
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1704 - 1708

1704
IJRITCC | March 2015, Available @ http://www.ijritcc.org

Are NoSQL Data Stores Useful for Bioinformatics Researchers?

A comparative study of storing and querying strategies for proteomics mass-spectrometry data

Borong Shao, Tim OF Conrad

Freie Universität at Berlin,

Berlin, Germany

Research Campus MODAL, Zuse Institute Berlin,

Berlin, Germany

email: borong.shao@fu-berlin.de, conrad@mi.fu-berlin.de

Abstract—The big data challenge in bioinformatics is approaching. Data storage and processing, instead of experimental technologies, are

becoming the slower and more costly part of research. Biological data typically have large size and a variety of structures. The ability to

efficiently store and retrieve the data is important in bioinformatics research. Traditionally, large datasets are either stored as disk-based flat-files

or in relational databases. These systems become more complicated to plan, maintain and adjust to big data applications as they follow rigid
table schema and often lack scalability, e.g. for data aggregation. Meanwhile, non-relational databases (NoSQL) emerge to provide alternative,

flexible and more scalable data stores.

In this study, we aim to quantitatively compare the latencies of different data stores on storing and querying proteomics datasets. We show

benchmarks for typical relational and non-relational systems for both, in-memory and disk-based configurations and compare them to a simple
flat-file based approach. We will focus on the latencies of storing and querying proteomics mass spectrometry datasets and the actual space

consumption inside the data stores. Experiments are carried out on a local desktop with medium-sized data, which is the typical experimental

settings of individual bioinformatics researchers. Results show that there are significant latency differences among the considered data stores

(up to 30 folds). In certain use cases, flat file system can achieve comparable performance with the data stores.

Keywords-relational vs. non-relational databases, proteomics data, storing and querying latencies

__*****___

I. INTRODUCTION

Nowadays, the advances in high-throughput technologies
lead to the exponential growth of molecular biological data.
Discovering useful information from these data is one of the
main endeavors in bioinformatics. In order to achieve it, large
amounts and varieties of biological data such as DNA, protein
sequences, microarrays and proteomics data need to be stored,
retrieved and analyzed. Although new algorithms and pipelines
are developed constantly, the gap between the amount of data
produced and the amount of data analyzed is still growing [1,
2]. Biological data is eligible for the name “big data" which is
often characterized by three “V" properties: volume, velocity,
and variety. An efficient data store is required to address the
big data challenge in bioinformatics [3-5].

There are mainly two types of database systems: traditional
relational databases and non-relational (NoSQL) databases. In
relational databases, data are stored in a number of cross-
referenced tables and queried through relational algebra
operations. Relational databases provide ACID properties
(atomicity, consistency, isolation, and durability), which
guarantee reliable database transactions. At the same time, this
limits the scalability of the databases [6, 7]. As stated in Eric
Brewer's CAP theorem [8], a system can have only two
properties out of these three properties: consistency,
availability, and partition-tolerance. For systems that require
ACID transactional properties, relational database is a good
option. However, for systems that can relax ACID constraints
but address availability and scalability, NoSQL databases may
provide alternative options. NoSQL databases have several
categories for different types of applications. There are key-
value databases such as DynamoDB, column-oriented
databases such as HBase and Cassandra, document-based
databases such as CouchDB and MongoDB, and graph
databases such as Allegro Graph and Neo4j [9]). They

generally relax the ACID constraints and provide BASE
properties (basically available, soft state, and eventual
consistency) instead [10]. The lower level of ACID compliance
is traded off for higher availability [6, 11], flexibility [12] and
scalability.

Biological data are commonly stored as flat files or in
relational databases [13]. Once the data are stored, most of the
operations on the data are queries, which serve as the first step
of data mining or knowledge discovery [14]. In bioinformatics
data analysis, ACID compliance is usually not the critical issue
but efficient data mining is [15]. For example, the mass
spectrometry data of patients are generated and stored. These
data, usually from Megabytes to Gigabytes, need to be queried
over and over again to be used in computations such as
biomarker identification and protein identification. Therefore,
an ideal data store should have low latencies in storing and
querying data, while maintaining the consistency. NoSQL data
stores are useful to deal with the storage and processing of
large volume of data when the structure of the data does not
require a relational model [7]. Meanwhile, updates of the data
are guaranteed to be propagated to all nodes eventually. It is
therefore interesting to investigate whether NoSQL techniques
can provide benefits in bioinformatics applications.

There have been a number of qualitative or conceptual
studies comparing relational and non-relational databases [9,
10, 16]. They compare databases in terms of data models, query
models, consistency models, scalability, maturity, etc. But in
practice, it is helpful to have results from quantitative
experiments to draw useful conclusions. There have also been a
few quantitative studies to compare different databases in
biological applications, where some of the data stores are
employed in certain use cases. For example, experiments are
performed on storing and querying clinical data with a XML-
based data store [17]. They conclude that XML database can

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1704 - 1708

1705
IJRITCC | March 2015, Available @ http://www.ijritcc.org

store clinical data flexibly but it has higher query latencies than
MS-SQL database. In [18], Neo4j and PostgreSQL are used to
store and query the STRING human protein interactions
network. The queries aim at solving graph processing problems
in bioinformatics such as finding the best scoring path between
two proteins. The results show that Neo4j can offer great
speedups over relational databases. But depending on the types
of queries, graph database may not be necessary for graph data.

In this study, we aim to compare different data stores for
proteomics mass-spectrometry data. This type of data is
important because it fosters a better understanding of diseases,
biomarker identification and drug development [19, 20]. Since
proteomics data do not have graph data structures, graph data
stores are not included in the study. We compare the latencies
of one relational database, three NoSQL data stores, and the
flat file system on storing and querying mass spectrometry
(MS) data, as well as their data sizes. Our choice of the data
stores is based on their popularity, availability, and
representativity. The four data stores are the representatives of
four main database categories. They also cover both in memory
and disk-based configurations, as listed below:

 Relational database (MySQL, standard disk-based and
in memory configuration)

 Document-oriented database (MongoDB, disk-based)

 Column-oriented database (HBase, disk-based)

 Key-value database (Redis, in memory)

II. METHODS

We perform benchmark studies on storing and querying MS
data using different data stores. This section introduces the
employed data stores, the respective data models and the
experimental settings.

A. Data Stores and Data Models

Each data store has alternative data models to store MS
data. We decide the data model for each data store based on its
distinguishing features. For example, MongoDB is document-
oriented so we store each sample file in one document; HBase
is column-oriented thus we store each sample file in one HBase
table column. Below we introduce the individual databases and
adopted data models.

1) MySQL: MySQL is the most widely used open-source
RDBMS (relational database management system). To store
MS samples, we create a table with three columns: sample
number, m/z value and intensity value. An index is built on the
sample number column to accelerate the search for multiple
samples. The MySQL table structure is illustrated in Table I.
We use both InnoDB engine and MEMORY engine for storing
and querying data. Note that for inserting data, we use the bulk
load operation to insert one sample file with one statement.

2) MongoDB: MongoDB is a document-oriented data
store. It stores data in collections. A MongoDB collection
contains documents. A document is composed of field-value
pairs. MongoDB can store data flexibly in documents with
embedded data models, instead of breaking it into relational
table structures. It also supports aggregation operations for
complex queries. We store the MS sample files in one
collection with one document for one sample. The key of the
document is the sample number. Within each document, the
field-value pairs store the m/z value-intensity value pairs in the
corresponding sample file. As MongoDB does not support
float values as field names, we store the m/z value, e.g.,

1000.02 as 1000_02 instead. The collection structure is
illustrated in Table II.

3) HBase: HBase is a column-oriented data store. It stores
data with HTables. A HTable has rows and column families.
Data within a row are grouped by column families and data
within a column family are identified by column qualifiers. A
row key, a column family, a column qualifier and a version
number (if present) can exactly specify a cell in a HTable. As
suggested in the HBase manual, to achieve better performance,
the number of column families should be kept low - usually not
more than two or three. Thus we define the m/z values as the
row keys and intensity values as the only column family, which
has one column for each sample. The HBase table structure is
illustrated in Table III.

4) Redis: Redis is an in-memory key-value data store. It is
different from a traditional key-value data store in which string
keys are associated with string values. In Redis, keys are binary
safe so any binary sequence can be used as a key, from a string
to an image file. The values can hold complex data structures
such as list, set, sorted set, hash, etc. We use both Redis hash
and string data models to store MS data and compare their
performance. The hash uses field-value pairs to store the m/z
value-intensity value pairs. The string simply stores all lines of
the sample file as a string. The key of a hash or a string is the
sample number. The Redis hash and string data models are
illustrated in Table IV.

TABLE I. DATA SCHEMA IN MYSQL TABLE FOR STORING MS DATA

Sample number (smallint(6)) M/z value (float)
Intensity value
(smallint(6))

1 1000.02 29

1 1000.12 21

...

N 9999.68 5

TABLE II. DATA SCHEMA IN MONGODB COLLECTION FOR STORING MS

DATA

Sample:1 1000_02:29 1000_12:21 ... 9999_68:1

Sample:2 1000_02:96 1000_12:91 ... 9999_68:10

...

Sample:N 1000_02:35 1000_12:34 ... 9999_68:1

TABLE III. DATA SCHEMA IN HBASE TABLE FOR STORING MS DATA

Row key ColumnFamily

1000.02

sample:1 29
sample:2 96

…
sample:N 35

1000.12
sample:1 21

...
sample:N 11

... ...

9999.68
...

sample:N 1

TABLE IV. HASH OR STRING DATA MODEL IN REDIS FOR STORING MS

DATA

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1704 - 1708

1706
IJRITCC | March 2015, Available @ http://www.ijritcc.org

Sample:1 1000.02 29 1000.12 21 … 9999.68 1

Sample:2 1000.02 96 1000.12 91 … 9999.68 10

... ...

Sample:N 1000.02 35 1000.12 34 … 9999.68 1

B. Experimental Settings

We use experimental approach to compare the latencies of
MySQL, MongoDB, HBase, Redis, and flat file system on
storing and querying MS data, as well as the data sizes in them.
Java programs and JDBC (Java database connectivity
technology) are used to access the databases and flat file
system. Below we introduce the data, three use cases and the
measurement.

1) Data: We use raw 1D mass spectrometry data in the
form of m/z (mass-to-charge ratio) and intensity value pairs,
stored in the widely used mzML format

1
. Among other meta

information, each MS data sample consists of 42,381 value
pairs (about 440KB) in the m/z range from 1000 to 10000 Da,
which are encoded as binary strings. To measure the influence
of parsing the mzML-XML structure and converting the
binary encoding, we also perform experiments just using the
m/z value and intensity value pairs, stored as numbers in text
files. We will refer to this format as .dta format.

2) Use Cases: The goal of this study is to evaluate the
suitabilities of the data stores for bioinformatics researchers.
We therefore choose a few common use cases which occur
during every day routine when working with MS data. We
decide to use the following three examples to serve as proxy
applications:

a) Storing new data: insert n (n = 50, 250, 500, 1000,
2000, . . . , 7000) number of MS data samples to each data
store.

b) Range query (query1): select all m/z value-intensity
value pairs from the available datasets where m/z values are
between 1000.02 and 1500.02 Da. We will refer to this query
type as query1 in the following sections.

c) Retrieve entire samples (query2): retrieve entire data
samples for 10% of all available samples. We will call this
query as query2 in the rest of this paper.

3) Measurement: All data stores are configured in
standalone mode on a Debian Linux

2
 desktop PC equipped

with a 4-core Intel Xeon (R) CPU running at 3.3GHz, 7.78GB
RAM and a 232.9GB SATA hard-disk drive. For each
experiment, the computer is rebooted and only one database
system is running. Latencies are measured within the respective
experiment implementations. Space consumption of the data
inside the database-systems is measured by querying the
database management system directly

3
. The MS data files are

available on the local hard-disk. All results are averaged over
multiple runs.

III. RESULTS AND DISCUSSIONS

We measure the latencies of the use cases and the data size
for each data store and plot them against the number of sample
files (as shown from Fig. 1 to Fig. 4).

1 The mzML format was introduced by the HUPO-Proteomics Standards

Initiative, see [6] for more details.
2 Linux kernel version: SMP Linux 3.2.0-4-amd64
3 MySQL: size of the database, MongoDB: size of the collection, HBase:

size of the HTable, Redis: full memory footprint.

The results show significant performance differences
among the data stores with respect to the latencies and data
sizes, as far as our experiments with real proteomics (MS) data
are concerned. In-memory data stores (Redis, MySQL with
MEMORY engine) are generally faster than disk-based data
stores (MongoDB, HBase, and MySQL with InnoDB engine).
All storage systems show a linear dependency of latencies and
data size with respect to the number of files. Thus for each data
store, we calculate the average latency of storing or querying
one MS sample, and the average size of one MS sample (as
shown in Table V). Each table entry therefore does not reflect
the average measurement per MS sample given only one
observation, e.g., n=7000 samples, but the average
measurement across all experiments (n = 50, 250, 500, 1000,
2000... 7000). The experimental results provide useful
information and also raise new questions, which require a
deeper understanding of the technical details of individual data
stores. Below we discuss a few basic observations across all
data stores.

Figure 1 Latencies of storing data to the data stores

Figure 2 Latencies of querying data by m/z range (query1)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1704 - 1708

1707
IJRITCC | March 2015, Available @ http://www.ijritcc.org

Figure 3 Latencies of querying entire MS samples (query2)

Figure 4 Space of the data used inside the respective database systems

A. Better memory utilization results in lower latencies

As expected, the two in memory data stores (Redis and
MySQL with MEMORY engine) have lower write and query
latencies compared with disk-based data stores (MongoDB,
HBase, and MySQL with InnoDB engine). It is interesting to
observe that the actually disk-based MongoDB also has very
low latencies. This is because MongoDB uses memory-mapped
files (“RAM disk”) which first utilizes (all) available memory
before using the hard-disk. If the available memory is exceeded
the average latencies increase from 6.79ms to 10.9ms per MS
sample for query1 and from 2.71ms to 8.2ms per MS sample
for query2. In summary, if the data are available in memory
(instead of disk), the access latencies are much lower.

Accessing data from disk and from memory are intrinsically
different. Accessing data from a hard-disk is typically done
through the SATA (serial ATA) interface. This has a
theoretical maximum bandwidth of 750 MB per second. This is
about 20 times slower than accessing the main memory (at a
maximal bandwidth of about 14.9GB per second). Additional
to this, seeking to the correct position of a file on a hard-disk
takes about four milliseconds (using a standard 7200 RPM
disk). Taken together, accessing data from the memory is on
average 40.000 times faster than accessing data from the disk.
Meanwhile, effects like operating system dependent page
caching and hardware-based caching mechanisms for disk-
reads can reduce the latency of disk read dramatically. The
actual effect of the combination of different strategies can

hardly be predicted these days due to the complexity of the
used components.

B. Flat file storage can achieve comparable query latencies

Although querying from flat files involves disk reading, flat
file storage achieves comparable query latencies compared to
the databases. Flat file storage also has the lowest latency on
querying MS data by samples (query2). As mentioned above,
techniques such as prefetching and hardware-based caching
accelerate the reading from disk, if the reads are sequential.
Besides, performing queries in each single sample file avoids
the overhead of loading large volume of data to the memory,
which can cause page faults and disk swaps if the data does not
fit in the memory. Recall that we use two MS file formats:
.mzML and .dta in the experiments. The results show that
querying .dta files has about half the latencies as querying
.mzml files.

C. Range queries are more expensive

Our experiments show that querying data ranges is much
more expensive than reading entire samples. This behavior is
well known and occurs because (1) sequential access (reading a
full dataset at once) is faster than random access (“reading a bit
and then seeking to the entry point”) and (2) databases often
implement range queries as first returning all data fulfilling the
lower bound and then filtering on the upper bound

4
. This can

seriously lengthen the overall query times, and seems to be the
case in all tested database systems.

D. The trade-off between ACID compliance and other
properties

MySQL and HBase generally have higher write and query
latencies than other data stores. At the same time, they
guarantee higher level of data consistency, which inevitably
requires more disk writing. MySQL provides ACID properties.
HBase can provide ACID properties within the same row. In
comparison, MongoDB does not guarantee ACID properties. It
trades off ACID compliance for higher availability which
contributes to better speed. As stated in the literatures [1, 10]
and confirmed by our experiments, NoSQL data stores relax
the ACID compliance for other properties, such as availability
and horizontal scalability. Based on the experimental results,
we conclude that this trade-off has a good potential for
bioinformatics applications.

E. The suitability of a data store depends on the use case

In our experiments, the combinations of data stores and data
models show different performance for every use case. We
summarize our experience in Table VI.

TABLE VI. USE CASES IN WHICH THE DATA STORES MAY BE

CONSIDERED

If you have … Recommended

data store
Unstructured or flexible data that require complex
queries

MongoDB

Large data volume applications HBase

Data that require a relational model and ACID
transactional properties

MySQL

Data that do not require complex queries and can fit in
the memory

Redis

Data that only require limited operations Flat file

4
 There are numerous database-systems dependent approaches to optimize this

behavior, which we did not consider in this work.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1704 - 1708

1708
IJRITCC | March 2015, Available @ http://www.ijritcc.org

IV. CONCLUSION

In bioinformatics, system-level investigations of cellular
and molecular interactions involve large amounts of data. An
efficient data store is necessary in this process. We use an
experimental approach to compare the performance of a
relational database (MySQL) and three non-relational data
stores (MongoDB, HBase, Redis) on their latencies of storing
and querying mass spectrometry data and the data sizes. We
also perform the same queries on a flat file system (both dta
and mzML formats) for comparison. To the best of our
knowledge, this study is the first quantitative comparison
among a relational database, NoSQL data stores, and flat file
system in the context of bioinformatics applications, which can
provide practical guide to bioinformatics researchers.

The results show that NoSQL data stores with proper data
models can achieve lower write and query latencies and smaller
database size than relational databases. Depending on the use
case, flat file system can achieve comparable query
performance as the databases. Above all, our study suggests
that the suitabilities of databases need to be considered based
on the application context. In the future, we will extend our
study by comparing the performance of the databases in
distributed mode, for example: HBase with Hadoop and HDFS,
MongoDB with sharding technique, and MySQL cluster, which
are applicable to a medium-sized bioinformatics data center.

ACKNOWLEDGMENT

This work was funded by the German Ministry of Research
and Education (BMBF) project Grant 3FO18501
(Forschungscampus MODAL).

REFERENCES

[1] Schatz Michael C, Langmead Ben, and Salzberg Steven L.
Cloud computing and the DNA data race. Nat Biotech,
28(7):691–693, jul 2010.

[2] Lin Dai, Xin Gao, Yan Guo, Jingfa Xiao, and Zhang Zhang.
Bioinformatics clouds for big data manipulation. Biology Direct,
7(1):43, 2012.

[3] Marx Vivien. Biology: The big challenges of big data. Nature,
498(7453):255–260, jun 2013.

[4] Casey S. Greene, Jie Tan, Matthew Ung, Jason H. Moore, and
Chao Cheng. Big data bioinformatics. Journal of Cellular
Physiology, 229(12):1896–1900, 2014.

[5] Savage Neil. Bioinformatics: Big data versus the big C. Nature,
509(7502):S66–S67, may 2014.

[6] B.G. Tudorica and C. Bucur. A comparison between several
nosql databases with comments and notes. In Roedunet
International Conference (RoEduNet), 2011 10th, pages 1–5,
June 2011.

[7] A. B. M. Moniruzzaman and Syed Akhter Hossain. Nosql
database: New era of databases for big data analytics -
classification, characteristics and comparison. CoRR,
abs/1307.0191, 2013.

[8] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 33(2):51–59, June 2002.

[9] Clarence JM Tauro, Baswanth Rao Patil, and KR Prashanth. A
comparative analysis of different NoSQL databases on data
model, query model and replication model. In Proceedings of
International Conference on ”Emerging Research in Computing,
Information, Communication and Applications” ERCICA.
Elsevier, 2013.

[10] Ameya Nayak, Anil Poriya, and Dikshay Poojary. Type of
NoSQL databases and its comparison with relational databases.
International Journal of Applied Information Systems, 5(4):16–
19, March 2013.

[11] Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD
Rec., 39(4):12–27, May 2011.

[12] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. Uniform
access to NoSQL systems. Information Systems, 43(0):117 –
133, 2014.

[13] Jeremy O. Baum Marketa J. Zvelebil. Understanding
bioinformatics. Garland Science, 2008.

[14] François Bry and Peer Kröger. A computational biology
database digest: Data, data analysis, and data management.
Distrib. Parallel Databases, 13(1):7–42, January 2003.

[15] Yixue Li, Luonan Chen, Big Biological Data: Challenges and
Opportunities, Genomics, Proteomics & Bioinformatics, Volume
12, Issue 5, October 2014.

[16] Clarence J M Tauro, Aravindh S, and Shreeharsha A.b.
Comparative study of the new generation, agile, scalable, high
performance NoSQL databases. International Journal of
Computer Applications, 48(20):1–4, June 2012.

[17] Ken Ka-Yin Lee, Wai-Choi Tang, and Kup-Sze Choi.
Alternatives to relational database: comparison of NoSQL and
XML approaches for clinical data storage. Computer Methods
and Programs in Biomedicine, 110(1):99–109, April 2013.

[18] Christian Theil Have and Lars Juhl Jensen. Are graph databases
ready for bioinformatics? Bioinformatics, 2013.

[19] Sam Hanash. Disease proteomics. Nature 422: 226–232, 2003.

[20] Zhen Xiao, DaRue Prieto, Thomas P. Conrads, Timothy D.
Veenstra, and Haleem J.Issaq. Proteomic patterns: their potential
for disease diagnosis. Molecular and Cellular Endocrinology,
230(12):95 – 106, 2005.

[21] Eric Deutsch. mzml: A single, unifying data format for mass
spectrometer output. PROTEOMICS, 8(14):2776–2777, 2008.

[22] VijaySrinivas Agneeswaran. Big-data theoretical, engineering
and analytics perspective. In Big Data Analytics, volume 7678
of Lecture Notes in Computer Science, pages 8–15. Springer
Berlin Heidelberg, 2012.

[23] N. Leavitt. Will nosql databases live up to their promise?
Computer, 43(2):12–14, Feb 2010.

TABLE V. THE AVERAGE STORING AND QUERYING LATENCIES OF THE DATA STORES

Measurement per

 MS sample

Data Stores

MongoDB HBase
MySQL

(InnoDB)

MySQL

(MEMORY)

Redis

(hash)

Redis

(string)

Flat file

(dta)

Flat file

(mzM,L)

Write latencies (millisecond) 44.45 322.71 490.55 30.98 38.71 1.69 - -

Range query latencies

(millisecond)

6.79

(10.9)a
5.60 23.97 10.09 64.80 10.20 15.47 28.38

Sample query latencies

(millisecond)
2.71 (8.2)a 33.43 9.59 1.93 6.19 1.01 0.89 2.03

Data sizes (KB) 1024.0 1285.8 1851.0 1304.0 3325.7 434.66 440.32 669.1

a. The query latencies when the data size exceeds the available memory

http://www.ijritcc.org/

