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Abstract—The big data challenge in bioinformatics is approaching. Data storage and processing, instead of experimental technologies, are 

becoming the slower and more costly part of research. Biological data typically have large size and a variety of structures. The ability to 

efficiently store and retrieve the data is important in bioinformatics research. Traditionally, large datasets are either stored as disk-based flat-files 

or in relational databases. These systems become more complicated to plan, maintain and adjust to big data applications as they follow rigid 
table schema and often lack scalability, e.g. for data aggregation. Meanwhile, non-relational databases (NoSQL) emerge to provide alternative, 

flexible and more scalable data stores. 

In this study, we aim to quantitatively compare the latencies of different data stores on storing and querying proteomics datasets. We show 

benchmarks for typical relational and non-relational systems for both, in-memory and disk-based configurations and compare them to a simple 
flat-file based approach. We will focus on the latencies of storing and querying proteomics mass spectrometry datasets and the actual space 

consumption inside the data stores. Experiments are carried out on a local desktop with medium-sized data, which is the typical experimental 

settings of individual bioinformatics researchers.  Results show that there are significant latency differences among the considered data stores 

(up to 30 folds). In certain use cases, flat file system can achieve comparable performance with the data stores. 
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I.  INTRODUCTION 

Nowadays, the advances in high-throughput technologies 
lead to the exponential growth of molecular biological data. 
Discovering useful information from these data is one of the 
main endeavors in bioinformatics. In order to achieve it, large 
amounts and varieties of biological data such as DNA, protein 
sequences, microarrays and proteomics data need to be stored, 
retrieved and analyzed. Although new algorithms and pipelines 
are developed constantly, the gap between the amount of data 
produced and the amount of data analyzed is still growing [1, 
2]. Biological data is eligible for the name “big data" which is 
often characterized by three “V" properties: volume, velocity, 
and variety. An efficient data store is required to address the 
big data challenge in bioinformatics [3-5]. 

There are mainly two types of database systems: traditional 
relational databases and non-relational (NoSQL) databases. In 
relational databases, data are stored in a number of cross-
referenced tables and queried through relational algebra 
operations. Relational databases provide ACID properties 
(atomicity, consistency, isolation, and durability), which 
guarantee reliable database transactions. At the same time, this 
limits the scalability of the databases [6, 7]. As stated in Eric 
Brewer's CAP theorem [8], a system can have only two 
properties out of these three properties: consistency, 
availability, and partition-tolerance. For systems that require 
ACID transactional properties, relational database is a good 
option. However, for systems that can relax ACID constraints 
but address availability and scalability, NoSQL databases may 
provide alternative options. NoSQL databases have several 
categories for different types of applications. There are key-
value databases such as DynamoDB, column-oriented 
databases such as HBase and Cassandra, document-based 
databases such as CouchDB and MongoDB, and graph 
databases such as Allegro Graph and Neo4j [9]). They 

generally relax the ACID constraints and provide BASE 
properties (basically available, soft state, and eventual 
consistency) instead [10]. The lower level of ACID compliance 
is traded off for higher availability [6, 11], flexibility [12] and 
scalability. 

Biological data are commonly stored as flat files or in 
relational databases [13]. Once the data are stored, most of the 
operations on the data are queries, which serve as the first step 
of data mining or knowledge discovery [14]. In bioinformatics 
data analysis, ACID compliance is usually not the critical issue 
but efficient data mining is [15]. For example, the mass 
spectrometry data of patients are generated and stored. These 
data, usually from Megabytes to Gigabytes, need to be queried 
over and over again to be used in computations such as 
biomarker identification and protein identification. Therefore, 
an ideal data store should have low latencies in storing and 
querying data, while maintaining the consistency. NoSQL data 
stores are useful to deal with the storage and processing of 
large volume of data when the structure of the data does not 
require a relational model [7]. Meanwhile, updates of the data 
are guaranteed to be propagated to all nodes eventually. It is 
therefore interesting to investigate whether NoSQL techniques 
can provide benefits in bioinformatics applications. 

There have been a number of qualitative or conceptual 
studies comparing relational and non-relational databases [9, 
10, 16]. They compare databases in terms of data models, query 
models, consistency models, scalability, maturity, etc. But in 
practice, it is helpful to have results from quantitative 
experiments to draw useful conclusions. There have also been a 
few quantitative studies to compare different databases in 
biological applications, where some of the data stores are 
employed in certain use cases. For example, experiments are 
performed on storing and querying clinical data with a XML-
based data store [17]. They conclude that XML database can 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                       ISSN: 2321-8169 
Volume: 3 Issue: 3                                                                                                                                                                         1704 - 1708 

_______________________________________________________________________________________________ 

1705 
IJRITCC | March 2015, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

store clinical data flexibly but it has higher query latencies than 
MS-SQL database. In [18], Neo4j and PostgreSQL are used to 
store and query the STRING human protein interactions 
network. The queries aim at solving graph processing problems 
in bioinformatics such as finding the best scoring path between 
two proteins. The results show that Neo4j can offer great 
speedups over relational databases. But depending on the types 
of queries, graph database may not be necessary for graph data. 

In this study, we aim to compare different data stores for 
proteomics mass-spectrometry data. This type of data is 
important because it fosters a better understanding of diseases, 
biomarker identification and drug development [19, 20]. Since 
proteomics data do not have graph data structures, graph data 
stores are not included in the study. We compare the latencies 
of one relational database, three NoSQL data stores, and the 
flat file system on storing and querying mass spectrometry 
(MS) data, as well as their data sizes. Our choice of the data 
stores is based on their popularity, availability, and 
representativity. The four data stores are the representatives of 
four main database categories. They also cover both in memory 
and disk-based configurations, as listed below: 

 Relational database (MySQL, standard disk-based and 
in memory configuration) 

 Document-oriented database (MongoDB, disk-based) 

 Column-oriented database (HBase, disk-based) 

 Key-value database (Redis, in memory) 

II. METHODS 

We perform benchmark studies on storing and querying MS 
data using different data stores. This section introduces the 
employed data stores, the respective data models and the 
experimental settings.  

A. Data Stores and Data Models 

Each data store has alternative data models to store MS 
data. We decide the data model for each data store based on its 
distinguishing features. For example, MongoDB is document- 
oriented so we store each sample file in one document; HBase 
is column-oriented thus we store each sample file in one HBase 
table column. Below we introduce the individual databases and 
adopted data models. 

1) MySQL: MySQL is the most widely used open-source 
RDBMS (relational database management system). To store 
MS samples, we create a table with three columns: sample 
number, m/z value and intensity value. An index is built on the 
sample number column to accelerate the search for multiple 
samples. The MySQL table structure is illustrated in Table I. 
We use both InnoDB engine and MEMORY engine for storing 
and querying data. Note that for inserting data, we use the bulk 
load operation to insert one sample file with one statement. 

2) MongoDB:  MongoDB is a document-oriented data 
store. It stores data in collections. A MongoDB collection 
contains documents. A document is composed of field-value 
pairs. MongoDB can store data flexibly in documents with 
embedded data models, instead of breaking it into relational 
table structures. It also supports aggregation operations for 
complex queries. We store the MS sample files in one 
collection with one document for one sample. The key of the 
document is the sample number. Within each document, the 
field-value pairs store the m/z value-intensity value pairs in the 
corresponding sample file. As MongoDB does not support 
float values as field names, we store the m/z value, e.g., 

1000.02 as 1000_02 instead. The collection structure is 
illustrated in Table II. 

3) HBase:  HBase is a column-oriented data store. It stores 
data with HTables. A HTable has rows and column families. 
Data within a row are grouped by column families and data 
within a column family are identified by column qualifiers. A 
row key, a column family, a column qualifier and a version 
number (if present) can exactly specify a cell in a HTable. As 
suggested in the HBase manual, to achieve better performance, 
the number of column families should be kept low - usually not 
more than two or three. Thus we define the m/z values as the 
row keys and intensity values as the only column family, which 
has one column for each sample. The HBase table structure is 
illustrated in Table III. 

4) Redis: Redis is an in-memory key-value data store. It is 
different from a traditional key-value data store in which string 
keys are associated with string values. In Redis, keys are binary 
safe so any binary sequence can be used as a key, from a string 
to an image file. The values can hold complex data structures 
such as list, set, sorted set, hash, etc. We use both Redis hash 
and string data models to store MS data and compare their 
performance. The hash uses field-value pairs to store the m/z 
value-intensity value pairs. The string simply stores all lines of 
the sample file as a string. The key of a hash or a string is the 
sample number. The Redis hash and string data models are 
illustrated in Table IV. 

TABLE I.      DATA SCHEMA IN MYSQL TABLE FOR STORING MS DATA 

Sample number (smallint(6)) M/z value (float) 
Intensity value 
(smallint(6)) 

1 1000.02 29 

1 1000.12 21 

... ... ... 

N 9999.68 5 

TABLE II.  DATA SCHEMA IN MONGODB COLLECTION FOR STORING MS 

DATA 

Sample:1 1000_02:29 1000_12:21 ... 9999_68:1 

Sample:2 1000_02:96 1000_12:91 ... 9999_68:10 

... ... ... ... ... 

Sample:N 1000_02:35 1000_12:34 ... 9999_68:1 

TABLE III.  DATA SCHEMA IN HBASE TABLE FOR STORING MS DATA 

Row key ColumnFamily 

1000.02 

sample:1 29 
sample:2 96 

… 
sample:N 35 

1000.12 
sample:1 21 

... 
sample:N 11 

... ... 

9999.68 
... 

sample:N 1 

 

 

TABLE IV.  HASH OR STRING DATA MODEL IN REDIS FOR STORING MS 

DATA 
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Sample:1 1000.02 29 1000.12 21 … 9999.68 1 

Sample:2 1000.02 96 1000.12 91 … 9999.68 10 

... ... 

Sample:N 1000.02 35 1000.12 34 … 9999.68 1 

 

B. Experimental Settings 

We use experimental approach to compare the latencies of 
MySQL, MongoDB, HBase, Redis, and flat file system on 
storing and querying MS data, as well as the data sizes in them. 
Java programs and JDBC (Java database connectivity 
technology) are used to access the databases and flat file 
system. Below we introduce the data, three use cases and the 
measurement. 

1) Data: We use raw 1D mass spectrometry data in the 
form of m/z (mass-to-charge ratio) and intensity value pairs, 
stored in the widely used mzML format

1
. Among other meta 

information, each MS data sample consists of 42,381 value 
pairs (about 440KB) in the m/z range from 1000 to 10000 Da, 
which are encoded as binary strings. To measure the influence 
of parsing the mzML-XML structure and converting the 
binary encoding, we also perform experiments just using the 
m/z value and intensity value pairs, stored as numbers in text 
files. We will refer to this format as .dta format. 

2) Use Cases: The goal of this study is to evaluate the 
suitabilities of the data stores for bioinformatics researchers.  
We therefore choose a few common use cases which occur 
during every day routine when working with MS data. We 
decide to use the following three examples to serve as proxy 
applications: 

a) Storing new data: insert n (n = 50, 250, 500, 1000, 
2000, . . . , 7000) number of MS data samples to each data 
store. 

b) Range query (query1): select all m/z value-intensity 
value pairs from the available datasets where m/z values are 
between 1000.02 and 1500.02 Da. We will refer to this query 
type as query1 in the following sections. 

c) Retrieve entire samples (query2): retrieve entire data 
samples for 10% of all available samples. We will call this 
query as query2 in the rest of this paper. 

3) Measurement: All data stores are configured in 
standalone mode on a Debian Linux

2
 desktop PC equipped 

with a 4-core Intel Xeon (R) CPU running at 3.3GHz, 7.78GB 
RAM and a 232.9GB SATA hard-disk drive. For each 
experiment, the computer is rebooted and only one database 
system is running. Latencies are measured within the respective 
experiment implementations. Space consumption of the data 
inside the database-systems is measured by querying the 
database management system directly

3
. The MS data files are 

available on the local hard-disk. All results are averaged over 
multiple runs.  

III. RESULTS AND DISCUSSIONS 

We measure the latencies of the use cases and the data size 
for each data store and plot them against the number of sample 
files (as shown from Fig. 1 to Fig. 4). 

                                                         
1 The mzML format was introduced by the HUPO-Proteomics Standards 

Initiative, see [6] for more details. 
2 Linux kernel version: SMP Linux 3.2.0-4-amd64 
3 MySQL: size of the database, MongoDB: size of the collection, HBase: 

size of the HTable, Redis: full memory footprint. 

The results show significant performance differences 
among the data stores with respect to the latencies and data 
sizes, as far as our experiments with real proteomics (MS) data 
are concerned. In-memory data stores (Redis, MySQL with 
MEMORY engine) are generally faster than disk-based data 
stores (MongoDB, HBase, and MySQL with InnoDB engine). 
All storage systems show a linear dependency of latencies and 
data size with respect to the number of files. Thus for each data 
store, we calculate the average latency of storing or querying 
one MS sample, and the average size of one MS sample (as 
shown in Table V). Each table entry therefore does not reflect 
the average measurement per MS sample given only one 
observation, e.g., n=7000 samples, but the average 
measurement across all experiments (n = 50, 250, 500, 1000, 
2000... 7000). The experimental results provide useful 
information and also raise new questions, which require a 
deeper understanding of the technical details of individual data 
stores. Below we discuss a few basic observations across all 
data stores. 

 
Figure 1 Latencies of storing data to the data stores 

 
Figure 2 Latencies of querying data by m/z range (query1) 
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Figure 3 Latencies of querying entire MS samples (query2) 

 
Figure 4 Space of the data used inside the respective database systems 

A. Better memory utilization results in lower latencies 

As expected, the two in memory data stores (Redis and 
MySQL with MEMORY engine) have lower write and query 
latencies compared with disk-based data stores (MongoDB, 
HBase, and MySQL with InnoDB engine). It is interesting to 
observe that the actually disk-based MongoDB also has very 
low latencies. This is because MongoDB uses memory-mapped 
files (“RAM disk”) which first utilizes (all) available memory 
before using the hard-disk. If the available memory is exceeded 
the average latencies increase from 6.79ms to 10.9ms per MS 
sample for query1 and from 2.71ms to 8.2ms per MS sample 
for query2. In summary, if the data are available in memory 
(instead of disk), the access latencies are much lower. 

Accessing data from disk and from memory are intrinsically 
different. Accessing data from a hard-disk is typically done 
through the SATA (serial ATA) interface. This has a 
theoretical maximum bandwidth of 750 MB per second. This is 
about 20 times slower than accessing the main memory (at a 
maximal bandwidth of about 14.9GB per second).  Additional 
to this, seeking to the correct position of a file on a hard-disk 
takes about four milliseconds (using a standard 7200 RPM 
disk). Taken together, accessing data from the memory is on 
average 40.000 times faster than accessing data from the disk. 
Meanwhile, effects like operating system dependent page 
caching and hardware-based caching mechanisms for disk-
reads can reduce the latency of disk read dramatically. The 
actual effect of the combination of different strategies can 

hardly be predicted these days due to the complexity of the 
used components. 

B. Flat file storage can achieve comparable query latencies 

Although querying from flat files involves disk reading, flat 
file storage achieves comparable query latencies compared to 
the databases. Flat file storage also has the lowest latency on 
querying MS data by samples (query2). As mentioned above, 
techniques such as prefetching and hardware-based caching 
accelerate the reading from disk, if the reads are sequential. 
Besides, performing queries in each single sample file avoids 
the overhead of loading large volume of data to the memory, 
which can cause page faults and disk swaps if the data does not 
fit in the memory. Recall that we use two MS file formats:  
.mzML and .dta in the experiments.  The results show that 
querying .dta files has about half the latencies as querying 
.mzml files. 

C. Range queries are more expensive 

Our experiments show that querying data ranges is much 
more expensive than reading entire samples. This behavior is 
well known and occurs because (1) sequential access (reading a 
full dataset at once) is faster than random access (“reading a bit 
and then seeking to the entry point”) and (2) databases often 
implement range queries as first returning all data fulfilling the 
lower bound and then filtering on the upper bound

4
. This can 

seriously lengthen the overall query times, and seems to be the 
case in all tested database systems.  

D. The trade-off between ACID compliance and other 
properties 

MySQL and HBase generally have higher write and query 
latencies than other data stores. At the same time, they 
guarantee higher level of data consistency, which inevitably 
requires more disk writing. MySQL provides ACID properties. 
HBase can provide ACID properties within the same row. In 
comparison, MongoDB does not guarantee ACID properties. It 
trades off ACID compliance for higher availability which 
contributes to better speed. As stated in the literatures [1, 10] 
and confirmed by our experiments, NoSQL data stores relax 
the ACID compliance for other properties, such as availability 
and horizontal scalability. Based on the experimental results, 
we conclude that this trade-off has a good potential for 
bioinformatics applications. 

E. The suitability of a data store depends on the use case 

In our experiments, the combinations of data stores and data 
models show different performance for every use case. We 
summarize our experience in Table VI.  

 
TABLE VI.  USE CASES IN WHICH THE DATA STORES MAY BE 

CONSIDERED 

 
If you have … Recommended 

data store 
Unstructured or flexible data that require complex 
queries 

MongoDB 

Large data volume applications HBase 

Data that require a relational model and ACID 
transactional properties 

MySQL 

Data that do not require complex queries and can fit in 
the memory 

Redis 

Data that only require limited operations Flat file 

                                                         
4
 There are numerous database-systems dependent approaches to optimize this 

behavior, which we did not consider in this work. 
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IV. CONCLUSION 

In bioinformatics, system-level investigations of cellular 
and molecular interactions involve large amounts of data. An 
efficient data store is necessary in this process. We use an 
experimental approach to compare the performance of a 
relational database (MySQL) and three non-relational data 
stores (MongoDB, HBase, Redis) on their latencies of storing 
and querying mass spectrometry data and the data sizes. We 
also perform the same queries on a flat file system (both dta 
and mzML formats) for comparison. To the best of our 
knowledge, this study is the first quantitative comparison 
among a relational database, NoSQL data stores, and flat file 
system in the context of bioinformatics applications, which can 
provide practical guide to bioinformatics researchers. 

The results show that NoSQL data stores with proper data 
models can achieve lower write and query latencies and smaller 
database size than relational databases. Depending on the use 
case, flat file system can achieve comparable query 
performance as the databases. Above all, our study suggests 
that the suitabilities of databases need to be considered based 
on the application context. In the future, we will extend our 
study by comparing the performance of the databases in 
distributed mode, for example: HBase with Hadoop and HDFS, 
MongoDB with sharding technique, and MySQL cluster, which 
are applicable to a medium-sized bioinformatics data center. 
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TABLE V.  THE AVERAGE STORING AND QUERYING LATENCIES OF THE DATA STORES 

 

Measurement per 

 MS sample 

Data Stores 

MongoDB HBase 
MySQL 

(InnoDB) 

MySQL  

(MEMORY) 

Redis 

(hash) 

Redis 

(string) 

Flat file 

(dta) 

Flat file 

(mzM,L) 

Write latencies (millisecond) 44.45 322.71 490.55 30.98 38.71 1.69 - - 

Range query latencies 

(millisecond) 

6.79 

(10.9)a 
5.60 23.97 10.09 64.80 10.20 15.47 28.38 

Sample query latencies 

(millisecond) 
2.71 (8.2)a 33.43 9.59 1.93 6.19 1.01 0.89 2.03 

Data sizes (KB) 1024.0 1285.8 1851.0 1304.0 3325.7 434.66 440.32 669.1 

a. The query latencies when the data size exceeds the available memory 
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