
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2690 - 2694

2690
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Architecture and Design of Generic IEEE-754 Based Floating Point Adder,

Subtractor and Multiplier

Sahdev D. Kanjariya

VLSI & Embedded Systems Design

Gujarat Technological University PG School

Ahmedabad, India

sahdev.kanjariya@gmail.com

Rutarth Patel

VLSI & Embedded Systems Design

Gujarat Technological University PG School

Ahmedabad, India

rutarth91@gmail.com

Abstract— The Floating point numbers are being widely used in various fields because of their great dynamic range, high precision and easy

operation rules. In this paper, architecture of generic floating point unit is proposed and discussed. This generic unit is compatible with all three

IEEE-754 binary formats. Further based on this architecture, floating point adder, subtractor and multiplier modules are designed and

functionally verified for Virtex-4 FPGA. The design is working properly and giving accurate result up to the last point.

Keywords- Floating point; IEEE-754; FPGA; Generic; Verilog HDL

__*****___

I. INTRODUCTION

In terms of computing, Floating point is the method of
representing an approximation to real number with the help of
fixed number of bits. With the increase in digital devices, the
need of having floating point capable hardware on the same
device is also increasing. Applications working with DSP
(Digital Signal Processing), 3D graphics, Image processing etc
can get benefited by including a floating point unit along with
the main processor on the device. Now in these days, Field
Programmable Gate Arrays (FPGAs) are becoming one of the
major platforms to implement and check any complex digital
design because of their high integration density, comparatively
low price, high performance, flexibility and many more others.

This paper mainly focuses on obtaining a basic architecture

which can be used to design a FPU (Floating Point Unit),
which is IEEE-754 standard compliant. A generic architecture
for such FPU is discussed. This architecture can be used to
design any of the three binary formats of floating point
representations, which are: 32-bit (Single Precision), 64-bit
(Double Precision) and 128-bit (Quadruple precision). Based
on this design, generic code for the Adder, Subtractor and
Multiplier is written in Verilog HDL (Hardware Description
Language). The code is written such that just by changing
parameters in the code, designs for any of the available format
are obtained. Furthermore these sub modules are obtained and
each module is functionally verified separately. This FPU is
designed for Virtex-4 FPGA platform. Implementation part of
the whole design is still remaining and will be done in future.

The rest of the paper is organized as follows: Section II

describes all the literature surveyed for this paper. These
include some research papers as well as standards and manuals.
Section III gives understanding about the floating point
numbers and operation on them. Section IV provides overview
of the designed Generic units: Adder, Subtractor and
Multiplier. Section V is for discussion on simulations and
results of the all designed units. Furthermore
acknowledgements and conclusion, followed by the references
ends up the paper.

II. LITERATURE

The IEEE has standardized the binary and decimal floating
point computer representation and rules about them in their
standard IEEE-754. Current version of the standard is IEEE
754-2008[1]. For understanding floating point numbers
properly, this standard is studied in detail.

Many researchers have worked with the fraction or real

numbers. Many of them have also implemented their designs
on different platforms. Some of them have used single
precision format, some of them have used other options to
represent real numbers like fixed point numbers. The key factor
driving many of the researchers to use floating point numbers
are because of their many advantages over fixed point.

In [2] P. Karlstrom, A. Ehliar and D. Liu designed floating

point adder/subtractor and multiplier units. They have
implemented their design on Virtex-4. However their design is
capable of doing single precision operations only. Also their
design is not fully IEEE-754 standard compatible. It does not
handle infinities, Not-a-Numbers (NaNs) and denormalized
numbers. Getao Liang, JunKyu Lee and Gregory D. Peterson
proposed a dynamic precision supporting architecture for real
number operations in [3]. Their proposed architecture is target
for both, fixed point as well as floating point devices. Their
architecture can work on different precision without need of
changing hardware. They have implemented this architecture
for some fixed point adders and multipliers only. Addanki
Puma Ramesh, A. V. N. Tilak and A. M. Prasad designed and
implemented double precision floating point multiplier in [4].
They have used DSP slices of Virtex-6 FPGA for the
multiplication operation to make best use of the available
resources. Their design handled overflow, underflow and round
to zero (truncation) rounding mode. In [5], Manisha Sangwan
and A Anita Angeline designed and compared different
arithmetic modules and after that they implemented these
modules together. They used single precision format for
floating point numbers. They have not specified anything about
rounding mode as well as different exceptions.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2690 - 2694

2691
IJRITCC | May 2015, Available @ http://www.ijritcc.org

III. FLOATING POINT NUMBERS AND ARITHMETIC

A. Floating point numbers

In floating point format, exponent is used to scale up or

down a number, represented by mantissa. Floating point

format is shown below.

sign(s) exponent(e) mantissa(f)

MSB LSB

Sign field represent sign of the number. Exponent field

represent exponent by which the fraction part will be scaled up

or scaled down. Mantissa field represent fraction part of the

real number. Most of the time, this mantissa or fraction part is

used along with the implicit hidden bit ‘1’ before the mantissa.

This bit is used along with the mantissa to provide precision of

the format. These combinations also represent some special

values[6][7].
IEEE has defined three binary formats for floating point

numbers which are:
i. 32-bit

ii. 64-bit
iii. 128-bit

They have also defined four rounding modes:

i. Round to nearest (even)
ii. Round up

iii. Round down
iv. Round towards zero

Five types of exceptions:

i. Invalid
ii. Division by zero

iii. Underflow
iv. Overflow
v. Inexact

B. Arithmetic

This section gives overview about the arithmetic operation
on the floating point numbers. William Stallings has discussed
about floating point formats and arithmetic operations on these
numbers very well in his book [8].

Addition and subtraction of the two floating point numbers

are done as follows:

 In order to add/subtract two mantissas, the exponents of
both the numbers should be made equal.

 This is done by calculating difference between two
mantissas and then right shifting the mantissa of the
number with smaller exponent by the same amount as
of difference.

 Then both significands are added/subtracted
accordingly to obtain result significand, the result
exponent is the same as the bigger one from both
exponents.

 If there is an overflow/underflow during
addition/subtraction of the significands, then it should
be handled by adjusting result exponent accordingly.

Multiplication of two floating point numbers requires

different approach than the previous one.

Multiplication is comparatively easy task for floating point
numbers than the addition and subtraction. The basic steps of
the multiplications are:

 Add exponents of two operands to obtain resultant
exponent

 Multiply mantissas of the two operands to obtain
resultant significand

 Signs of these operands are XORed to obtain resultant
sign

For the final result, still some approximations and round up
need to be done. The resultant significand after multiplying two
mantissas are of double length then the original operands. So
some adjustments needs to be done on this intermediate result
so that significand can be fitted into desired width. Also one
should need to take of overflow or underflow and also make
sure that normalization on resulting significand is done
properly.

IV. ARCHITECTURE

An architecture for Floating point unit which can perform
arithmetic operations like addition, subtraction or
multiplication at a time is discussed in this paper. This
architecture is shown below.

Figure 1. Basic Architecture of the FPU

This floating point unit shown here is designed to operate

IEEE standard numbers. This architecture is having all
rounding modes and can handle exceptions whichever occurs
during these operations. Input operands and different
controlling signals as well as result and some other signals as
output are shown in architecture.

Descriptions of different blocks of the architecture are
given in the following section.

A. Controller

 It will generate and propagate controlling signals for
other modules

 Store incoming data (operands) into two registers

 Make sure that if operation is addition and either of the
operand is negative, data will be routed towards
subtractor module

 Likewise, if the operation is subtraction and either of
the operand in negative, data will be routed towards
adder module, also sign will be adjusted accordingly

The block diagram of the controller is shown in the figure

2.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2690 - 2694

2692
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Figure 2. Block diagram of Controller

B. Adder

 Adds two operands without considering the signs of

the numbers

 The input operands are first separated into their

mantissa and exponent parts

 The larger operand goes into larger field, smaller

operand into smaller field because of the controlling

from controller module

 Then exponents of both operands are made equal by

shifting the significand of the operand with the

smallest exponent (intB) to the right, such that both

exponents become equal

 Then significands are added to obtain result

significand

The block diagram of the generic adder module is shown

below.

Figure 3. Block diagram of Adder

C. Subtractor

 Performs subtraction of the two input operands

 Input operands are first separated into their exponent

and mantissa parts

 Difference between the two exponents is calculated

 Then according to this value, the mantissa of the

smaller operand is shifted right by that value.

 After that normal subtraction between two mantissas is

performed to obtain resulting mantissa

The working of the subtractor is almost similar to that of

adder. The only difference is that we have to subtract shifted

mantissa from the other one and also during normalizing, we

have to take care of underflow, if there occurs any opposite to

the overflow in case of addition.

The block diagram of the generic subtractor is shown in the

figure below.

Figure 4. Block diagram of Subtractor

D. Multiplier

This unit multiplies two floating point numbers and

provides result which is also a floating point number.

 At first, the input operands are separated into their

mantissa and exponent parts.

 The mantissa of first operand and the leading ‘1’ (for

normalized numbers) are stored in to one register.

 The mantissa of the other operand and the leading ‘1’

(for normalized numbers) are stored in the other

register.

 The sign bit of the result is obtained by performing an

XOR on the sign bit of both the operands.

 The exponent is obtained by adding the exponent of

first operand with the exponent of the other operand

and then by subtracting bias from this sum.

 Result mantissa is obtained by multiplying mantissas

of both operands. Some extra bits are used along with

these bits for further rounding and exception

handlings.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2690 - 2694

2693
IJRITCC | May 2015, Available @ http://www.ijritcc.org

The block diagram of the Multiplier unit is shown in the

figure below.

Figure 5. Block diagram of Multiplier

E. Rounding

This module is used to get approximate number from

obtained intermediate results. The mode of rounding can be

decided by the user by providing external output to the unit.

This unit supports all the rounding modes described in the

IEEE standard. Rounding is done to make sure that result after

any arithmetic operation be fitted into the available bits for

final output.

F. Exceptions

In the exceptions module, all of the special cases are

checked for, and if they are found, the appropriate output is

created, and the individual output signals of underflow,

overflow, inexact and invalid will be asserted if the conditions

for each case exist.

V. IMPLEMENTATION AND RESULTS

The above described modules are designed for Virtex-4
FPGA board and simulated to check if the results are
functionally correct or not. Simulation results are shown in the
figures below.

Figure 6. Simulated waveform of 32-bit Adder

Figure 7. Simulated waveform of 64-bit Adder

Figure 8. Simulated waveform of 32-bit Subtractor

Figure 9. Simulated waveform of 64-bit Subtractor

Figure 10. Simulated waveform of 32-bit Multiplier

Figure 11. Simulated waveform of 64-bit Multiplier

VI. CONCLUSION

This paper discussed and designed architecture for floating
point unit, which supports IEEE standard and the architecture
itself can be used to implement any binary floating point format
numbers. Furthermore some basic modules of this FPU is
designed as well as functionally tested for their correctness, and
they are giving very accurate results.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2690 - 2694

2694
IJRITCC | May 2015, Available @ http://www.ijritcc.org

ACKNOWLEDGMENT

We would like to express our deepest appreciations to all
those who helped us and gave us opportunity to complete this
paper. Special thanks I give to my guide Mr. Rohit Khanna for
helping me throughout my work. Their suggestions and
encouragement helped me in writing this paper.

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic, IEEE Standard
754-2008, 2008

[2] Karlstrom P. et al., “High-performance, low-latency field-
programmable gate array-based floating-point adder and
multiplier units in a Virtex 4”, in Computers & Digital
Techniques, IET, (Volume: 2, Issue: 4), July 2008, pp. 305-313

[3] Getao Liang et al., “ALU Architecture with Dynamic Precision
Support”, in Application Accelerators in High Performance
Computing (SAAHPC), 2012 Symposium on, Chicago IL, 2012,
pp. 26-33

[4] Ramesh A. P. et al., “An FPGA based high speed IEEE-754
double precision floating point multiplier using Verilog”, in
Emerging Trends in VLSI, Embedded System, Nano Electronics
and Telecommunication System (ICEVENT), 2013 International
Conference on, Tiruvannamalai, 2013, pp. 1-5

[5] Sangwan M. and Angeline A. A., “Design and implementation
of single precision pipelined floating point co-processor”, in
Advanced Electronic Systems (ICAES), 2013 International
Conference on, Pilani, 2013, pp. 79-82

[6] Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1: Basic Architecture; 2014

[7] Numerical Computation Guide; Sun Microsystems, Inc.; Palo
Alto, CA; 2001

[8] William Stallings; “Computer Arithmetic”; in Computer
Organization and Architecture Designing For Performance;
8/E; Pearson Education, Upper Saddle River, New Jersey; 2009;
pp. 334-344

http://www.ijritcc.org/

