
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume:3 Issue: 5 2741 - 2744

2741
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Developing Library of Internet Protocol suite on CUDA Platform

Taralkumar Mistry
Embedded System Design

GTU PG SCHOOL, Gujarat Technological University

Ahmedabad, India

Taral.mistry@gmail.com

Rahul Bhivare
Technical Consultant

CDAC-ACTS

Pune, India

Rahul.bhivare@gmail.com

Abstract - Presently, Computational power of Graphics processing Units (GPUs) has turned them into an attractive platform for

general purpose application at significant speed using CUDA. CUDA is a parallel computing platform and programming model

which has the ability to deliver high performance in parallel applications. In networking world protocol parsing is very complex

due to bit wise operation. We need to parse packet at each stage of network to support packet classification and protocol

implementation. Conventional CPU with fewer cores is not sufficient to do such packet parsing. For this purpose, we are choosing

to build a networking library for protocol parsing, by this way we can offload compute intensive protocol parsing task on CUDA

enable GPUs which can optimize usage of CPU and improve system performance.
Keywords - CUDA, GPGPU, Packet Parsing.

__*****___

I. INTRODUCTION

A major challenge in todays embedded world is high

performance computing and real time performance. This is

difficult to achieve with the even more powerful CPU. Also,

modern GPUs are on the leading edge of increasing chip level

parallelism by supporting hundreds of cores on a single chip.

This degree of hardware parallelism reflect the fact that GPU

architecture involves to feet need of real time computational

application. The main objective of parallel processing is high

performance by reducing execution time, improve efficiency

and better utilization of resources. To attain such parallel

processing, we describe our system built on CUDA (Compute

Unified Device Architecture) platform

As the internet evolves, there is growing need for nontrivial

packet parsing at all stages of network infrastructure [6].

Packet parsing is important in order to identify what is flow of

packet and to implement quality of services goal. The packet

parsing task is difficult due to bit parsing. In bit parsing, the

operation is performed at bit level. Using INTEL CPU with 32

bit and 64 bit, operate at bit level would be a waste of power

and cycle which is not necessary. For that we are going to

offload such protocol parsing to CUDA enable GPU.

A. GPU Accelerated Computing

GPU accelerated computing is use of GPU together with

CPU to accelerate applications. GPU accelerated computing

offer great performance by offloading compute intensive part

of the application to GPU [3]. An application which demands

more parallelism will be offloaded to GPU where as part of the

application which demands lower parallelism still runs on the

CPU. Ultimately, application run faster.

The main difference between CPU and GPU is to compare

how they process tasks. A CPU consists of a few cores

optimized for sequential serial processing, while a GPU has

massive parallel architecture consist of thousands of cores

called processing element for handling multiple task

simultaneously. Figure 1 shows, difference between CPU and

GPU cores.

Figure 1 Difference between CPU and GPU cores [3]

B. GPGPU

GPGPU is a general purpose computing, on the GPU. Till

the time GPU is used for graphics intensive application, but

with the advent of technology by placing many cores on a

single chip, we can use GPU for any complex task. We can

use GPU for any general purpose application which need high

parallelism. GPGPU is a term used in high performance

computing (HPC) to accelerate application [5]. In GPGPU

programming technique, programmers can use GPU pixel

shavers as general purpose single precision FPUs. Off-chip

plays an important role in GPGPU as all threads interact with

each other using off chip memory. GPGPU implementation

exhibits two properties. First data parallelism where processor

can execute operation on different data elements

simultaneously and the second is throughput mean it can

process so many data elements and exhibits parallelism.

This paper presents an overview of CPU-GPU

heterogeneous computing, GPGPU and approach for

offloading protocol parsing on CUDA enable GPU. This paper

is organized as follows. Section II briefly introduces CUDA

and protocol parsing. Section III further explains proposed

system. Section IV shows the result of Implementation.

Finally, Section V concludes the paper.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume:3 Issue: 5 2741 - 2744

2742
IJRITCC | May 2015, Available @ http://www.ijritcc.org

II. OVERVIEW OF CUDA AND PACKET PARSING

The chapter introduces two subsection. First about CUDA,

its programming model and memory model. Second about

overview of protocol paring.

A. CUDA

NVIDIA’s Compute Unified Device Architecture (CUDA)

is a software platform for massively parallel high performance

computing on NVIDIA’s powerful GPUs. NVIDIA CUDA

technology is fundamentally new computing architecture that

enables the GPU to solve complex computational problem [2].

It gives computationally intensive applications access to the

processing power of NVIDIA GPU through the new

programming interface. Software development is strongly

simplified by standard C language with some extension.

NVIDIAs software CUDA programming model effectively

uses GPUs which could be harnessed for the task other than

graphics achieving Gigaflops of computing power.

1) CUDA programming model

NVIDIA simplifies a programming model in which burden

of managing threads is removed. This is an important feature

of CUDA in which application programmers don’t write

explicit threaded code. Hardware thread manager handles

threading automatically. Automatic thread management is vital

when multi-threading scales to thousands of threads. NVIDIAs

card can manage as many as concurrent threads and these are

lightweight threads in the sense that each thread can operate

on a small piece of data.

CUDA is a parallel programming model and at its core are

three key abstractions- a hierarchy of thread groups, shared

memories and barrier synchronization [4]. This abstraction

simply provides fine-grained data parallelism and thread

parallelism, nested with coarse-grained data parallelism and

task parallelism. They guide programmer to partition problem

into a coarse sub problem that can be solved independently in

parallel and then into finer piece that can be solved

cooperatively in parallel. The CUDA programming model

automatically manages the threads and it significantly differs

from single threaded CPU card and some extent even parallel

code. Figure 2 shows a programming model of CUDA.

CUDA assume that CUDA threads may execute on a

physically separate device that operate as a co-processor to the

host running C program. This is the case when kernel executes

on a GPU and the rest of C program execute on the CPU.

Also, both host and device maintain their own DRAM, refer to

as host memory and device memory.

Figure 2 CUDA Programming Model [5]

2) CUDA Memory Layout

CUDA thread may access data from multiple memory space

during their execution. Each thread has private local memory.

Each thread block has shared memory visible to all threads of

the block and with the same lifetime as a block. All threads

have access to global memory. Also, two additional read only

memory spaces accessible to all threads: constant and texture

memory space. Global, texture and constant memory are

optimized for different memory usages. Texture memory also

offers different addressing modes and data filtering for some

specific data format. Global, constant and texture memory are

persistent across kernel launched by the same application.

CUDA consists of basically five types of memory these are

texture, constant, global, local and shared memory. Figure 3

shows CUDA memory layout which consists different types of

memory. Global and shared memories are introduced in

CUDA, these two are most important and commonly in use.

Another three are used to improve performance. Local

memory is on chip memory, which only allows threads within

block to access the data. Constant memory has the feature of

cache memory, its accessing speed is fast. Global memory is

the main memory of the GPU, any data communication

between CPU and GPU is done through global memory. Also

outcome of any block will be stored in global memory. Off

chip memory plays an important role in performance of the

system.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume:3 Issue: 5 2741 - 2744

2743
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Figure 3 CUDA Memory Layout

B. PACKET PARSING

All network devices must parse packet to decide how a

packet should be processed. Packet parsing is necessary at all

points in networking, to support packet classification and for

security. To implement protocol we need to parse packet.

Packet parsing has an important role in end to end

communications [6].

Parsing is the process of identifying headers and extracting

fields for processing by subsequent stage of device [6]. Each

packet consists of stacking of header, data payload and

optionally stack of trailers. Protocol parsing is sequential: each

header is identified by preceding header, requiring header to

be identified in the sequence.

Current high speed network demands more and more data

from the application layer. Also, in networking protocol

parsing is difficult due to bit parsing. The bit mask is used to

extract information embedded at bit level, which is useful to

extract field of header of protocol in a packet. For example,

TCP header contains address of destination, source address

with a number of flags embedded in its header field, we can

consider them to store within data width of short. Also,

modern computer encode data in little endian whereas all

network packets are encoded in big endian. So parsing should

be done effectively and fast.

III. PROPOSED SYSTEM

The whole system is based on client-server model. In

system, one PC will send a data packet to another INTEL CPU

via Ethernet cable. INTEL CPU gives this information to

CUDA enable GPU. The GPU will receive this packet and

parse it. By this way compute intensive task of CPU can be

offloaded to CUDA enable GPU.

We are proposing an idea to build libraries for protocol

parsing suite on CUDA platform. By using parallel computing

capabilities of CUDA, we can improve system performance.

CUDA enables GPU is working as a streaming processor and

we can offload protocol parsing task to the GPU.

The whole work is divided into three phases:

Phase 1: where parsing is done by INTEL CPU

Phase 2: where parsing is done by CUDA GPU

Phase 3: Possible test cases

Figure 4 Proposed System

Phase 1: In this phase, the packet is sent from sender PC to

another PC through tool like Iperf. At receiver socket program

is able to catch those packets and try to parse that packet, and

it will identify types of packet. At the same time we analyzed

system performance mean CPU usage. Also will check

packetized data at the receiver. For example, the sender sends

an image, then the receiver should receive it correctly and

display that image. Here packet parsing task is done by INTEL

CPU.

Phase 2: In this phase, the actual implementation has on

CUDA enabled GPU. Here the idea is to parse packet using

GPU instead of the CPU. All procedure is as above in phase 1.

GPU is working as a streaming processor, mean programmer

has to decide that how many cars he wants to use for a

particular task among all available core. At a same time we

analyzed system performance. By this way we can effectively

parse packet, and system performance would be increased.

Phase 3: once all functionality has been achieved using

GPU, we will have to test thing using different cases:

Case 1: Receive data and verify types of data.

Case 2: Packet should send random and receive correctly

Case 3: Packet lost checks

At the receiver side, we will have socket code which will

test all possible test cases discussed above. After verifying all

cases we can say that idea is working properly.

A. FLOWCHART OF SYSTEM

First, we need to invoke kernel mean CPU will call GPU to

execute tasks. Once the kernel is invoked, then we will have to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume:3 Issue: 5 2741 - 2744

2744
IJRITCC | May 2015, Available @ http://www.ijritcc.org

allocate memory in GPU uses cudaMalloc () API. As each

GPU has its own dedicated memory, the programmer has to

decide and allocate required memory. After that, data has been

copied out from the CPU to GPU using

cudaMemcpyHostToDevice () API. Once the packet has

transferred to CUDA enable GPU than each packet will

process by one thread as followed by SIMT (Single Instruction

Multi-Threading) and decide which type of packet is. After

deciding the type of packet, particular packet will process and

the result will send back to the host. Figure 5 shows the flow

of the system and how each packet has been proceeded by the

GPU.

Figure 5 Flowchart of System

IV. RESULTS

 In this work, Different type of data like audio, video,

image and pdf is processed by NVIDIA ZOTAC 8400GS

which has 16 CUDA cores. I used Microsoft visual studio

2010 as a programming platform. The first video file is sent

to the receiver and then I analyzed packet processing on

both CUDA based GPU and CPU.

 Table 1 lists the results of comparisons of CUDA

technology and CPU implementations. Figure 6 shows the

Improvement in system performance in terms of usage.

From Table 1 and Figure 6, I can say that CUDA based

packet processing is efficient and fast.

0

10

20

30

40

50

60

70

Image PDF Audio Video

CPU usage without
offloading to CUDA

CPU usage When offloading
to CUDA

Figure 6 Comparison of CPU Usage

Table 1 Performance Analysis

 CPU usage without

offloading to CUDA

CPU usage when

offloading to CUDA

Image 25 18

PDF 20 10

Audio 40 35

Video 60 45

V. CONCLUSION

From this paper we conclude that CUDA enable GPU is

able to execute any complex task very effectively. After

building libraries, we can offload protocol parsing task to

CUDA enable GPU. System performance would be increased.

So we can let CPU free to do any other urgent work.

VI. REFERENCES

[1] CUDA Home Page, http://deveper.nvidia.com/object/cuda.html.

[2] GPGPU, “General-Purpose Computation Using Graphics Hardware,”
http://www.gpgpu.org.

[3] “Gpu computing”, http://www.nvidia.com/object/what-is-gpu-
computing.html

[4] Er. Paramjeetkaur and Er. Nishi, “A Survey on CUDA”, International
Journal of Computer Science and Information Technologies, Vol. 5 (2) ,
2014, 2210-2214.

[5] Glen Gibb, George Vargashe, Mark Horowitz, “Design Principal for
Packet Parser”, IEEE Symposium,21-22 Oct. 2013, Pages 13-24.

[6] Manuel Ujaldon, Nvidia CUDA fellow, “High Performance Computing
and Simulation on the GPU using CUDA”, IEEE, 2-6 July 2012, Page1-
7.

[7] Ching-Lung Su, Po-Yu Chen, Chun-ChiehLan, Long-Sheng Huang and
Kuo-Hsuan Wu,\emph{“overview and comparison of OpenCL and
CUDA technologies for GPGPU”}, IEEE Asia Pacific Conference, 2-6
Dec. 2012 , Page 448-451.

[8] John Nickolls, Michael garland, NVidia, Scott Morton, “Parallel
Computing Experience with CUDA”, IEEE, July-Aug. 2008, Page 13-
27.

[9] Wen-Mei Hwu, Christopher Rodrigues, Shane Ryoo and
JohnStartton,\emph{ “Compute Unified Device Architecture Application
Suitability”}, IEEE, May-June 2009, Page 16-26.

[10]

http://www.ijritcc.org/

