
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2830 - 2834

2830
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Development of UVM based Reusabe Verification Environment for SHA-3

Cryptographic Core

M. N. Kubavat

Dept. of VLSI & Embedded Systems Design, GTU PG School

Gujarat Technological University

Ahmedabad, India

kubavat.mayur@gtuinstitutes.ac.in

Mr. Manjunath Gowda

Dept. of VLSI & Embedded Systems Design, GTU PG School

Gujarat Technological University

Ahmedabad, India

manjunathkarpur@gmail.com

Abstract— In this work, an industry standard methodology for ASIC verification domain, SystemVerilog (SV) with Universal

Verification Methodology (UVM) is introduced with its features and application to Keccak SHA-3 Cryptographic Core. The

ASIC verification flow for SHA-3 core is followed with creation of UVM based verification environment. By application of UVM

on the core, horizontal and vertical re-use can be achieved in standard projects. Proposed verification environment uses OOPs

concepts from SV UVM to develop layered testbench. In this approach initial learning curve is slow, considering overhead to

learn new verification methodology. But, once full fledge working environment is created, re-usability feature from SV UVM can

be achieved with less amount of time. Also coverage results give effectiveness of the proposed verification environment.

Keywords-UVM; SystemVerilog; object-oriented programming; ASIC Verification; Keccak SHA-3

__*****___

I. INTRODUCTION

Complex ASIC/SoC design requires creation of versatile
verification environment for functional verification of RTL
cores. This requires creation of modular/layered testbench with
concepts of object-oriented programing. Application of object-
oriented verification methodology comes into consideration to
verify complex designs, these include eRM (e Reuse
Methodology), OVM (Open Verification Methodology), and
UVM (Universal Verification Methodology). From which
UVM is supported by major EDA tool vendors and widely used
in industry. Through application of UVM, vertical reuse across
different hierarchical level as well as horizontal reuse across
different project can be achieved. By creation of UVCs (UVM
Verification Components), development of VIP is possible.

This paper introduces industry standard approach to create
verification environment for Keccak SHA-3 [1], [2] core by
application of UVM methodology. The approach discusses
creation of reusable verification component inside verification
environment by application of Object Oriented Programing
(OOP) concept. Configurable Agent, Score boarding, reusable
Sequences are implemented in proposed verification
environment.

Organization of remaining paper is in following sections.
Section II introduces with introduction of Keccak SHA-3,
section III gives UVM methodology construct details, section
IV describes component details of proposed verification

environment. Section V consists of proposed environment
block and section VI evaluates coverage information and
efficiency of proposed environment. Conclusion is made in
section VII.

II. SECURE HASH ALGORITHM-3 SPECIFICATIONS

Keccak SHA-3 is recently introduced hash function based
on Sponge construction [2]. Keccak is family of sponge
function with function as Keccak-p = [b, 2l+12] permutation
as underlying function and padding rule - pad1*01. Any
specific function from family is defined by choices of
parameters rate r and capacity c such that r+c is 25, 50, 100,
200, 400, 800, and 1600. Proposed verification environment
make use of crypto processor core with 512-bit hash value for
which value of b is 1600-bits [3]. So, if we consider case with
b=1600, Keccak family is denoted by Keccak[c]; in this case r

is determined by choice of c.
Keccak[c] = SPONGE[Keccak-p[1600, 24], pad10*1,

1600 –c]
Thus, given M and output d we have,
Keccak[c] (M, d) = SPONGE[Keccak-p[1600, 24],

pad10*1, 1600 –c] (M, d).

Figure 1 Verification Methodology Timeline

Figure 2 Sponge Construction

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2830 - 2834

2831
IJRITCC | May 2015, Available @ http://www.ijritcc.org

III. UNIVERSAL VERIFICATION METHODOLOGY

UVM guidelines provide uses of SystemVerilog language

to create reusable efficient testbench. UVM class library
provides automation to SystemVerilog language. Methodology
is used to develop recommended architecture for creating
testbench. UVM provides framework for Coverage Driven
Verification (CDV). CDV has combination of automatic test
generation (pseudo-random pattern generation), self-checking
architecture and coverage metrics to reduce time for developing
testbench significantly [4]. UVM class library consist of
different components for consistent testbench architecture.
These classes consist of Environment, Agent, Driver,
Sequencer etc. Descried classes are also known as verification
components. UVM Verification Component (UVC) can be
extended to make DUT specific components. UVC are ready to
use component for Bus Protocol, Design Module or Systems.
UVC have consistent architecture and composed of methods
for simulating, verifying and collecting coverage data.

The UVM class library provides all building blocks you
need to quickly develop verification environment. It consist of
UVM base classes, pre-defined methods like print(), copy() etc.
It also consists of utilities, macros and provides Transaction
Level Modeling (TLM 1.0) set for communication between
UVCs.

A. UVM Class Library

 UVM class library has three types of constructs inside. One

is uvm_component base class, it provides hierarchical

components like Driver, Monitor etc. Other two types are

uvm_object and uvm_transaction provides configuration

objects and stimulus carrying packets in that order. A partial

list of UVM class hierarchy is given below,

Figure 3 UVM Class Library Hierarchy

B. UVM Phases

 UVM has long list of simulation phases, which based on

complexity of verification environment, added to construct,

configure and connect components in UVM based

environment [5]. Some of the phases used in proposed TB

architecture are;

 function void build() phase constructs components of

testbench hierarchy. For e.g. build phase of agent

constructs Driver, Monitor and Sequencer.

 function void connect() connects components created

in previous phase via TLM 1.0

 function void end_of_elaboration() this uvm phase is

used to print name of components created. Print()

method called here prints components hierarchically.

 run_test() phase will run the test provided by

+UVM_TESTNAME=<test_name> and in turn will

call run_phase() of every component top-down in test

environment hierarchy.

C. TLM 1.0

 Transaction Level Modelling provides communication

infrastructure between UVM component objects. A component

can communicate with other components that implements

specific interface. TLM specifies behavior but does not

implement the method, it is provided by classes inheriting

TLM interface. TLM 1.0 is message passing system, while

TLM 2.0 is mainly designed for high-performance

IV. VERIFICATION PLAN FOR KECCAK SHA-3 RTL CORE

The plan includes architecture of the DUT, specification

extraction, creating test scenarios and testcases based on test

scenarios. Verification environment has been created based on

the DUT architecture. This verification environment includes

VCs such as test module, environment module, agent and

scoreboard etc. Agent class creates abstraction by instantiating

Driver and Monitor block inside it. Env class provides

Scoreboard, active and passive Agents and connection between

them through TLM 1.0 ports [6].

 Sequence Item: It extends uvm_sequence_item and represent

packet with no initial values. Sequence items are called in

Driver component’s run phase and driven to dut through virtual

interface.

 Driver: This component contains definition of virtual

interface, sha3_vif in our design. It extends uvm_driver class

and parameterized with type Sequence Item. Driver also

searches for sha_vif from uvm_config database.

 Monitor: Monitor collects pin-wiggles from virtual interface

and creates package of type Sequence Item. These sequence

items are sent to any component which is connected with

monitor class through uvm_analysis_port, TLM 1.0

 Configurable Agent: Layered approach in the design

requires to create abstraction level containing lower level

modules in hierarchy. Proposed verification environment has

active and passive agents which creates necessary abstraction

to connect and configure whole Env block with ease. Active

Agent block creates Driver and Monitor both, whereas passive

Agent only has monitor and is connected to dut output in our

environment. Note, active Agent also defines sequencer which

is connected to Driver through ports and exports. Here, in

Agent abstraction level is not necessary in some cases, and also

sequencer can be called from another abstraction level too. Use

of active/passive configuration of agents improves level of

abstraction. And creation of two different Monitor, coding

time, can be avoided.

 Scoreboard: Module contain tlm_fifo to collect sequence

item packets. Scoreboard is connected to input Monitor and

output Monitor and defines uvm_analysis_export method. This

analysis export can be connected to uvm_tlm_analysis_fifo

defined in TLM 1.0. Output from FIFO are collected and

documented by application of file I/O methods [7].
 Env: Environment module encapsulates all modules of

lower hierarchy. In our environment active/passive Agent,

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2830 - 2834

2832
IJRITCC | May 2015, Available @ http://www.ijritcc.org

agent configuration and Scoreboard are created and connected.
This environment class is called off and created in test
modules.

A. Requirements for Funcitonal Coverage and Code

Coverage

 To successfully verify DUT and RTL sign-off time to do

that is very important question every verification engineer

faces. Certain parameters defines this problem with one thing

in consideration, it’s how much to test. These test coverage

criteria are provided by code coverage and function coverage

requirements of DUT. Typical code coverage conventions are

tool dependent and includes statement coverage, First

Expression Coverage (FEC), Toggle coverage etc. Whereas

functional coverage is defined by person who verifies design.

Functional coverage help keep record of how much

functionality is covered. Effectiveness of developed

verification environment is measured by these two parameters.

V. DEVELOPMENT OF VERIFICATION ENVIRONMENT

Proposed verification environment make use of all sub-
blocks discussed in section IV. Figure 4 shows connection
between modules developed using UVM methodology along
with SystemVerilog verification environment. SHA-3 DUT is
connected to our test environment via virtual interface which is
dynamic in nature.

In comparison of static testbench modules using Verilog for
verification. By utilizing concepts of object oriented
programming provided by SystemVerilog necessary objects
and test patterns can be created at run-time and objects no
longer necessary will be garbage collected with in-built feature.

Figure 4 Proposed Verification Environment

So, advantage of proposed SV UVM verification

environment over static testbench using Verilog is, less system
memory will be occupied when running the test. Here, input
monitor collects data provided to the SHA-3 core and sends the
data to Scoreboard for checking purposes. Communication
between the scoreboard and monitor has been made using TLM
1.0 discussed in section III. Due to hierarchical approach used
for proposed environment scoreboard to monitor connection is
indirect in nature. The connection is made in Env block
between Active Agent and Scoreboard with TLM port-export.
Advantage here is, if we want to utilize Sequencer-Driver-
Monitor pair in different hierarchical level which uses Hashing
Algorithms, there we can apply stimulus to the inputs by

reusing configurable agent block. Same concept will be
application to passive agent as well.

Driver component in proposed architecture is parameterized
block which takes transaction item created by sequencer and
initialized with values and drives it to DUT at signal levels in
form of pin wiggles. Parameterized driver module will look
like this;

To generate test cases for the selected DUT, port list should

be available with legal combination of signals to be applied to
generate desired outputs.

Typical inputs inside Cryptographic core are vector input,
input enable, clock, etc. Our concern here is to develop
reusable UVM environment where port widths and/signals can
differ, so we will not go to that part. Instead for typical list of
ports in design, our transaction packet module will look like
this,

Here, applying randomization coverage can be improved
with less manual effort to create directed testbench

VI. SIMULATION RESULTS

Application of testcases generated based on Keccak core

specification results in different coverage scenarios. To

implement UVM verification environment system

configurations which we used are, QuestaSim 10.0b running

on Linux Ubuntu 15.04 64-bit. Different testcases, for e.g.

Input golden message sequence to the Design under

Verification results in required value of 512-bit hash:

Figure 5, is again shown after reference list with appropriate

display of waveforms as Figure 8. As there’s 12 clock cycles

of difference between applications of inputs and valid output

results. To capture whole simulation window will need more

space to be displayed properly.

class sequence_item extends

uvm_sequence_item;

 `uvm_object_utils(sequence_item)

 //Constructor

 logic rand [WIDTH-1:0] in;

 logic in_ready;

 logic is_last;

 ………

endclass: sequence_item

class sha3_driver extends

uvm_driver#(sequence_item);

 `uvm_component_utils(sha3_driver)

 virtual sha3_intf sha3_vif;

 \\Constructor and build phase

 //run phase to drive packet to DUT

endclass: sha3_driver

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2830 - 2834

2833
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Figure 5 Input golden message sequence

 Input of golden message to Keccak SHA-3 takes 1280ns

for simulation runtime which is devised in 52 deltas. Correct

value for hash can be verified by look-up tables stored in

scoreboard against golden message string.

 To check correctness of DUT, standard testcases are

needed. But, to check reliability of RTL designs boundary

cases are necessary to confirm correctness of output on

extreme usages. Waveforms generated by application of empty

string on core input is in figure 6 and figure 9. Other boundary

cases could be application of very long message which can

cause buffer to overflow. And interrupting input text sequence

time and again by asserting input not ready signal in design

under verification, which will affect throughput of the test

module.

Figure 6 Input empty string

 Sometimes to measure reliability of design, verification

person introduces error scenario and applies error cases which

causes design to perform under unexpected circumstances. In

those cases verification intent is not to store wrong results but

to observe critical signals of design under test and to observe

effect of corrupt data in normal input sequence to the design.

 By application of proposed verification environment to the

SHA-3 RTL core, code coverage results achieved are given in

figure 7 below and also figure 10 after reference list,

Figure 7 Coverage Results

Coverage statistics collected for SHA-3 Keccak Core in text

file format is given in table 1,

File: low_throughput_core/rtl/dut.v

Enabled Coverage % Covered

Stmts 100

Branches 100

Toggle Bins 94.6

Table 1 Coverage Statistics

 CONCLUSION

 To develop verification environment using industry

standard methodology, UVM is very effective for creating

dynamic layered testbench. UVM is Accellera standard

methodology to be used in RTL verification projects and it is

openly available and supported by major EDA tool vendors..

Only initial learning curse for UVM is low, but once full

fledge working environment is created reusability comes into

picture which will make components flexible and portable for

reuse. In this work, UVM environment is developed and

applied to verify SHA-3 Core DUT. Results we achieved

implies efficiency of proposed environment with dynamic

nature of testbench and flexibility to port environment to other

verification projects.

 Copy of proposed SV UVM verification environment is

made openly available on Git Repository and can be accessed

from this link - https://github.com/mayur13/UVM-

Verification-Environment

ACKNOWLEDGMENT

This work is guided by Gujarat Technological University
and various institute personnel. I would like to acknowledge
Mr. Ashish Prabhu for his advices on industry standard ASIC
verification flow and ways to approach verification plan with
SV/UVM Methodology.

REFERENCES

[1] NIST Computer Security Division (CSD). "SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions", Available
online at www.csrc.nist.gov/publications/drafts/fips-
202/fips_202_draft.pdf

[2] Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche,
“The Keccak reference”, Available online at
www.keccak.noekeon.org/Keccak-reference-3.0.pdf

[3] Sklavos, N., “Towards to SHA-3 Hashing Standard for Secure
Communications: On the Hardware Evaluation Development”, in Latin
America Transactions, IEEE, pp. 1433-1434, 2012.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2830 - 2834

2834
IJRITCC | May 2015, Available @ http://www.ijritcc.org

[4] Mentor Graphics, “UVM Cookbook”, from verification academy.

[5] “UVM User’s Guide” from accellera.org

[6] Bromley, Jonathan, “If SystemVerilog is so good, why we need the
UVM? Sharing responsibilities between libraries and the core language”,
in Specification & Design Languages (FDL), pp. 1-7, 2013.

[7] Francesconi J.; Agustin Rodriguez J.; Julian P.M., “UVM Based
Testbench Architecture for Unit Verification”, Argentine Conference on

Micro-Nanoelectronics, Technology and Applications (EAMTA), pp.
89-94, 2014.

[8] Geng Zhong; Jian Zhou ; Bei Xia, “Parameter and UVM, Making a
Layered Testbench Powerful”, IEEE 10th International Conference on
ASIC (ASICON), pp. 1-4, 2013.

[9] www.OpenCores.org.

[10] Mentor Graphics, “Coverage Cookbook”, from verification academy.

Figure 8 Golden Inputs and Hash Result

Figure 9 Empty Input and Hash Result

Figure 10 Coverage Properties for Design under Test

