
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2803 - 2806

2803
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Verification of AHB Protocol for AHB-Wishbone Bridge using System Verilog

Ayshi J. Shah

P.G Student

Department of Electronics Engineering

Ahmedabad, Gujarat, India

 e-mail: ayushishah6@gmail.com

Samir Shroff

Director

Department of Electronics Engineering

Ahmedabad, Gujarat, India

e-mail:samirshroff@yahoo.com

Abstract—Verification is the process to demonstrate the functional correctness of design and checks that a product or system meets a set of

design specifications. This paper implements is a novel approach to enable data transfer between two different bus architectures, AHB and

WISHBONE which have different functionalities and characteristics. The coding for this module is designed in the SystemVerilog HDL and

simulated in Questa Sim 10.0b. The Communication is done with AHB as Master and WISHBONE as Slave, hence, achieve error free data

transfer between the two different bus architectures. The DUT has been verified for all possible test cases.

Keywords-AHB;WISHBONE; Verification; SystemverilogEnviornment; Testbench; DUT

__*****___

I. INTRODUCTION (HEADING 1)

With the increasing complexity of digital systems driven by

ever increasing demand for faster devices with more features,

standard and compatible design. Verification of a design is the

most critical phase in the chip design cycle. The progress of

VLSI technology enables the integration of more than several

million transistors in a single chip to make a SoC (System-on-

Chip). This has made verification the most critical bottleneck

in the chip design flow. Roughly 70 to 80 percent of the design

cycle is spent in functional verification.

Different verification languages are there in the VLSI

industry like VHDL, Verilog, systemverilog. Systemverilog is

a special hardware verification language is mostly used in

functional verification. Systemverilog is the industry’s first

unified Hardware Description and Verification Language

(HDVL). It became an official IEEE standard in 2005 under

the development of Accellera[1]. The Systemverilog's aim is

to be a single language that is sufficiently expressive to model

digital systems at various levels of abstraction from untimed

functional models all the way through to netlist level. To

support the diverse needs of verification and modelling, it also

provides general-purpose object-oriented (OO) programming

capabilities.

One goal of verification tool designers is in reducing the

complexity of the test bench environment. In this paper, the

development of the verification environment of Advance

High-performance Bus (AHB) using SystemVerilog.

Generator, driver, checker. Monitor, scoreboard is

implemented with the proposed integrated verification

environment.

II. SYESTEMVERILOG FUNCTIONAL VERIFICATION

ENVIORNMENT

As an extension to Verilog HDL, SystemVerilog has

characteristics of both hardware description languages and

hardware verification language. The key features of

SystemVerilog from the verification point are as follows.

 Functional coverage

 Assertion

 Constrained-random stimulus generation

 Higher-level structures

 Multithreading and interprocess communication

 Verification components

 Tight integration with event-simulator for control of

the design.

The SystemVerilog code generated has the following

components. The hierarchy of the code is as shown in Fig 1.

Fig.1. Hierarchy of Developed SystemVerilog Environment[3]

The main purpose of a test bench is to check the

correctness of the design under test (DUT). For this following

steps have to be followed

 Generate stimulus.

 Apply stimulus to the DUT.

 Capture the response.

 Check for correctness.

 Measure coverage.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2803 - 2806

2804
IJRITCC | May 2015, Available @ http://www.ijritcc.org

The architecture of verification environment developed

for AHB protocol is shown in the fig 2. The different modules

of environment are explained.

Fig 2: SystemVerilog Verification Environment

As is divided in the Fig 2, there are three parts of the

verification environment. The first part is the DUT, which is

the design top of the SoC to be verified. The second is the top

module (Systemverilog Test bench), which connects the test

program and DUT. Test program includes the main test tasks.

The interface part (Interface) is the interface to be used to

joining the DUT and the test program. All the parts are

instanced in the test-top[4]. The verification environment will

also be reused, without modifications, by as many test cases as

possible to minimize the amount of codes required to verify

the DUT.

Fig 3: Mailbox, Packet, Interface

TABLE I
SystemVerilog Verification Environment components

Components Description

Top Top module connects the Test and DUT.

It also has a clock generator which is

responsible for running the desired test.

This is the top layer of the verification

environment.

Test Test is the top level class Test class

initiates the construction process by

building the next level down in the

hierarchy and initiates the stimulus by

starting the main phase. It is controlling

the overall verification flow. Test class is

instantiated the environment and then

configures it for a particular test at a time.

Environment Assembles the testbench structure,

contain one or more agents, scoreboard,

depend on design. It has configuration

parameters that allow to restructure and

reuse it for different scenarios.

Agent Encapsulates a driver, a sequencer and a
monitor. Agent is configurable either as a
active or as a passive. Active contains
driver, Sequencer and monitor, while
passive component contains only Monitor.
Agent will also pass the interface of the
DUT to each of the sub-sequent
component.

Generator

and Squencer

Random Stimulus makes the packet. The

generator generates the random stimulus

from random stimulus packet class.

Sequencer runs stimulus generation code

and sends this stimulus to driver using

mailbox or by other means like callbacks..

Driver Driver first unpacks the packet and

translates the operations produced by the

generator into the actual inputs for the

DUT . Maps the sequence items to the

signal level format.

Monitor Sample the dut signal from the interface,s

but does not drive them. It will keep

displays various messages according to

the operations being performed like

whether it is read or write operation.

Similarly, it also shows start, stop and

transfer of data operations. In the monitor

code Task ‘run’ is calling start, stop, data

tasks.

Scoreboard Compare the o/p with reference model.

Interface For communication between classes and

modules. It is the mechanism to connect

Testbench to the DUT

III. TESTCASE SENARIO

Testcase scenario document includes all the possible

combination to to test the functionality of the design under test

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2803 - 2806

2805
IJRITCC | May 2015, Available @ http://www.ijritcc.org

(DUT). Test cases are identified from the design specification.

The verification engineer must design the architecture of the

verification environment at the outset to achieve the ability to

support constrained random test cases in an efficient manner.

In designing our goal is to develop a robust and easy to use

mechanism that facilitates the development of test cases with

minimal impact to the test bench code.

Fig.4. AHB2WB Verification Testcase Environment
 Fig.4. shows developed systemverilig environment
to implement all testcases for verification.

TABLE II
Testplan for Verification of AHB Interface

Sr

no

Cycle

operation

Signal required for

Operation

Signal

required for

verification

1 Reset Hresetn , Hclk

2 Read AHB:Hwrite,Hready,Haddr,

Hrdata

WISHBONE: adr_o, dat_i,

ack_i

adr_o,

ack_i ,

Hrdata

3 Write AHB:Hwrite,Hready,Haddr,

Hrdata

WISHBONE: adr_o, dat_i,

ack_i

adr_o,

ack_i ,

Hwdata

4 Write with

wait state

by

wishbone

slave

AHB : Hwrite , Hready ,

Haddr , Hwdata

WISHBONE : adr_o ,

dat_o , ack_i

adr_o ,

dat_o ,

ack_i ,

Hready

5 Write with

wait state

by AHB

master

AHB : Hwrite , Hready ,

Haddr , Hwdata , Htrans

WISHBONE : adr_o ,

dat_o , ack_i , stb_o

adr_o ,

dat_o ,

ack_i ,

Htrans ,

stb_o

6 Read with

wait state
AHB : Hwrite , Hready ,

Haddr , Hrdata

adr_o,

ack_i ,

By

wishbone

slave

WISHBONE : adr_o ,

dat_i , ack_i

Hrdata ,

Hready

7 Read with

wait state

By AHB

master

AHB : Hwrite , Hready ,

Haddr , Hrdata , Htrans

WISHBONE : adr_o ,

dat_i , ack_i , stb_o

adr_o,

ack_i ,

Hrdata ,

Htrans ,

stb_o

8 Read after

write

AHB : Hwrite , Hready ,

Haddr , Hrdata , Hwdata

WISHBONE : adr_o ,

dat_i , dat_o , we_o

adr_o ,

dat_o ,

dat_i ,

Hwrite ,

Hrdata ,

we_o

9 Write after

read

AHB : Hwrite , Hready ,

Haddr , Hrdata , Hwdata

WISHBONE : adr_o ,

dat_i , dat_o , we_o

adr_o ,

dat_o ,

Hwrite ,

Hrdata ,

we_o

IV. SIMULATION RESULT

The proposed verification environment applies constrained

random technique to fulfill the configuration of verification

environment and DUT, and to cover all the corner cases. The

functional coverage is employed to make sure that DUT has

realized all the expected functional requirements. And the

automaticity of the proposed verification environment

improves efficiency of verification largely.

Various simulation outputs are obtained after stimulating

the DUT, out of which some inputs and outputs are shown

below.

Fig 5: Reset operation

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2803 - 2806

2806
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Fig 6: Read and Write operation

V. COCLUSION

The SystemVerilog verification environment developed

along with the complete flow of verification for AHB protocol

has been discussed. The various classes for driver monitor,

stimulus, generator, environment etc. and modules or

programs made have been compiled and simulated and the

outputs observed are shown. The environment can be reused

easily for different design. By using this verification

environment the DUT has been verified for its functionality.

REFERENCES

[1] IEEE Standard for System Verilog, IEEE Std 1800tm 500

University Science, 1989.

[2] Opencore organization, “AHB-WISHBONE BRIDGE”,
Released: July 13, 2007.

[3] Rakhi Nangia, Neeraj Kr. Shukla, “Functional verification of
I2C core using SystemVerilog”, International Journal of
Engineering, Science and Technology, Vol. 6, No. 4, 2014, pp.
31-44

[4] Martin Keavency, Anthony McMahon, et al. “The development
of advanced verification environments using systemverilog”.
Proceedings of ISSC2008, pp.325-330, 2008.

[5] www.asicword.com

.

http://www.ijritcc.org/

