A Review Paper on Technical Data of Present HVDC Links in India

Koganti Sri lakshmi Assistant professor Department of Electrical Engineering Sreenidhi Institute of science & Tech. Ghatkesar, Hyderabad, Telangana, India seesu.sri@gmail.com G. Sravanthi Assistant professor Department of Electrical Engineering Sreenidhi Institute of science & Tech. Ghatkesar, Hyderabad, Telangana, India *sravanthi314@gmail.com*

> Koganti Harish chowdary Department of Electrical Engineering koganti.harish@gmail.com

L. Ramadevi Assistant professor Department of Electrical Engineering Sreenidhi Institute of science & Tech. Ghatkesar, Hyderabad, Telangana, India *ramadevi2006@gmail.com*

Abstract: HVDC trend is increasing day by day due to its technical advantages over AC like long distance bulk power transmission, asynchronous integration of AC systems etc. One of the important applications of HVDC is bulk power wind energy transmission from offshore to onshore grid. This paper provides present complete individual technical data of HVDC links of both Bi-polar and Back-to-back transmissions projects commissioned in India.

Keywords—HVDC links, Bi-polar Transmission, Back-to-back transmission.

I. INTRODUCTION

HVDC Technology which is used for long distance bulk power transmission, asynchronous interconnection of two different systems to solve AC Transmission problems.

In HVDC through the controlled actions of power electronics devices, AC power is converted to DC power and made ready for transmission. For applications of Power transmission via cables, bulk power transmission over longdistance, unsynchronized AC-system connection, power system stability improvement and firewall function against instability spread, HVDC transmission is more advantageous than HVAC transmission.

One of the most important applications of HVDC transmission is integrating offshore wind farms to onshore grid via DC cables. HVDC transmission helps for high voltage long distance transmission under water. There are two technologies of HVDC transmission: the LCC-HVDC and VSC-HVDC transmission. The line commutated converter based HVDC is also known as classical HVDC. It is currently a widely used DC transmission system. It uses thyristor based converters. Thyristor converters turning off need the current flow through them to be zero. Hence the switching frequency is system frequency 50 or 60 Hz. This results in production of low order harmonics and a requirement of larger filters for filtering out the generated harmonics. Conventional HVDC always consumes reactive power. This is due to the lagging current which is generated by delayed firing of the converter switches. This reactive power demand is a disadvantage to the Surrounding AC network. The reactive power supply is done by shunt capacitors or Static Var Compensators (SVC) installed at the end terminals.

II. TYPES OF HVDC SCHMES

Mainly there are three types of HVDC schemes. The selection of each scheme at planning stage depends on the operational requirements, flexibility of demand, reliability issue and cost. The following are the most common HVDC configuration schemes [3].

1. Mono Polar: In this configuration scheme a single line is used between the converters and either a positive or negative voltage is used for the transmission. The ground or sea or metal can be generally used as return path. Most HVDC installations start as a mono polar transmission, latter developing to the advanced schemes such as bipolar or homopolar schemes shown in Figures 2.1, 2.2 and 2.3 respectively.

Fig.2.1. Mono Polar link

2. Bi Polar: Here power transmission is carried out using two conductors of opposite polarity. It is a combination of two mono polar systems. Due to this doubling reliability of the system is increased. When one pole of the transmission is removed the other part resumes the normal operation using ground as a return path.

Fig.2.2. Bi Polar link

3. Homo Polar: This is a zero distance transmission. The two converters are connected to each other without any DC line. Back-to-back scheme is applied when two transmission systems of different frequency and different control principle are interconnected.

Fig.2.3. Homo Polar link

4. Long distance Transmission:

This type of transmission is applied when voltage to be carried is high and distance between both AC stations is more than break even distance.

Fig.2.4. Long Distance Transmission **5. Back to Back Transmission:**

This type of transmission is applied when voltage to be carried is high and both stations are operating at different frequencies.

Fig.2.5. Back to Back Transmission

III. COMPONENTS OF HVDC SYSTEM

Fig.3.1. Components of HVDC system

The main components in the HVDC transmission system are:

1. Converter unit: This usually consists of two three phase converter bridges connected in series to form a 12 pulse converter unit. The total number of valves in such a unit is twelve. All modern HVDC valves are water-cooled and air insulated.

2. Converter Transformers:

Special features of converter Transformers:

High stresses: As compared to power transformers, the generator transformers are subjected to higher stress due to: Valve side windings are subjected dc voltage during polarity reversals highest voltage stresses occur, Presence of dc voltage in addition of ac voltage, Higher magnetizing current due to dc voltage, Higher harmonic content, Higher abnormal over voltage and frequency short-circuits currents during converter operation.

Special design requirements:

- (a) Special design of windings and insulating system.
- (b) Special design of core and magnetic circuit.
- (c) Special design of bushings.

Converter transformers are arranged in different ways as shown in fig.3.2.

International Journal on Recent and Innovation Trends in Computing and Communication Volume: 3 Issue: 4

Fig.3.2. Different arrangements of converter Transformer

3. Smoothing Reactor:

It is a coil connected to DC line which reduces ripple in DC link, Limits over current during faults and also helps to prevent from commutation failure.

4. AC and DC Filters:

They are connected on both sides of the station purpose is to reduces harmonics generated in AC and DC links

IV. IV. TECHNICAL DATA OF HVDC PROJECTS IMPLEMENTED IN INDIA:

1. BIPOLAR PROJECTS:

(i) Chandrapur-padghe HVDC bipolar project:

Commissioning year	1999	
No. Of poles	2	
Length of overhead dc line	752km	
Rated Power	1,500MW	
AC system voltage	400KV	
DC voltage, nominal	500KV	
Overload capacity	1,650MW for 2 hours,	
	2,200MW for 5 sec.	
Maximum continuous current	1700A	
AC Filters		
Number of banks in Chandrapur	4*200MVAR	
Number of banks in Padghe	4*200MVAR	
Thristor valves		
Valve Type	Quadruple	
Cooling system	Water	

Thyristor size	$45 \mathrm{cm}^2$
Number of thyristors per valve	96
No. Of dc banks per station	2
Maximum voltages per thyristor	7KV
Converter transformer	
Туре	Single-phase, 3- winding
Rated power	300 MVA each
Ac grid at both ends:	Synchronous
Ambient temperature:	33 ⁰ C
Main reasons for choosing HVDC	Long distance, stability, frequency and Damping control.
Emergency change of power flow	manual or automatic
Power company	Maharashtra state electricity board, Bombay
Supplier	ABB/BHEL

(ii) Rihand-delhi HVDC bipolar project:

The Rihand-Delhi HVDC transmission is the first commercial long-distance HVDC link in India.

Configuration	single bipiole circuit
Power rating	Monopolar -750MW at
	1991
	bipolar-1500MW at
	1992
No of converters per station	2
Transmission	overhead
Main reason for choosing	long distance, stability
HVDC	
Operating voltage for ac yard	400KV
Operating voltage for dc yard	±500 kV
No of converter transformers	6 each of 300MVA; 3
	winding single phase.
No of quadruple valves	6
Minimum clearance phase to	5.75m
phase on 400KV AC side	
Minimum clearance phase to	3.65m
ground on 400KV AC side	
Minimum clearance phase to	12m
phase on 500KV DC side	
Minimum clearance phase to	7m
phase on 500KV DC side	
Size of busbars in DC yard	10
Size of busbars in AC yard	4
Transmission line voltage	7KV

International Journal on Recent and Innovation Trends in Computing and Communication Volume: 3 Issue: 4

Transmission line length	820km
Power rating	1500MW
Total Mvar of ac filter in 2	200 Mvar
stations	
Direct current	1568A
Reactive power supply	capacitors
Ac grid at both ends	synchronous
Control	constant power, damping control
Emergency change of power flow	manual or automatic
Power company and main	National thermal power
supplier	cooperation India, LTD,
	BHEL

(iii) Talcher-kolar HVDC bipolar project:

This is the largest power transmission project in India Linking the Indian states of Karnataka and Orissa over a distance of some 1450 km with the rectifier (AC into DC) and inverter (DC into AC) stations very distant from each other.

Total value	200 million euro	
Transmission length	1,450 Km	
Commercial operation	February, 2003	
Rated power	2000MW, bipolar	
-	(2003), 2500MW (2007)	
Dc transmission voltage	±500 kV	
Rated current	400KV	
	1.15 Pu for 120Min,	
Maximum allowable over load	1.3Pu for 30Min and	
	1.47 Pu for 5Sec.	
Ac system voltages		
Eastern terminal (Orissa)	400Kv, 50HZ	
Southern terminal (Bangalore)	400Kv, 50HZ	
Smoothing reactor	250mH dry air core	
	type/pole	
	1 Double-tuned filter	
Dc filter, per station and pole	12/24, 12/36.	
Ground electrode	Dry type ground	
	electrodes	
Ac filters/ reactive power co	ompensation elements	
<u>^</u>	6 no double-tuned (Ac)	
	filter 12/24, 120Var,	
	each. & 3no (DT) ac	
Eastern terminal (talcher)	Filter 3/36, 97 Mvar each.	
	1 no shunt capacitors,	
	66 Mvar, 2 no shunt	
	reactor, 80 Mvar, each.	
	106no Double tuned ac	
	filter 12/24, 120Mvar,	

Southern terminal (kolar)	each. 3no DT ac filter
	3/36, 97 Mvar each.
	5no shunt capacitor 138
	Mvar each
Power thyri	istors
Converter values	3,888no (ETT)
	7no single phase
	3winding rated
Converter transformers	at 397MVA (inc 1 spare
	transformer)
	(same for both sides).

(iv) Lower sileru-barsoor HVDC Bipolar project:

Parameters	Stage-1	Stage-2	Stage-3
Voltage	+100Kv DC Monopole 6 -pulse	+200Kv DC Monopole 12 -pulse	+200Kv DC Bipole 12 - pulse
Current	1000A	1000A	1000A
Transmitted power	100MW	100MW	100MW
Ac side voltage	220Kv	220Kv	220Kv
Line segment	196KM	196KM	196KM
Valve type	Double	Quadric	2 Quadric
Valve cooling	water		
Valve insulation	Air		
Converter transformer	40.5 Mvar, 10 Kv		
Smoothing reactor	single phase 0.45 Henry, 200Kv 1000A DC	0.45 Henry, 200Kv 1000A DC	

(v) Biswanath - Agra HVDC Bipolar project:

Commissioning year	2015
Project type	Multi terminal (UHVDC)
No of poles	2
No of converters	4
Power transmitted, MW	6000MW

1988

Dc voltage, KV	800Kv
Ac voltage	400Kv
Length	1728Km
Reactive power supply	capacitors
	North-Eastern and
Connecting region	Eastern region of India
Emergency change of power flow	Automatic power reduction triggered by ac signal
Main reason for choosing hvdc	Long distance, bulk
system	power
Power company and supplier	ABB has been selected by Powergrid Corporation of India Ltd

(vi) Ballia- Bhiwadi HVDC Bipolar project:

Commissioning year	Pole1: March 2010
	Pole 2: March 2011
No of poles	2
Power transmitted, MW	2500MW
Dc voltage, KV	500Kv
Ac voltage	400Kv
Length	780Km
Reactive power supply	capacitors
Connecting region	North-region and Eastern region of India
Emergency change of power	Automatic power
flow	reduction triggered by
	ac signal
Main reason for choosing	Long distance, bulk
HVDC system	power

(vii) Mundra- Mohindergarh HVDC Bipolar project:

Commissioning year	2012
No of poles	2 (bipole)
Power transmitted, MW	1500MW
Dc voltage, KV	500Kv
Ac voltage	400Kv
Length	986Km
Reactive power supply	capacitors
	Western-region and
Connecting region	Northern region of India
	_
Emergency change of power	Automatic power
flow	reduction triggered by
	ac signal
Main reason for choosing hvdc	Long distance, bulk
system	power

2. Back-to-back interconnected Projects: (i) Vizag HVDC project:

Commissioning year	2005
	500Mw (1999) vizag-1
Rated power	500Mw (2005) vizag-2
	550Mw for2 hours
Overload capacity	666MW for 5sec
1 7	
	205KV vizag-1
Dc voltage	88KV vizag-2
Devoluge	oon vinning 2
Type of link	back to back
Ac system voltage	400Ky
Smoothing reactor	2no air insulated
Smoothing reactor	210 all insulated,
	3 UNIH each
	150 150
Station occupies an area	450x150m
AC filte	rs
Number of banks, east side	3x110Mvar,
	hp12/24(each)
Number of banks, south side	3x110Mvar,
	hp12/24(each)
Shunt reactor each side	80 Mvar
Max increase of firing angle	63' deg
Thyristor y	valve
	Quadruple
Valve type	1 valve consists of six
v arve type	thyristor modules with 6
	thyristor/module
Cooling system	do minorolized water
I hyristor size	5 inches
No of thyristor per single valve	36
Total no of thyristors	864
Max voltage per transistor	7.2KV
Converter Trai	nsformer
	Single phase, 3 winding
Туре	(6 units).
Rated power	201MVA (each)
Main reason for choosing	Asynchronous network
HVDC	· · · · · · · · · · · · · · · · · · ·
No of poles	1
	-
Converters per station	2x2
r	
Direct current	2860A
Reactive power supply	capacitors
Ac grid at both ends	Asynchronous
	1 is given onous
	Power control. frequency
	control, voltage control
1	control, control

Control	
Supplier of equipment	ABB

No.of poles	1
Emergency change of power	Automatic power
flow	reduction
	triggered by ac signa

(ii) Vindhyachal HVDC project:

Commissioning year	1989
No of poles	2
Power transmitted, MW	2x250
Dc voltage, KV	2x69.7
Direct current, Amp	3600
Reactive power supply	capacitors
	Northern system,
Converter station location and	400Kv, Western system,
ac grid voltage	400Kv
Ac grids at both ends	Asynchronous
	Constant power in either
Control	Constant power in either direction and damping
Control	Constant power in either direction and damping control
Control Emergency change of power	Constant power in either direction and damping control Automatic power
Control Emergency change of power flow	Constant power in either direction and damping control Automatic power reduction triggered by
Control Emergency change of power flow	Constant power in either direction and damping control Automatic power reduction triggered by ac signal
Control Emergency change of power flow Main reason for choosing hvdc	Constant power in either direction and damping control Automatic power reduction triggered by ac signal Asynchronous link
Control Emergency change of power flow Main reason for choosing hvdc system	Constant power in either direction and damping control Automatic power reduction triggered by ac signal Asynchronous link
Control Emergency change of power flow Main reason for choosing hvdc system	Constant power in either direction and damping control Automatic power reduction triggered by ac signal Asynchronous link National thermal power
Control Emergency change of power flow Main reason for choosing hvdc system Power company and supplier	Constant power in either direction and damping control Automatic power reduction triggered by ac signal Asynchronous link National thermal power Cooperation New Delhi
Control Emergency change of power flow Main reason for choosing hvdc system Power company and supplier	Constant power in either direction and damping control Automatic power reduction triggered by ac signal Asynchronous link National thermal power Cooperation New Delhi India, ABB

(iii) Sasaram HVDC project:

Year of commissioning	2002
	500MW
Power rating	
	205kV
Dc voltage	
Line/cable	back to back
Power company	power Grid Corporation
	India ltd.
Ac grids at both end	Asynchronous
Rated current	2,475A
Valve configuration	Configuration 50
	thyristor form a valve
	and 4 valves stacked
	vertically form a
	Quadri-valve tower
Diameter of a thyristor	100mm
Reason for choosing HVDC	Asynchronous link
Control	constant power in either
	direction
Length of cable	back to back

(iv) Chandrapur HVDC project:

Commissioning year	1998
No. Of poles	2
Length of the line	736km
Rated Power	1,500MW
DC voltage, nominal	500KV
Operating current	2,475A
Valve configuration	54 thyristors in series in each Valve 4valves stacked vertically form quadric valve tower
Diameter of thyristor	100mm
Cooling system	Water
Each pole parameters	500Mw, 205Kv dc, 2,475A
Shunt capacitors each side	424Mvar of each side of 500Mw, configured as four switch able units of 106Mvar
Over load capability	10% for 2hours and 33% for 5 sec
Transformers	1-phase 400/93/93KV 234Mvar each
Voltage of thrysistor valve	5.2kV
Power company	PGCIL
Supplier	ABB

V. FUTURE SCOPE

Here we gave complete data about present HVDC links in India which can be taken for further research work. Multi terminal HVDC system was 1st introduced with 800 KV, 3000 MW upgradable to 6000 MW [1]. The proposed site for rectifier station is in Bishwanath Chariali and Alipurduar handling 3000 MW and the Inverter station at Agra handling 6000 MW power. This system is proposed to originate from Assam and pass through West Bengal, Bihar and terminate in Uttar Pradesh with an approximate length of 1728 km. It will be the highest capacity HVDC project of the world considering the continuous 33% overload feature. Each pole of the multi-terminal shall been designed for 2000 MW which are the highest capacity poles in the world. The Earth Electrode shall be designed for 5000 Ampere DC continuous current which shall be the first of its kind in the world. This project is expected to commission by 2015. It also includes the extension of the Mundra- Mohindergarh HVDC link currently operating at 1500 MW to its full installed capacity of 2500 MW. Further projects are in progress.

REFERENCES

- [1] Report On Operation and Maintenance Of HVDC Stations, Praveen Ranjan, PGCIL, 2011.
- [2] HVDC Transmission Overview, M. P. Bahrman, P.E., Member, IEEE, 2008.
- [3] System Benefits derived from the 500MW Back to Back HVDC scheme at Sasaram, India, R N Nayak, D Kumar, B N Kayibabu, R Gulati, M.H. Baker, CIGRE, 2004.
- [4] Operational Experiences of the Chandrapur- Padge HVDC Bipolar Project M.Ahfaz, R.S. Parulkar, P.B. Chimaram's, NPSC, IIT Bombay, 2008.
- [5] Basic Design Aspects of Ballia-Bhiwadi 2500MW HVDC Power Transmission System, R.K. Chauhan, M. Kuhn, D. Kumar, A. Kölz, P. Riedel, 2012.
- [6] Operational Experience of the system protection scheme of the Talcher-Kolar HVDC link, V.K. Agrawal, P.R. Raghu, C.S.Tomar, Oomen Chandy, P. Ranga Rao, PGCIL. M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.
- [7] Special Report For SC B4 (HVDC and Power Electronics), V. F. Lescale M. Takasaki, CIGRE, 2010.
- [8] ANFIS based HVDC control and fault identification of HVDC converter, Narendra Bawane1, Anil G. Kothari, and Dwarkadas P. Kothari, HAIT Journal of Science and Engineering B, Volume 2, Issues 5-6, pp. 673-689, Copyright ©2005 Holon Academic Institute of Technology.

VII. BIOGRAPHIES

Koganti sri lakshmi was born in India in 1983. She received the B.Tech. and M.Tech. Degrees in electrical engineering from the JNTU University, Hyderabad, A.P., India, in 2006 and 2009, respectively, currently, she is working as Assistant Professor in Electrical Engineering department of SNIST. Her current research interests include Renewable energy, Smart Grid, power quality, FACTS and HVDC.

G. Sravanthi was born in India in 1987. She received the B.Tech. and M.Tech. Degrees in electrical engineering from the JNTU University, Hyderabad, A.P., India, in 2008 and 2010, respectively, currently, she is working as Assistant Professor in Electrical Engineering department of SNIST. Her current research interests include Renewable energy, Smart Grid, power quality, Power Electronics, FACTS and HVDC.

L.Ramadevi was born in India in 1985. the B.Tech. Degree She received in engineering from JNTU electrical University, Hyderabad, A.P., India, in 2006 and M.Tech from Acharya A.P University, Nagarjuna in 2010.Presently she is Persuing Ph.D in Nagarjuna Acharva University, A.P. Currently, she is working as Assistant Professor in Electrical Engineering Professor department of SNIST. Her current research interests include Renewable energy, Realiability, Optimization techniques, Distribution Generation, Smart Grid.

Koganti Harish Chowdary was born India in 1990. He received the B.Tech. and M.Tech. Degrees in electrical engineering from the JNTU University, Hyderabad, A.P., India, in 2011 and 2013, respectively. His current research interests include Renewable energy, power quality, FACTS, Smart Grid, HVAC and HVDC.