
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2650 - 2653

2650
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Developing Library for Transport Layer of Internet Protocol Suite on CUDA

platform

Chintan Prajapati

Embedded System Design

GTU PG SCHOOL, Gujarat Technological University

Ahmedabad, India

rock.chintan@gmail.com

Rahul Bhivare

Technical Consultant

CDAC-ACTS

Pune, India

rahul.bhivare@gmail.com

Abstract - Presently, the computational power of graphics processing units (GPUs) has turned them into attractive platforms for general-purpose

applications at significant speed using CUDA. Compute Unified Device Architecture (CUDA) programmed, Graphic Processing Units (GPU) is

rapidly becoming a major choice in high performance computing (HPC). Hence, the number of applications ported to the CUDA platform is

growing high. So, a major challenge in today’s embedded world is high performance computing and to attain high precision and real time

performance-which is difficult to achieve even with the most powerful CPU. In the networking world, Packet parsing is a complex task due to

bit wise operation. So we can offload packet parsing task on the CUDA enable GPU. For this purpose, we are choosing to build networking

library prototype, to boost the processing speed of networks on CUDA compatible GPUs. In response, we propose to develop the libraries for

parsing transport layer of internet protocols on NVIDIA CUDA parallel processing platform (NVIDIA CUDA enabled GPU). With this, we can

offload the protocol parsing task of Intel CPU, optimize the CPU usage and increase the performance efficiencies.

Keywords - CUDA, GPGPU, Packet Parsing.

__*****___

I. INTRODUCTION

Graphics Processing Units (GPUs) and Central Processing

Units (CPUs) have often been compared to one another, and

not without reason. Both have processors often with multiple

cores, caches, internal buses, registers, ALUs, and more [1].

CPUs are general purpose machines, while GPUs are

specifically dedicated to being able to process many similar

operations in parallel, allowing them to render a screen very

quickly in comparison to a CPU [1]. Till the time GPUs are

used for the graphics intensive application, but with the

advance of technology by placing many cores on a single chip,

we can use GPU for any complex task mean we can do general

purpose computing on GPU which is called GPGPU.

A major challenge in todays embedded world is high

performance computing and real time performance. This is

difficult to achieve with the even more powerful CPU. Also,

modern GPUs are on the leading edge of increasing chip level

parallelism by supporting hundreds of cores on a single chip.

The main objective of parallel processing is high performance

by reducing execution time, improve efficiency and better

utilization of resources. To attain such parallel processing, we

describe our system built on CUDA (Compute Unified Device

Architecture) platform.

The protocol parsing task is difficult because of bit parsing

and current high speed network demands. For that we need to

parse packet very fast and efficiently to satisfy such demand.

CPU with fewer cores is not sufficient to do such things. So

for that we are going to offload such protocol parsing to

CUDA enable GPU.

A. GPGPU

GPGPU stands for “General Purpose computing on

Graphics Processing Units.” General-purpose computing on

graphics processing units (GPGPU) is the utilization of a

graphics processing unit (GPU), which typically handles

computation only for computer graphics, to perform

computation in applications traditionally handled by the

central processing unit (CPU) [2]. GPGPU implementation has

two properties. First data parallelisms where processor can

execute operation on different data elements simultaneously

and the second is throughput mean it can process so many data

elements and exhibits parallelism.

This paper presents an overview of CPU-GPU

heterogeneous computing, GPGPU and approach for

offloading protocol parsing on CUDA enable GPU.

II. OVERVIEW OF PACKET PARSING AND CUDA

A. PACKET PARSING

All network devices must parse packet to decide how a

packet should be processed. Packet parsing is necessary at all

points in networking, to support packet classification and for

security. To implement protocol we need to parse packet.

Packet parsing has an important role in end to end

communications [3]. For example, a router examines the IP

destination address to decide where to send the packet next,

and a firewall compares several fields against an access-

control list to decide whether to drop a packet [3].

Parsing is the process of identifying headers and extracting

fields for processing by subsequent stage of the device. Each

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2650 - 2653

2651
IJRITCC | May 2015, Available @ http://www.ijritcc.org

packet consists of stack of header, data payload and optionally

stacks of trailers. Protocol parsing is sequential: each header is

identified by preceding header, requiring header to be

identified in the sequence.

Packet parsing is a key bottleneck in high speed networks

because of the complexity of packet headers. Packets often

contain many more headers. These extra headers carry

information about higher level protocols (e.g., HTTP headers)

or additional information that existing headers do not provide

[3]. Each incoming packet must go through some sort of

parsing to examine and understand what it is as well as its

requirements, and then it must be classified, or handled

according to its type and its required processing. Parsing

therefore is the first analysis and action done on the packet

content. Parsing can be very simple, trivial, and unnoticed

during packet processing, or it can be a real and complex task

that sometimes requires a unique language to describe the

process. The task of parsing is sometimes even carried by a

unique, dedicated processing element [4].

Parsing is basically identifying the relevant fields in the

incoming packets, according to their place and type, and

picking the field’s values for continuing the parsing process,

or using these values for classification. A simple parsing

example, in an IPv4 packet would be to detect its destination

IP address, which is easy, since it is a fixed length field in the

IP header, always at the same offset of the packet [4].

Figure 1 Parsing TCP packet [4]

As shown in figure 1. The large rectangle represents packet.

Processing begins at the head of Packet that is Ethernet header.

From this header parser extract the header length and next

header type. It will read the next header type that will be IPv4.

After that it is going to parse IPv4 header from previous

header. It will extract all information about that header like IP

address of source and destination, next header type, header

length, data payload length. After it is going to parse next

header, which is TCP header. From this header, it will extract

all information like source and destination port, length of the

header, sequence number, acknowledgment number etc. This

process repeats until all headers are processed.

B. CUDA

Compute Unified Device Architecture (CUDA) is a new

hardware and software architecture created by NVIDIA for

designing and dealing with parallel computations on the GPU.

The initial CUDA SDK was made public on 15 February 2007,

for support was later added in version 2.0. CUDA works with

all NVIDIA GPUs from the G8x series onwards, including

Geforces, Quadro and the Tesla line. The release of GPU

programming platform CUDA offers a highly parallel

computation and flexible programmable platform [5]. CUDA

application programming interface (API) enables software

developers to access the GPU and also enables researchers to

design programs for both CPU and GPU with a C like

programming language, Without basic knowledge of computer

graphics. The CUDA platform is accessible to software

developers through CUDA-accelerated libraries, compiler

Directives (such as OpenACC), and extensions to industry

standard programming languages, including C, C++ and

FORTRAN [5].

1) CUDA programming model

This is an important feature of CUDA in which application

programmers don’t write explicit threaded code. Hardware

thread manager handles threading automatically. NVIDIA’s

card can manage as many as concurrent threads and these are

lightweight threads in the sense that each thread can operate

on a small piece of data.

A kernel is executed by a grid (decomposition of a problem

into sequential steps), which further contain blocks

(decomposition of grids into parallel blocks called (CTAs),

these blocks again contain threads (decomposition of blocks

into parallel elements). A thread block is a collection of

threads that can share data through shared memory and

synchronized to their execution. But threads from different

blocks operate independently. The CUDA programming

model automatically manages the threads and it significantly

differs from single threaded CPU code and some extent even

parallel code. Figure 2 shows a programming model of CUDA

[5].

Figure 2 CUDA Programming Model [5]

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2650 - 2653

2652
IJRITCC | May 2015, Available @ http://www.ijritcc.org

2) CUDA Memory Layout

CUDA consists of basically five types of memory these are

texture, constant, global, local and shared memory. Figure 3

shows CUDA memory layout which consists different types of

memory [5].

CUDA thread may access data from multiple memory space

during their execution. Each thread has private local memory.

Each thread block has shared memory visible to all threads of

the block and with the same lifetime as a block. All threads

have access to global memory. Also, two additional read only

memory spaces accessible to all threads: constant and texture

memory space. Global, texture and constant memory are

optimized for different memory usages. Texture memory also

offers different addressing modes and data filtering for some

specific data format. Global, constant and texture memory are

persistent across kernel launched by the same application.

Local memory is on chip memory, which only allows

threads within block to access the data. Constant memory has

the feature of cache memory, its accessing speed is fast.

Global memory is the main memory of the GPU, any data

communication between CPU and GPU is done through global

memory. Also outcome of any block will be stored in global

memory. Off chip memory plays an important role in

performance of the system.

Figure 3 CUDA Memory Layout [5]

III. PROPOSED SYSTEM

The whole system is based on client-server model. In

system, there are two PC one is sender and another one is

receiver. Sender PC has only Intel CPU, it will transmit

multiple data (packet) to receiver PC. Now on the receiving

PC side, it has GPU card along with Intel CPUs. Receiver PC

captures those data (packets) and further processes using Intel

CPU. Receiver’s CPU usages will increase. So optimize

usages of Intel CPU we used NVIDIA GPU (CUDA enabled

GPU). So with this, we can offload the protocol parsing task of

Intel CPU. Again, offloading the parsing task on the GPU can

optimize the computational performance of the system. The

packet will transmit from one PC to another PC using Network

Internet protocols.

We are proposing an idea to build libraries for protocol

parsing suite on CUDA platform. By using parallel computing

capabilities of CUDA, we can improve system performance.

Flow of proposed system is shown in figure 4.

Figure 4 Flow of Proposed System

Phase 1: In first phase, two PCs connect with Ethernet cable

and some packets are sent from one PC to another PC using

some tools like iperf. At the receiver side one code is available

on windows platform through which we can catch those

packets, count those packets and identify their types that

particular which type of packet it is. Means it can be TCP,

UDP, HTTP, Ethernet, ARP, and of any type. This

identification and counting of packets are done on the receiver

side through socket programming code in visual studio on

windows platform by using Winsock. By the same time I also

analyzed some parameters like CPU usage and all that. I

checked that how these different types of packets affected to

CPU usage. In this case i sent different type of packet means I

sent pdf file and that time I checked the system usages, it’s

around 32% to 34%.

Figure 5 result of Phase-1

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 5 2650 - 2653

2653
IJRITCC | May 2015, Available @ http://www.ijritcc.org

Phase 2: In this phase, the actual implementation has on

CUDA enabled GPU. Here the idea is to parse packet using

GPU instead of the CPU. All procedure is as above in phase 1.

GPU is working as a streaming processor, mean programmer

has to decide that how many cores he wants to use for a

particular task among all available core. At a same time we

analyzed system performance. By this way we can effectively

parse packet, and system usages would be decreased.

Whatever packets are coming on CPU, that should be passed

to GPU memory. Now from CPU, GPU kernel is invoked and

process all the packets. And parse all headers of packets and

give the result back to the CPU.

Figure 6 Flow chart

For Phase-2, I sent same file and check system usages and its

about 30% to 32%.

Figure 7 result of Phase-2

IV. CONCLUSION

From this paper we conclude that CUDA enable GPU is

able to execute any complex task very effectively. After

building this, we can offload protocol parsing task to CUDA

enable GPU. System performance would be increased and

system usages are decreased. So we can let CPU free to do any

other urgent work.

V. REFERENCES

[1] http://cmsc411.com/gpgpu/overview

[2] CUDA Home Page, http://deveper.nvidia.com/object/cuda.html.

[3] Glen Gibb, George Vargashe, Mark Horowitz, “Design Principal for

Packet Parser”, IEEE Symposium,21-22 Oct. 2013, Pages 13-24.

[4] Book- Ran Giladi, “Network Processors - Architecture, Programming,

and Implementation”

[5] “A Survey on CUDA”- Er. Paramjeet kaur and Er. Nishi, Department of

Computer Science and Engineering, DAV University, Jalandhar, Punjab,

India - (IJCSIT) International Journal of Computer Science and

Information Technologies, Vol. 5 (2) , 2014, 2210-2214 IEEE.

[6] “Survey on Transport Layer Protocols: TCP & UDP”- Santosh Kumar,

Sonam Rai, Graphic Era University, Dehradun (India) - International

Journal of Computer Applications (0975 – 8887) Volume 46– No.7, May

2012 IEEE.

[7] “The Architecture and Evolution of CPU-GPU Systems for General

Purpose Computing”- Manish Arora, Department of Computer Science

and Engineering University of California, San Diego La Jolla, CA

92092-0404.

[8] “EFFICIENT PARALLEL PROCESSING BY IMPROVED CPU-GPU

INTERACTION”- Harsh Khatter, Department of Computer Science and

Engineering, ABES Engineering College, Ghaziabad, India and Vaishali

Aggarwal, Department of Computer Science and Engineering, KIET,

Ghaziabad, India.

[9] “Towards using the Graphics Processing Unit (GPU) for Embedded

Systems”- Daniel Hallmans, ABB AB Ludvika, Sweden and Mikael

˚Asberg, Thomas Nolte, MRTC/M¨alardalen University P.O. Box 883,

SE-721 23 V¨aster˚as, Sweden.

[10] “SCALABLE PARALLEL PROGRAMMINGFOR HIGH-

PERFORMANCE SCIENTIFIC COMPUTING”- David Luebke,

NVIDIA Corporation.

[11] Book-“CUDA C PROGRAMMING GUIDE” - Design Guide by Nvidia.

