tabu Search approaches because Tabu search has the

advantage of escaping local optima and it also achieves near

global optimum solution. For the problem under consideration

the results obtained using this Hybrid Search technique are

much better than the results obtained manually. This algorithm

can also be used for the timetable scheduling of other

universities by just modifying the constraints and requirements

according to the particular university.

ACKNOWLEDGMENT

 The work reported in this paper is supported by the college
through the Technical Education Quality Improvement

Programme [TEQIP-II] of the MHRD, Government of India.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2962 - 2966

2966
IJRITCC | May 2015, Available @ http://www.ijritcc.org

REFERENCES

[1] Sehraneh Ghaemi, Mohammad Taghi Vakili and Ali

Aghagolzadeh, “Using Genetic Algorithm Optimizer Tool to

Solve the University Course Timetabling Problem”, Faculty of

Electrical and Computer Engineering, University of Tabriz.
[2] Milena Karova, “Solving Timetable Scheduling Problem Using

Genetic Algorithms”, Department of Computer Science,

Studentska 1 Technical University, Varna.

[3] Mohd Azri Abdul Aziz, Mohd Nasir Taib and Naimah Mohd
Hussin, “Improved Event Selection Technique in a Modified

PSO Algorithm to Solve Class Scheduling Problems”, Faculty of

Electrical Enginnering, University Telnology MARA, Shah
Alam, Selangor, Malaysia.

[4] Negin Najdpour and Mohammad-Reza Feizi-Derakshi, “A Two

Phase Evolutionary Algorithm for University Course

Timetabling”, Department of Computer Science and
Engineering, University of Tabriz.

[5] Amir Hossein Karami and Maryam Hasanzadeh, “University

Course Timetabling Using Hybrid Genetic Algorithm”,

Members, IEEE, Department of Engineering, Shahed University,
Tehran, Iran.

[6] Sandor Gyori,Zoltan Petres and Annamaria R Varkonyi-

Koczy,“Genetic Algorithms in Timetabling. A New

Approach”,Budapest University of Technology and Economics
Dept. of Measurement and Information Systems Muegyetem

rkp. 9., Budapest, Hungary.

[7] Rushil Raghavjee and Nelishia Pillay “An Application of

Genetic Algorithms to the School Timetabling Problem”, School
of Information Systems and Technology, Pietermaritzburg

Campus University of KwaZulu-Natal.

[8] Majlinda Fetaji , Bekim Fetaji and Mirlinda Ebibi ,“Using

Genetic Algorithm For Solving Time Tabling Multidimensional
Issues and its Performance Testing”, South East European

University, Contemporary Sciences and Technologies,

Ilindenska bb, 1200 Tetovo, Macedonia.

[9] Khang Nguyen, Nguyen Dang, Khon Trieu and Nuong Tran,
“Automating a Real-World University Timetabling Problem

with Tabu Search algorithm”, Information Technology faculty,

the University of Science, Ho Chi Minh city, Vietnam, 2007.

[10] S.C. Chi and H.L. Fang “ Genetic algorithm vs Tabu Search in
Timetable Scheduling”, National Kaohsiung Institute of

Technology,Taiwan, R.O.C nad University of South Australia,

Australia.

[11] Amol C. Adamuthe and Rajankumar S. Bichkar, “Tabu Search
for Solving Personal Scheduling Problem”, Department of CSE,

RIT, Rajaramnagar-Islampur MS, India.

[12] Hassan Younis Al_Tarawneh, Masri Ayob, “Using Tabu Search

with Multi-Neighborhood Structures to solve University Course
Timetable UKM Case Study (Faculty of Engineering)”, Data

Mining and Optimization research group, Centre for Artificial

intelligence Technology, University Kebangsaan Malaysia,

Selangor, Malaysia.
[13] Dr. Mohammad Tounsi, “A Heuristic-Based Technique for

University Resource Allocation Problems”, Computer Science

Department, Prince Sultan University, Riyadh, 11586, KSA.

[14] Khang Nguyen, Nguyen Dang and Khon Trieu, “Automating a
Real-World University Timetabling Problem with Tabu Search

Algorithm”, IEEE, 2011, Faculty of Information, University of

Science, Vietnam.

[15] Amol C. Adamuthe and Rajankumar S Bichkar, “Tabu Search
for Solving Personal Scheduling Problem”, IEEE, 2011, Dept. of

Computer Science Eng., Rajaramnagar-Islampur MS, India.

[16] Turabieh and Salwani Abdullah, “Incorporating Tabu Search

into Memetic Approach for Enrolment-based Course
Timetabling Problems”, IEEE 2nd Conference on Data Mining

and Optimization, Hamza Centre for Artificial Intelligence

Technology, University Kebangsaan Malaysia, October 2009.

[17] Ms.Premalatha A Sonawane, Dr.Leena Raghu, “Hybrid Genetic

Algorithm and Tabu Search Algorithm to solve class time table
scheduling problem “, Intenational Journal of Research Studies

in Computer Science and Engg.

[18] F. Glover and M. Laguna, “Tabu search”, Kluwer Academic

Publishers, 1997.
[19] Cagdas Hakan Aladag and Gulsum Hocaoglu ,"A Tabu search

Algorithm To solve a Course Timetabling Problem", Hacettepe

Journal of Mathematics and Statistics,Vol. 36 (1) ,pp. 53 64,

(2007).
[20] S.N.Sivanandam, S.N.Deepa,"Introduction to Genetic

Algorithms", Springer Berlin Heidelberg New York,2008.

[21] Rushil Raghavjee, Nelishia Pillay, "Using Genetic Algorithms to

Solve the South African School Timetabling Problem",IEEE,
Second World Congress on Nature and Biologically Inspired

Computing, in Kitakyushu, Fukuoka, Japan, pp.286-292, Dec.

15-17,(2010).

[22] Thamilselvan, R. and P. Balasubramanie, "Integration of Genetic
Algorithm with Tabu Search for Job Shop Scheduling with

Unordered Sub sequence Exchange Crossover",Journal of

Computer Science, Vol.8 (5):, pp. 681-693, (2012).

