
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2835 - 2838

2835
IJRITCC | May 2015, Available @ http://www.ijritcc.org

GUI based Code Generation for Embedded Systems

Vaghela Megha Nareshbhai
Embedded System Design

GTU PG School

Ahmedabad, India

megha.vaghela2012@gmail.com

Gadhia Deep H.
Embedded System Design

GTU PG School

Ahmedabad, India

deepgadhia30@gmail.com

Abstract— This paper presents a novel approach for an Integrated Development Environment (IDE) for generating software for

embedded systems using user friendly graphical interface. For the embedded software engineer, starting embedded application

development can present a major hurdle. To develop an application for embedded systems there are many technologies and

platforms available like RTOS or bare metal programing and many other tools and environment. But these things are conceptually

very different. To further complicate matters, these tools are sometimes operating system specific. Embedded application

development normally requires development tools that run under Linux according to their application hardware software

specification. The programmer therefore needs to first learn the basics of desktop Linux and related tools and their interface

subsystems under various kernel images. After all this complications, there are various choices for open source development tools

each having its own methods and practices. Although the technology is very powerful, it creates a big complication as one

attempts to find a learning path. Thus one should work on techniques which streamlines the whole development process and

makes it easy to develop embedded software. A unique user friendly Integrated Development Environment with the help of

graphics user interface can be developed for direct code generation which can directly work with targeted embedded hardware.

Keywords- GUI, Embedded systems, Embedded Software, IDE, Embedded Tool

__*****___

I. INTRODUCTION

The complexity associated with the embedded software
invites a new, more efficient design approach. An obvious
choice is to use well-established component-based design;
however, its adoption to design of embedded software has been
slow and riddled with difficulties. One of the most significant
difficulties here is the tight integration between hardware and
software, typical for embedded systems, makes it virtually
impossible to model and implement software separately from
hardware. However, this approach to embedded software
development has been significantly slower than to software
development in general [1].

Component-Based Software Engineering (CBSE) is an
approach which aims to increase the efficiency in software
development by reusing already existing solutions encapsulated
in well-defined entities (components) and building systems by
efficient composition (which includes constructive, i.e.
functional composition).[3] Flow-based programming (FBP) is
a programming paradigm that defines applications as networks
of "black box" processes, which exchange data across
predefined connections by message passing, where the
connections are specified externally to the processes. These
black box processes can be reconnected endlessly to form
different applications without having to be changed internally.
FBP is thus naturally component-oriented. Thus, such a policy
can be implemented on unique IDE for efficient code
generation for various embedded application. [4]

Its visual programming technique will help us to reduce
time to prototype and market to a great extent. The generated
code will help you to achieve 100% functionality originally
envisaged. It is targeted toward reducing application
development time and cost for industry. This tool generates C
code from model diagrams, interface connections, and protocol
blocks in the form of templates. The generated source code can
be used for designing targeted embedded applications. You can

tune the generated code using various abstraction layer libraries
to make it make it work on actual targeted hardware used in the
application.

In this paper we present an idea for a unique environment
for embedded software generation using user friendly graphical
interface which will generate the code accordingly for targeted
hardware.

II. CONCEPT

The concept is to develop such an environment which

incorporates the entire development process of application

software generation for the targeted embedded hardware. The

environment is developed as a project. This is built with the

help of open source technologies that make it more reliable and

scalable. The project build on top of industrially acclaimed

Eclipse OSGI framework, reputed for its scalability and

reliability. New feature can be integrated by simply adding new

plug-ins, without any change in code. It includes design of a

system components architecture representation in a logical

format and specification of component behavior. Other

important factors can also be included like timing requirement,

abstraction glue code, and operating system functionalities,

editing and programming rules.

The design is realized in a project on Eclipse framework as

an graphical component edition which works as an interface to

user. The additional parts include elements and programming

elements are designed through diagram blocks that represent

different view of elements internally. However, the external

view of an components is designed in a way that represent the

connection nodes and interfaces. The internal view describes

all the properties and setup values for the respective component

or a block.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2835 - 2838

2836
IJRITCC | May 2015, Available @ http://www.ijritcc.org

III. SYSTEM ARCHITECTURE

The IDE aims to cover the entire software development

process for embedded systems. For realizing the proposed

idea, the whole process is divided into various discrete

components upon which development is done individually.

Once the desired functionality on these components is

achieved they can be integrated to perform a conclusive task

by developing some glue analysis and filling the functionality

gap. The entire concept can be seen as an architecture of these

different functional blocks which works in hierarchical manner

in order to get the desired outcome. The proposed system

architecture is shown in the figure [Figure 1] below.

Figure 1. Proposed System Architecture

As shown in figure there are lots of different concepts

are associated with this idea. The most important aspect of the

project is the GUI (Graphical User Interface) which will

provide the visual platform to the user equipped with drag and

drop functionality. This will make the entire process much

simpler as compared to the one where user needs to write the

entire code from scratch. However this is much simpler task as

compared to other complex functional block as there are many

options available for creating such models which are going to

be used in embedded systems. As there will not be any

complex graphics processing associated with it and thus this is

the simplest one to implement.

Once the code has been generated according the

graphical representation made by user, it is also important to

make sure the code is in an appropriate form in which form the

user has made it. Additionally this generated code has to work

properly with the hardware, thus there must be a hardware

abstraction layer which defines the protocol about how that

code is going to communicate with the given hardware. Board

support packages would help us produce the glue code for the

same.

This entire work is intended to make this code generation

process easy and thus there is no point of providing the user

with many complex graphical blocks and ultimately again

makes this entire process tedious. Thus for handling events

and interrupts the glue layer of operating systems is used for

complex processing. And lastly the entire work can be tested

on some evaluation board with the use of several small

application test cases.

The entire developed environment is shown in figure

[Figure 7] below which generates the code as per the graphical

representation in the editor.

IV. FRAMEWORK

A. GUI Editior

GUI is the most important part of the environment
however there are many JAVA based technologies are
available for the same. Beside that in our system, we do not
require any complex graphical design and thus any existing
technology will work for our simple embedded graphical
models.

XML (Extensible Markup Language) is popular options
now are days for building up a GUI elements. It defines a set
of rules for encoding documents in a format which is
both human-readable and machine-readable.

The entire palette has been developed consists of rich set of

elements which will help the programmer’s job easy and

which gives variety options for efficient programming. User

can choose the programing elements and other functional and

logical blocks from the palette [Figure 2] and can draw a

logical architecture for the desired application software in the

workspace [Figure 3].

Figure 2. Component Palette of IDE

Figure 3. Componet Editior (Workspace for Software Design)

http://en.wikipedia.org/wiki/File_format
http://en.wikipedia.org/wiki/Human-readable_medium
http://en.wikipedia.org/wiki/Machine-readable_data

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2835 - 2838

2837
IJRITCC | May 2015, Available @ http://www.ijritcc.org

The important criterion here is to use the palette elements in
a logical form to create a function software code as per the
requirement. However the components and its relationship are
designed in a way that it validates the principle to flow based
programming. Because in FPB, the relation between processes
is cooperative, rather than hierarchical, processes can easily be
moved from one program or application to another or even
from one machine to another [4].

B. Code Generation

One of the prominent ideas behind this entire concept is
abstraction approach in terms of designing layered architecture
of BSP of any hardware which will be reachable through some
common code generated by an IDE is which is hardware
independent. Thus the entire architecture can be attained by
following a simple process of putting two additional layers
after the generated code which helps the same to interact with
the targeted hardware. [Figure 4]

Figure 4. Generated Code Abstraction

This is an important aspect where we can make the
generated code simple and hardware independent by
introducing some interfaces into the BSP of a targeted
hardware. Thus the IDE generated code is not any hardware
specific and it interacts with the board specific code via various
abstraction layers. This will benefit the environment in terms of
graphical to code representation by making it easier. However,
the main challenge is to develop interface libraries for each and
every peripheral available on the board. In terms of complex
application where the operating system functionality is needed,
the same interface abstraction approach is implemented to
incorporate all the functionalities of desired operating system.
Once the architectural design has been made the associated
code is generated in terms of .c files which represent the
desired functionality of an embedded application. The related
documents like header files and editor snapshot is also
generated which helps the user to understand and modify the
code in case of any errors or changes.

V. RESULTS

The best way to validate the proposed study is through

implementing it to any embedded application and draws some

fruitful conclusions. Thus, the software development process

described above has been tested in the development of

peripheral interfaces of the STM32 F3 Discovery Board. We

have been developing libraries for every particular peripherals

and one to one mapping is required to make a full fledge IDE

in which any program can be written. It means you have to

write an interface and wrapper for every available peripheral

on the board.

Thus, we have been so far able to test and generate test

cases for most of the peripheral on this board. The generate

code successfully works on a board and is able to interact with

the hardware by making changes in its graphical

representation.

Consider a small example of GPIO peripheral on STM

board which needs to be initialized as per the code given

below [Figure 5].

Figure 5. GPIO Hardware Specific Code

When this peripheral is initialized by the graphical

representation, the hardware independent code is generated

accordingly as shown in figure [Figure 6]. This both code

works exactly with the same fashion on the hardware when

downloaded.

Figure 6. GPIO Hardware Specific Code

However the execution time may differ as there are more

numbers of abstraction layers as compared to normal BSP thus

it may cause problem in terms of time critical applications. In

this case peripheral interface library is to be optimized for

reducing execution time.

VI. CONCLUSIONS AND FUTURE WORK

We have presented here a novel design approach for

developing a tool which aims to generate code for targeted

embedded systems while using a user friendly graphical

interface. We have here evaluated a small prototype of the

perspective integrated development environment and

presented small case studies on some of the peripherals to

validate the entire concept.
Ongoing work on this is to facilitate this entire work with

additional functionality in terms of component palette and
software mapping rules for generation efficient code for
targeted hardware. Addition to that we will also work on the
user’s ease of operation while using the environment and
possible combinations for which logical code should be
generated.

REFERENCES

[1] Thomas A. Henzinger and Joseph Sifakis, ―The Embedded Systems
Design Challenge‖ in FM 2006: Formal Methods: 14th International
Symposium on Formal Methods, 2006

[2] Jimmie Wiklander, Jens Eliasson, Andrey Kruglyak, Per Lindgren,
Johan Nordlander, ―Enabling Component-Based Design for Embedded
Real-Time Software‖, Journal of Computer, VOL. 4, NO. 12, December
2009

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2835 - 2838

2838
IJRITCC | May 2015, Available @ http://www.ijritcc.org

[3] S. Sentilles, A. Pettersson, D. Nystrom, T. Nolte, P. Pettersson, and I.
Crnkovic, ―SAV EIDE- a tool for design, analysis and implementation of
component-based embedded systems. In Proc. ICSE’09, pages 607–610,
2009

[4] J. Paul Morrison J, ―Flow Based Programming‖ Regular Technical Paper
in Journal of Application Developers’ News, 2010

[5] T. G. Moreira et al, ―Automatic code generation for embedded systems:
From UML specifications to VHDL code, ―in Proc. of 8th IEEE
International Conference on Industrial Informatics, IEEE Computer
Society, 2010, pp. 1085–1090.

[6] Luo and Z. Huang. ―Embedded C code generation and embedded target
development based on RTW-EC‖. In Computer Science and Information
Technology (ICCSIT), 2010 3rd IEEE International Conference on,
pages 532 – 536, Chengdu, July 9-11 2010.

[7] M. A. Wehrmeister, E. P. Freitas, C. E. Pereira, and F. Ramming, F.,
"GenERTiCA: A Tool for Code Generation and Aspects Weaving". 11th
IEEE Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), Orlando, 2008.

[8] S. Karus and M. Dumas, ―Designing Maintainable XML
Transformations‖, in 14th European Conference on Software
Maintenance and Reengineering (CSMR), 2010.

Figure 7. Comeplete Environment Representation

