
International Journal on Recent and Innovation Trends in Computing and Communication SSN: 2321-8169
Volume: 3 Issue: 4 2343 – 2348

2343
IJRITCC | April 2015, Available @ http://www.ijritcc.org

Prototype Implementation of Real Time CAN Driver for Distributed Embedded
Applications

 Kuldipsing Rajput

1
Babu Krishnamurthy

2
 Sasikala G.

3

M.Tech in Embedded System Technologies Senior Technical officer Associate Professor

 Vel Tech University, Chennai, India R & D Dept. CDAC ACTS, Vel Tech Technical University,

 & CDAC ACTS, Pune, India Pune, India Chennai, India

 rajputkuldipsing@gmail.com babu_krishnamurthy@yahoo.com gsasikala@veltechuniv.edu.in

Abstract- The purpose of this proposed prototype is to make it useful in various distributed embedded applications. This system is implemented

by using FreeRTOS, LPC1769, CAN (Controller Area Network), LwIP (Light Weight Internet Protocol) Protocol and Sensors. Now a day’s real

time communication is one of the key features in distributed embedded systems. Using FreeRTOS, distributed embedded application

performance will be improved as compared to general operating system. FreeRTOS comprises CAN & LwIP protocol stack which transfer real

time data from one microcontroller node to another. The Sensor acts as input to this prototype and microcontroller node in compliance of

FreeRTOS that comprises the Real Time CAN driver which is used for secured data transfer. Real Time LwIP protocol stack is implemented on

top of FreeRTOS to feed the data to PC Host application. It consumes less RAM as compared to other communication protocols such as TCP,

UDP, etc. for data transmission so that the memory bandwidth is reduced. In this system, based on LwIP stack the data will be transferred from

microcontroller Node to the Host application. PC Host application is used for data monitoring and control. Data acquisition and control of

distributed embedded applications will be improved with help of this designed prototype.

Keywords- Distributed Embedded System, FreeRTOS, CAN, LwIP.

__*****___

I. INTRODUCTION

 Distributed embedded system defines that multiple

systems are interconnected by a network to achieve some

specific goal. It is composed of firmware, microcontroller

nodes, devices, and networks. Various nodes are connected to

each other through interconnects. Distributed embedded

system deals with the parameters such as performance,

throughput, minimal latencies, compatibility, etc. When

compared with the centralized system the distributed system

gives more reliable throughput and performance. However the

FreeRTOS is being ported on several multicore architectures

so that it provides task execution simultaneously on the

available cores on basis of its own task scheduling policies

[11].

In this prototype we describe a usage of FreeRTOS for

the development of multiple microcontroller node

communication. It is hard real time operating system.

FreeRTOS is mostly used for embedded application

development. It is modularly designed, with a portable layer

written in C, and a port specific layer for each compiler-

processor pair written mostly in assembly language.

In proposed prototype the communication protocols CAN

& LwIP plays vital role for data transmission from distributed

nodes. CAN protocol is widely used in distributed embedded

application development. It provides a reliable, high speed,

event-triggered communication, simple and low cost

utilization. It is used in mostly Automotive Industries to

interconnect many Electronic Control Units (ECU) that

exchange information through the CAN bus. Real time CAN

protocol will improve the responsiveness and throughput [1].

LwIP protocol is free lightweight TCP/IP stack which

retains main function of TCP/IP with reduction of RAM size.

It supports IPV4, IPV6, TCP, UDP, ICMP, IGMP, SNMP,

ARP and PPP protocols thus, it provide wide range of

networking application support [14]. At Network application

layer it supports DHCP and HTTP protocols for PC Host

application development.

The paper presents prototype implementation for various

distributed embedded applications such as Parking Guidance

System, Elevator Control System, and Industrial Control

System. In this implementation sensors used as input to Real

Time CAN microcontroller Node. The sensors would be the

replaced as per the requirement of the application. The

Microcontroller Node comprises of CORTEX M3 LPC1769

microcontroller in compliance of FreeRTOS. The data from

the sensor is stored in the CAN protocol data frame. Real

Time data is then transmitted from one Node to other through

CAN bus. Real Time LwIP stack is implemented on the

FreeRTOS environment to give reliable speed and higher

throughput. This communication protocol used to transfer data

from the Microcontroller Node to the PC Host application. It

provides the data to PC Host application with real time

constraints. PC Host application will then able to provide real

time information on the display. Data monitoring and control

of this application will be done at PC Host application level

with the help of physical interface.

The paper is organized as follow: in section II, prototype

design components which includes RTOS framework, CAN

and LwIP protocol implementation and their work is

discussed; in section III, real time distributed embedded

applications and their implementation possibilities is

discussed; in section IV, real time distributed parking guidance

system application is described; section V, concluding remarks

are given.

II. PROTOTYPE DESIGN COMPONENTS

A. FreeRTOS + IO Framework-

Most of the embedded application uses FreeRTOS which

provides the core real time scheduling polices (Preemptive,

Co-operative and Dynamic), inter-task communication, timing

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication SSN: 2321-8169
Volume: 3 Issue: 4 2343 – 2348

2344
IJRITCC | April 2015, Available @ http://www.ijritcc.org

and synchronization primitives. Additional functionality such

as a command console interface, or networking stacks, can be

then be included with add-on components.[11].
FreeRTOS Task xTaskCreate API is used to create Real

Time Task at application layer. It has various parameters such
as its own task function, name, task stack size which is
generally allocated from heap, task priority, and the task
parameter. In FreeRTOS task execution is done with the
control of Scheduler thus, the task which is of higher priority
will execute first and then lower priority task executes [9].

FreeRTOS+IO framework provides a Linux/POSIX like
open(), read(), write(), ioctl() type interface peripheral driver
libraries. This framework resides in between the Peripheral
driver library and user application layer. It provides a single,
common, interface to all supported peripherals. It provides
interface to various peripherals such as UART, I2C, SPI,
CAN, etc. Also various different data transfer modes are
created for read and write the data. It is implemented as a set
of Application Program Interface (API) functions written in C
[11]. FreeRTOS+IO framework provides the interface between
the CMSIS (Cortex Microcontroller Software Interface
Standard), FreeRTOS Libraries and certain application
specific libraries. It includes the board specific files to develop
the board specific firmware code. Board Support Package
(BSP) consisting available peripherals on the hardware and
among them the required peripheral is invoked in the driver
layer with the help of FreeRTOS_ioctl() function call.
Configuration file provides the facility to add or remove the
certain parameters. It provides various data transfer modes
such as polled transfer mode, interrupt driven zero copy
transfer mode, circular buffer transfer mode, etc. so that
according to the application requirement the mode has been
selected. This framework also takes care of the peripheral
specific parameters such as data frame type, message id, data
frame length, etc with FreeRTOS_ioctl() function call.

B. CAN Driver Implementation-
FreeRTOS+IO framework is used to implement Real Time

CAN driver on the FreeRTOS environment. The framework

provides the API where controller supported peripherals is

defined. The proposed prototype is implemented on the

LPC1769 CORTEX M3 microcontroller which has two CAN

peripherals as CAN1 & CAN2. Both are registered in the BSP

file. The framework will then able to register the Real Time

CAN driver. Application layer includes the user level program

which calls the CAN driver APIs to perform various data

transfer operations through the Real Time CAN driver [1].

Before execution of Real Time CAN driver activities like

open, read, write, ioctl framework calls the function

taskENTER_CRITICAL() which is used to disable the

external interrupts with the help of “basepri” register of

CORTEX M3 microcontroller. After completion of driver

activities the interrupts are enabled again with the function call

taskEXIT_CRITICAL().

 Fig. 1 shows the FreeRTOS+IO framework for Real Time

CAN driver. Figure consists of various library file and the

layer are interconnected to each other with the help of

FreeRTOS generic APIs.

Fig.1 FreeRTOS+IO CAN driver Framework [11]

 The functionality of generic system calls is as explained

below-

1) FreeRTOS_CAN_open()-

This API will take control over HAL (Hardware

Abstraction Layer) where the CAN initialization and pin

configuration is done at the given base address as per the

requirement. Baud rate settings are done in the same layer.

This protocol is specified in the BSP (Board Support

Package). addition, peripheral-specific read(), write() and

ioctl() functions are assigned to the peripheral control

structure.

2) FreeRTOS_CAN_ioctl()-

CAN is serial communication protocol provides the

standard and extended data frame, the data in this protocol

is transmitted in the form of message which is composed

of following fields: Start-of-frame (SOF), arbitration,

control, data, cyclic redundancy check (CRC),

Acknowledgement (ACK) and end-of-frame (EOF). Thus,

these fields are specified during the message transmission

from one node to other. This API is designed in such a

way that it provides user to select the parameters of data

frame as per the requirement of the application.

3) FreeRTOS_CAN_write()-

This API provide data buffer to send data from user layer

to the Hardware layer. Here user defines the data at

application layer and pointer to the data is then passed to

this API as one of its parameter as pointer to the buffer.

Then the as per the selection of CAN peripheral base

address a specific CAN peripheral is selected among the

present ones. Then after Hardware specific registers

which are defined for the data transmission are accessed.

The data from application layer is loaded in TFI (Transmit

Frame Information Register), TID (Transmit Identifier),

TDA (Transmit Data from byte 1-4); TDB (Transmit Data

from byte 5-8) registers.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication SSN: 2321-8169
Volume: 3 Issue: 4 2343 – 2348

2345
IJRITCC | April 2015, Available @ http://www.ijritcc.org

4) FreeRTOS_CAN_read()-

Priority based messages are transmitted through the

CAN bus. The data from the bus is received with this

function call. In this function call semaphore

mechanism is called for synchronization. As taking

and giving semaphores are atomic operations since

interrupts are disabled and the scheduler is suspended

in order to obtain a lock on the data buffer. The

specified buffer is able to read data from the CAN

register which is defined at the HAL. The data

received from RFS (Receive Frame Status Register),

RID (Receive Identifier), RDA (Receive Data

Register-A), RDB (Receive Data Register-B).

C. LwIP Stack Implementation-

LwIP protocol is free lightweight TCP/IP

stack developed by Adam Dunkels at the Swedish

institute of computer science (SISC) [14]. It retains

main function of TCP/IP with reduction of RAM size.

It only needs several hundred bytes of RAM and about

40Kbyytes of ROM to run efficiently, which makes it

very suitable protocol for distributed embedded

applications [3]. LwIP uses a process model in which

all protocols reside in a single process and are thus

separated from the operating system kernel. LwIP does

not provide any port to any microcontroller so we are

implementing it on the CORTEX M3 LPC1769

controller.

LwIP consists following modules-

1) Operating system emulation layer- To make

LwIP portable an operating system emulation

layer provides a uniform interface to operating

system services such as timers, process

synchronization, and message passing

mechanisms. Also it provides the timer

functionality that is used by TCP [14].

2) Buffer and memory management subsystems-

Buffer and memory management system is same

as TCP/IP segment. In this stack implantation the

“pbuf” is an internal representation of a packet.

The “pbuf” has support of both dynamic and

static memory allocation. It consists of three

types as PBUF_RAM, PBUF_ROM and

PBUF_POOL. These buffers are managed by

“pbuf” subsystems [14].

3) Network Interface- Device drivers for physical

network hardware are represented by a network

interface structure. This structure consisting of

various fields such as pointer to next node,

Name, IP Address, Netmask, Gateway IP

Address, etc [14].

4) Application Program Interface- For LwIP stack

implementation LwIP API was designed. These

API are similar to BSD (Berkeley Software

Distribution) Socket API. LwIP API does not

require any additional copy operation from the

application program to TCP/IP stack. This would

waste both processing time and memory. Thus

the LwIP API allows the application program to

manipulate data directly in the partitioned buffers

in order to avoid the extra copy.

 LwIP divides the task into two different processes

as shown in the fig. 2. TCP/IP stack related API is

communicating with Application process by Inter

Process Communication mechanism such as Shared

memory, Message Passing and Semaphore [14].

 Fig.2 Division of API Implementation [14]

Fig No-02 shows the LwIP stack implementation is

done on the LPC1769 microcontroller with compliance of

FreeRTOS.

Fig. 3 LwIP Protocol stack layer

In the networking layer of LwIP protocol network

devices and the respective drivers are interfaced through the

system calls. Data is transmitted in the form of packets streams

like TCP/IP packets. Network devices such as Ethernet hub,

Switch, Routers are interfaced with various development

boards with the help of network device drivers. The data from

the network devices is fed to the Server. Server is the used to

store data from various distributed nodes in the distributed

embedded applications. The server is centralized for the

specific distributed embedded application so that any node in

the network can access it. The data packets are given to client

as per its request. Network application layer contains the web

based user application designed based on DHCP (Dynamic

Host Configuration Protocol), HTTP (Hyper Text Transfer

Protocol).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication SSN: 2321-8169
Volume: 3 Issue: 4 2343 – 2348

2346
IJRITCC | April 2015, Available @ http://www.ijritcc.org

III. DISTRIBUTED EMBEDDED APPLICATIONS

 Proposed prototype is designed for the development

of distributed embedded applications. Some of these are as

below-

A. Industrial Control System-

In the industries temperature control, air pressure

control, smoke detection is most critical tasks to be

controlled in the industrial environment. So the

respective sensors are interfaced with the proposed

designed prototype. Thus these sensors will give the

parameter values to be controlled and the

microcontroller node will then transmit information

from node to PC Host application through LwIP stack

for real time data monitoring and control [4].

 B. Elevator Control System-

Elevator control system is distributed control system

consists various sensors, switches, and peripherals

like FAN, LED Display, Alarm, etc. Thus to get real

time control over these peripherals and the most

critical task that is door open and close operations can

be easily handled by this real time distributed

prototype. Only we need to change interconnects to

the designed prototype and we will get the control

over the elevator system. Also according to the

application the respective changes made in the PC

Host application [10].

C. Distributed system for Airport terminals-

At Airport Terminal the Flight information display

board shows the real time information with the time

factor. Also various lightening systems and LED

indicators can be interfaced with the proposed

prototype microcontroller node. Sensors at the airport

terminal will gives the input in the form of the

surrounding temperature, smoke, humidity and many

other parameters. The sensor information is displayed

on the PC host application which is fixed at control

room. Also to display the flight status at display these

Real Time communication protocol will give higher

responsiveness and throughput.

D. Parking Guidance System-

Parking guidance system is the best real time

distributed embedded application which can be

developed by using this proposed prototype [10]. This

proposed system is further described in next section.

IV. SYSTEM DESIGN IMPLEMENTATION

 The proposed system will consists of two nodes

Master and Slave respectively. Fig. 4 describes the prototype

implementation of the parking guidance system. In this system

design an Ultrasonic Sensor (HCSR-04) will be interfaced

with the Slave node through the GPIO (General Purpose Input

Output) inbuilt protocol of the microcontroller. Here the

sensor is used to sense the presence of the vehicle in the

parking lot. In this prototype CAR A, B, C, D are the parking

lot. This prototype also provides the facility to allocate the

parking lot for VIP (Very Important) person which is indicated

in the red color at the CAR A place as shown in Fig 4.

 The allocation of this parking lot is done by the

parking management and control system. Slave Node A & B

are connected to the Master Node via CAN Bus. In this

prototype each Slave Node has three sensors to sense the car

object. Sensor data will be send to the Master Node via CAN

Bus through the Slave Node. Each Node in the system is in

compliance of FreeRTOS environment.

Master node will then collect the data from the slave

through the CAN bus. At the Master Node the CAN-LwIP

Gateway is established. Then the data from CAN node to the

Host PC application is transmitted through the LwIP stack.

LwIP stack implementation is done at the Master Node. The

Master Node will be then connected to the Host PC though the

RJ45 Ethernet cable. As LwIP has support of TCP/IP standard

protocol so it can transmit data from the Master to the Host PC

[2].

At the Host side a Real time monitoring application will be

designed with the HTML web development scripting language

on the basis of HTTP or DHCP protocol [2, 4]. This real time

distributed application will give information details of the

parking area such as the allocated parking lot, free parking lot.

This application also provides the control over the whole

parking area with the help of control panel. Master Node is

also interfaced with the Display unit for an indication of the

available parking lot. The display unit will be situated at the

parking entrance to guide the car driver. The display unit will

show the real time information on it. Along with the sensor

Led will be interfaced for an indication of allocated and free

parking space.

Fig. 4 System Implementation Prototype

 Fig. 5 shows the programming flow chart of the proposed

system design. The task implementation and its execution will

be done based on the designed flow chart. The prototype

firmware implemented by using the Real Time task for each

protocol specific operations.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication SSN: 2321-8169
Volume: 3 Issue: 4 2343 – 2348

2347
IJRITCC | April 2015, Available @ http://www.ijritcc.org

 Fig. 5 Program Flow Chart

Three real time tasks are created to complete the prototype

objective. These tasks are as below-

A. GPIOSensorTask-

This task configures the GPIO pins as input for sensor

module interfacing and output for the sensor status

indication. FIOPIN register is used to get the current

status of the sensor interfaced port pin. The value of this

register is then stored in the pointer variable and then

passed to the FreeRTOS_Queue buffer. Then through the

queue mechanism the GPIO port pin status send to

CANWriteTask.

B. CANWriteTask-

In this Task the GPIO port pin status is received through

the Queue receive buffer. This task specifies the CAN

data Frame details such as Frame ID, Frame Length, and

Data Frame Payload. Then with the help of

FreeRTOS_CAN_ioctl() system call the respective

registers are configured at HAL(Hardware Abstraction

Layer) of the Framework. The FreeRTOS_CAN_wrtie()

API is then used to send the data over CAN bus. At the

Master node FreeRTOS_CAN_read() API is used to read

the data from the CAN bus.

C. LwIPServerTask-

This Task is used to implement Real Time LwIP stack for

data transmission from Master Node to the PC Host

application. The data packets are same as the TCP/IP

packets. IP address is assigned to the Base Board which

acts as server or client and the PC Host acts as server. The

LwIP API is responsible for data packet transmission.

Thus, the Real Time CAN data is posted over Host

application.

V. IMPLEMENTATION RESULTS

Proposed prototype is implemented on the Hardware
base board LPCXpresso Base Board provided by “Embedded
Artists” [13]. Also the main target stamp of ARM CORTEX
M3 LPC1769 is provided along with the base board [13].
FreeRTOS porting become an easy task because of the
extraordinary efforts of the LPCXpresso team [12]. The
Proposed system implementation is based on the
“FreeRTOS+IO” framework [11]. Hardware details are shown
in below figure.

Fig.6 Master-Slave Communication

Figure 6 shows the communication between two

nodes through CAN Bus. Slave node send the data through the

TDA and TDB register of CAN protocol, at the Master side

the data is received at RDA and RDB register. The console

window is very useful feature to see the simulation results of

the experiments on the LPCXpresso Kit. Thus the data in

master and slave node can be seen through the console

window as shown in below Fig. 7

Fig. 7 Output Console view

 Here we have assigned the Frame length of 6 byte out of

8 byte so the TDA register has first 4 bytes and TDB register

contains the remaining 2 bytes. At the Receiver side which is

Master Node gets the same data in TDA and TDB registers.

Thus the CAN protocol can send the real time data on

FreeRTOS environment without any data frame loss.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication SSN: 2321-8169
Volume: 3 Issue: 4 2343 – 2348

2348
IJRITCC | April 2015, Available @ http://www.ijritcc.org

Also the LwIP stack implementation and the

communication between the Master Node and the Host PC

Application implemented on the same hardware. The sample

data packets are sent from the Master Node to the Host PC

through the RJ45 Ethernet Cable. Below figure shows the

packet transmission [2]. Here the LwIP protocol creates its

own IP address and then it provide the IP address to the Host

PC for communication [2, 3]. The “pinging operation” results

are as shown in below figure.

Fig. 8 Pinging Operation

VI. CONCLUSION & FUTURE WORK

This prototype has been designed and implemented to

improve the performance of CAN and LwIP protocol based

Distributed Embedded Applications. In comparison with other

distributed embedded prototype, the proposed prototype is

efficient and has higher throughput. The distributed embedded

application involves parking guidance system which is

designed on this prototype. This Prototype can also be

mounted at various places such as Shopping Mall, Multiplex,

and Function Hall. Due to lack of management in parking

space driver finds difficulty to park the car and waste lot of

time for car parking which results in the Traffic congestion,

fuel Consumption, Air pollution etc. So to avoid these

problems, this prototype is the best solution. This prototype

provides flexibility in addition of sensor nodes in the existing

prototype. The multitasking functionality of the system will be

handled by the FreeRTOS API’s which gives dedicated

responsiveness.

Future work would provide security and parking

billing system development. In this implementation, camera

would be interfaced with the existing system which can

capture the number plate of the car entering the parking lot and

parking bill will be generated at the entrance. The security

system will be monitored the whole parking lot with the help

of interfaced cameras. The PC Host application can be

designed more dynamically by using .Net and PHP

framework.

ACKNOWLEDGEMENT

The author wishes to thanks to Prof. Rajesh Sola and

Mrs. Vaishali Maheshkar for giving valuable suggestions and

mentoring me in doing this work.

REFERENCES
[1] Florin Catalin Braescu, Lavinia Ferariu and Andrei

Franciuc,“Monitoring CAN Performances in Distributed

Embedded Systems”, IEEE System Theory, Control, and

Computing (ICSTCC), 15th International Conference, 2011.

[2] Wei Chen, Shu-Bo-Qiu, Ying-Chun Zhang “The Porting and

Implementation of Light-Weight TCP/IP for Embedded Web

Sever”, IEEE Wireless Communication, Networking and Mobile

Computing (WiCOM), 4TH International Conference, 2008.

[3] Zoican, S. Telecomm. Dept., Politeh. Univ. of Bucharest,

Bucharest, Romania, “LwIP Stack Protocol for Embedded

Sensor Network” IEEE 9TH International Conference on

Communications (COMM), 2012.

[4] BoQu & Daowei Fan, “Design of remote data monitoring and

recording system Based on ARM”, IEEE 2nd International

Conference on Industrial and Information Systems, 2010.

[5] Yanfeng Geng, Christos G. Cassandras, “New Smart Parking

System Based on Resource Allocation and Reservation” IEEE

transaction on Intelligent Transportation System Vol no.3, Sept.

2013.

[6] Ran XueJun1,Wang Jianqun1,Li Zhenshan1,Yao Guozhong1

“Design of Parking Guidance System based on Embedded

Internet Access Technology”, IEEE, Control and Decision

Conference, 2010.

[7] Sanaa Alfatihi, Soukaina Chihab and Yassine Salih Alj

“Intelligent Parking System for Car Parking Guidance and

Damage Notification”, IEEE 4TH International Conference on

Intelligent Systems, Modeling and Simulation, 2013.

[8] R. Bosch, GmbH, “CAN Specification 2.0,” Robert Bosch

GmbH, 1991.

[9] R. Barry, Using the FreeRTOS Real Time Kernel, 1st ed., 2010.

[10] “CAN In Automation (CiA)” CAN Newsletter [Online].

Available: http://www.can-newsletter.org/engineering/

[11] “FreeRTOS homepage.” [Online]. Available:

http://www.freertos.org/

[12] “LPCXPRESSO IDE (Integrated Development Tool)”

[Online]. Available: http://www.lpcware.com/lpcxpresso.

[13] Embeddedartists.com, 'LPC1769 LPCXpresso Board |

Embedded Artists AB', 2015. [Online]. Available:

http://www.embeddedartists.com/products/lpcxpresso/lpc1769_

xpr.php.

[14] Adam Dunkels “Design and Implementation of the LwIP

TCP/IP Stack” Ph.D. Thesis, Swedish Institute of Computer

Science (SICS), Feb-2000-2001.

http://www.ijritcc.org/

