
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2898 - 2902

2898

IJRITCC | May 2015, Available @ http://www.ijritcc.org

UVM Based Verification of CAN Protocol Controller Using System Verilog

Suchika Lalit
 P.G Students, Department of Electronics Engineering

Gujarat Technological University

Ahmedabad, Gujarat, India

suchikalalit@gmail.com

Mr. Ashish Prabhu
Sr. Verification Engineer at LSI Pune, India

p_ashishp@yahoo.com

Abstract—Over the years, design complexity and size have stubbornly obeyed the growth curve predicted by Gordon Moore. The

industry is migrating towards leading edge nodes, which can hold more than 100 Million gates. The chip makers want to pack as

many functions possible in their SoCs and provide as many feature additions to gain market share. And, of course, all of those

features need to be verified. Verification is currently the largest challenge facing the semiconductor industry in keeping pace with

both the customer demand for features and our technical ability to add millions of gates to our chips. Verification quality is a must

for functional safety in electronic systems. This paper describes the verification of CAN Protocol Controller using System

Verilog. The CAN Controller functions as the interface between an application and the actual CAN bus. Taking this need in

consideration, this paper describes flow from specification extraction to development of verification environment.

Keywords- UVM, ASIC, VLSI, CAN, DUT

__*****___

I. INTRODUCTION

During the last decades, several verification methodologies

have been developed to ease the process of ASIC

verification designs. EDA tool vendors usually develop

these methodologies which in most cases are not compatible

with tools from different vendors [4]. With the introduction

of the Open Verification Methodology (OVM) which

supports the use of SystemVerilog testbenches, need for

verification became more standardized and hence, OVM

paved way for Universal Verification Methodology (UVM)

which has become an official Accellera standard supported

by all EDA tool vendors today[4].

This research presents UVM based Verification process and

methodology using SystemVerilog, explains verification

strategy and reuse of design environment with reference to

verifying the CAN Protocol controller (IP) core.

Communication across a CAN bus starts with the

application providing the CAN controller with the data to be

transmitted. The CAN controller provides an interface

between the application and the CAN bus. The function of

the CAN controller is to convert the data provided by the

application into a CAN message frame fit to be transmitted

across the bus. A transceiver receives the serial input stream

from the controller and converts it into a differential signal.

The Physical connection of the CAN controller to the CAN

bus is done with the CAN transceiver.

The Universal Verification Methodology (UVM) offers the

most excellent structure to attain coverage driven

verification. The coverage driven verification combines

automatic test generation, self-checking testbenches and

coverage metrics to significantly reduce the time spent

verifying a Design Under Test (DUT).

II. VERIFICATION

In VLSI (Very Large Scale Integration) technology we

design and make integrated chips. ASIC (Application

Specific Integrated Chip) designing is a process in which

RTL (Register Transfer Level) design is made using

Hardware Description Language (HDL). Based on correct

RTL respective chip is manufactured. If RTL contains errors

or bugs the final chip does not work properly according to

specified functionality. To make sure that RTL is working

correctly according to specified functionality, verification is

required. According to Moore’s law number of transistor

increases in the design every 18 months. As the number of

transistors in the design increases so the errors in the design

increases. Thus verification is one of the most important

processes of ASIC flow which make sure the functional

correctness of the design.

“Verification is a process used to demonstrate the functional

correctness of a design in its implementation” [8].At every

step of developing a chip we need verification. At each level

we need some

level of verification. Basically verification covers the below

things.

 What we specified is what we envisioned.

 What we design is what we specified.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2898 - 2902

2899

IJRITCC | May 2015, Available @ http://www.ijritcc.org

 What we taped out is what the RTL described.

 What we manufactured is what we taped out.

Bug is error or misbehaving of design. It is unexpected

behaviour of the design. No design in VLSI is bug free.

Bugs found in early stages of verification costs very little. It

is always best to find bugs in the design as early as possible.

For complex designs synthesis takes lots of time. If we find

bugs in later stage it costs more.

Figure 1 Number of bugs’ vs time in verification flow

III. UVM

UVM (Universal Verification Methodology) was introduced

in December 2009, by a technical subcommittee of

Accellera. UVM uses Open Verification Methodology as its

foundation. Accellera released version UVM 1.0 EA on

May 17, 2010. UVM Class Library provides the building

blocks needed to quickly develop well-constructed and

reusable verification components and test environments. It

uses system Verilog as its language. All three of the

simulation vendors (Synopsys, Cadence and Mentor)

support UVM today which was not the case with other

verification methodology.

 Figure 2 UVM Basic Component Model.

Figure 3UVM phases

IV. CAN PROTOCOL CONTROLLER DESIGN

The interface between the CAN serial bus and CAN

application is provided by the CAN Controller Figure 3

shows a block diagram of CAN Protocol Controller with the

pins and different blocks inside the controller.

Figure 3 Block diagram of CAN controller

A. Description of the CAN controller blocks [7]

 Interface Management Logic (IML)

Interface management logic interprets commands from

CPU, controls addressing of the CAN registers and provides

interrupts and status information to the host microcontroller.

 Transmit Buffer (TXB)

Transmit buffer is an interface between the CPU and the Bit

Stream Processor (BSP) that is able to store a complete

message for transmission over the CAN network. This

buffer is 13 bytes long, written to by the CPU and read out

by the BSP.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2898 - 2902

2900

IJRITCC | May 2015, Available @ http://www.ijritcc.org

 Receive Buffer (RXB, RXFIFO)

Receive buffer is an interface between the acceptance filter

and the CPU that stores the received and accepted messages

from the CAN-bus line. The Receive Buffer (RXB)

represents a CPU-accessible 13-byte window of the Receive

FIFO (RXFIFO), which has a total length of 64 bytes.

 Acceptance Filter (ACF)

Acceptance filter compares the received identifier with the

acceptance filter register contents and decides whether this

message should be accepted or not. In the event of a positive

acceptance test, the complete message is stored in the

RXFIFO.

 Bit Stream Processor (BSP)

Bit stream processor is a sequencer which controls the data

stream between the transmit buffer, RXFIFO and the CAN-

bus. It also performs the error detection, arbitration, stuffing

and error handling on the CAN-bus.

 Bit Timing Logic (BTL)

Bit timing logic monitors the serial CAN-bus line and

handles the bus line-related bit timing. It is synchronized to

the bit stream on the CAN-bus on a ‘recessive-to-dominant’

bus line transition at the beginning of a message (hard

synchronization) and re-synchronized on further transitions

during the reception of a message (soft synchronization).

BTL also provides programmable time segments to

compensate for the propagation delay times and phase shifts.

 Error Management Logic (EML)

EML is responsible for the error confinement of the transfer-

layer modules. It receives error announcements from the

BSP and then informs the BSP and IML about error

statistics.

V. DETAILED TESTBENCH ARCHITECTURE

For the verification process, UVM using System Verilog

and Mentor Graphics QuestaSim is used to create the

testbench environment. A testcase is developed with

particular constraints that will limit the random stimulus

generation.

The generator creates a programmable amount of random

frames that will be inserted in the DUT (Design Under

Test). The sequencer will take these frames and will

transform them into signals (bytes) and will send them

through the interfaces/driver. The scoreboard will predict

the expected result from the driver and this result will be

used by the checker to compare them with the received data

from the DUT.

Figure 4: Detailed Testbench Environment

VI. TEST PLAN

Test plan is a document which contains all possible

scenarios of test cases. Based on specifications we define all

possible test cases and maintain a document for that. It is

one of the most important steps of verification flow.

Maximum number of test cases can find more bugs from the

design. In industry as much possible time is spent in

defining the test plan as according to test plan. Based on

verification plan we implement all defined modules in

verification plan in terms of code using System Verilog

language.

Figure 5 Test Plan

VII. IMPLEMENTATION

To perform the verification, we need the complete and

stable RTL design first. So as first task stable IP Core of

CAN Protocol Controller is collected. The CAN Controller

IP Core is provided by OpenCores
[12]

 community which

provides free IP Core. Compilation results show that the

RTL code of CAN protocol controller is syntax and other

compilation error free. It means it is ready to be functionally

verified.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2898 - 2902

2901

IJRITCC | May 2015, Available @ http://www.ijritcc.org

Table 1 Verification Component

Components Parent

Class

Description

top.sv NA top module contains instantiation of

interface and CAN core.

interface.sv NA Interface block provides

communication path between

testbench and CAN core.

tr1_test.svh can_base_te

st, uvm_test

tr1_test

can_env uvm_env Environment class has two

components viz. Agent, Scoreboard.

can_scoreboard uvm_scoreb

oard

Scoreboard provides output results

comparison mechanism and contains

function model of our design.

can_agent uvm_agent Agent provides three blocks namely

Sequencer, Driver and Monitor. It

also has connection between all

three components and with blocks of

Environment.

sequence_item uvm_seque

nce_item

To create transactions, apply

randomization to desired signals.

can_driver uvm_driver Driver converts transactions coming

from sequence to signal level

activities and applied them to CAN

core via virtual interfaces.

can_monitor uvm_monit

or

Monitor collects results from the

CAN core output ports via virtual

interface and sends them to

Scoreboard in form of transactions.

Scoreboard functionality is to compare all inputs to the

relative outputs. And for that scoreboard will be connected

to CAN functional model. Here, this functional model can

be in any foreign language like C, C++, Python etc or it can

be created in SystemVerilog. To connect CAN functional

model to scoreboard we require DPI-C if the model is in C

language.
VIII. SIMULATION RESULTS

A. tr1_test

Two basic sequences are applied to check the UVM

environment for CAN protocol controller that are “reset and

initialize”.

Simulation waveform for tr1_test testcase is as shown

below.

Figure 6 Verification Component Hierarchy

Figure 7 Verification Component Hierarchy

B. can_pkg Package File

package can_pkg;

// Include Package Items and Macros

import uvm_pkg::*;

`include "uvm_macros.svh"

// Define Sequencer, Include Sequence Items

`include "sequence_item.svh"

typedef uvm_sequencer#(sequence_item) sequencer;

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2898 - 2902

2902

IJRITCC | May 2015, Available @ http://www.ijritcc.org

// Sequences

`include "sequences/base_sequence.svh"

`include "sequences/reset_seq.svh"

`include "sequences/init_seq.svh"

`include "sequences/tr1_seq.svh"

// UVM Components

`include "can_driver.svh"

`include "can_monitor.svh"

`include "can_agent_config.svh"

`include "can_agent.svh"

`include "can_scoreboard.svh"

`include "can_env.svh"

// Base Test and Extended Tests

`include "test/can_base_test.svh"

`include "test/tr1_test.svh"

endpackage: can_pkg

IX. CONCLUSION

Verification plays an important role for the functional safety

and understanding of electronic circuits. Literature survey is

done to select the verification methodology as UVM. The

Universal Verification Methodology (UVM) represents the

latest member of a family of methodologies for functional

verification of digital hardware. UVM was built on the

principle of cooperation between EDA vendors and

customers. It is based on SystemVerilog classes, and proven

to be a powerful OOP technique with highly reusability.

Due to the wide range of applications of CAN controller in

automobile industry this protocol needs to be verified. The

main objective of this project is to develop a generic

verification environment in SystemVerilog by the UVM

methodology. So here a verification environment is

proposed for CAN Protocol Controller. Here layered

testbench is developed where each layer has particular

functionality. By using OOP concept different functionality

are divided into different classes. Global class contains all

global signals and signals which need to be randomized.

Generator class performs all randomization and data

generation operation. Driver class performs driving

command to DUT. Monitor class monitors all activity of

whole testbench. Scoreboard class keeps the track of passed

and failed transactions. So here self-checking and generic

environment is developed. According to specification

testplan is developed which contains all possible test cases

and scenarios.

 REFERENCES

[1] G. Zarri, F. Colucci, F. Dupuis, R. Mariani, M.

Pasquariello, G. Risaliti, C. Tibaldi, “On the Verification

of Automotive Protocols”, 2006.

[2] Guo Jinyan, Hu Yueli, “The Design and Realization of

CAN Bit Timing Logic” in Prime Asia 2010.

[3] Juan Francesconi, J. Agustin Rodriguez, Pedro M.

Juli´an, “UVM Based Testbench Architecture for Unit

Verification” in Argentine School of Micro-

Nanoelectronics, Technology and Applications 2014.

[4] Jonathan Bromley, “If SystemVerilog Is So Good, Why

Do We Need the UVM?”, 2013.

[5] Geng Zhong, Jian Zhou, Bei Xia, “Parameter and UVM,

Making a Layered Testbench Powerful”, IEEE 2013.

[6] Philips Semiconductors. CAN Specification Version 2.0,

Parts A and B [S].1992.

[7] Philips Semiconductors, SJA1000 Stand-alone CAN

controller Datasheet, 2000.

[8] Chris Spear, SystemVerilog for Verification, A Guide to

Learning the Testbench, MA, Springer, p.15(2006).

[9] Accellera, “Universal Verification Methodology (UVM)

1.1 User‟s Guide”, May 2011.

[10] Kuang-Chien (KC) Chen,” Assertion Based Verification

for SoC designs”, 0-7803-7889-X/03 IEEE, Published on

2003.

[11] Yang Guo, Wanxia Qu, Tun Li, Sikun Li. “Coverage

Driven Test Generation Framework for RTL Functional

Verification” Published in Computer- Aided Design and

Computer Graphics, 2007 10th IEEE international

conference, pp. 321-326.

[12] OpenCores, Free IP Core Provider, www.opencores.org

[13] Overview and understanding of SystemVerilog and

Verification Environment. www.systemverilog.in

www.testbench.in

[14] Bhaumik Vaidya and Nayanpithadiya, “An Introduction

to Universal Verification Methodology” published in

Journal of Information Knowledge and Research in

Electronics and Communication Engineering, 2012-13,

pp. 420-424

http://www.ijritcc.org/
file://AURICLE/Users/Public/00%20Review%20Papers/May%20Format/www.systemverilog.in
file://AURICLE/Users/Public/00%20Review%20Papers/May%20Format/www.testbench.in

