
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1472 - 1475

1472
IJRITCC | March 2015, Available @ http://www.ijritcc.org

Solving Sudoku from an Image using Modular Architecture Approach

Manav B. Sanghavi, Aniket K. Rupani, Mahek S. Maniar, Sai Deepthi Pabba

Computer Department

K.J. Somaiya College of Engineering

Mumbai, India
Email: manav.s@somaiya.edu; aniket.r@somaiya.edu; mahek.maniar@somaiya.edu, psaideepthi@somaiya.edu

Abstract—Sudoku puzzles can be found in various physical forms in newspapers, magazines and elsewhere. It may often be desirable to convert

this puzzle into a digital format for ease of solving. This paper proposes a method for extracting and solving a Sudoku puzzle captured in an

image. AI techniques can then be applied to solve the Sudoku puzzle. A modular architecture is created for this purpose. Modules can be

replaced as needed, making it easier to improve and maintain an application using the proposed architecture

Keywords- sudoku; image processing; artificial intelligence; architecture; local thresholding; number detection; corner detection

__*****___

I. INTRODUCTION

Sudoku is a very popular puzzle game. A typical Sudoku

puzzle consists of a 9-by-9 grid made up of nine 3-by-3

subgrids. Digits appear in some squares and based on these

starting “clues”, a player completes the grid so that each row,

column and subgrid contains the digits 1 through 9 exactly

once.

Sudoku puzzles are usually found in newspapers and

magazines. However, more often than not, it is inconvenient to

solve them as they are printed on paper, since it would not be

possible to rewrite a digit once it has been written. Even using

an eraser to remove a digit written with a pencil would

ultimately result in degradation of the printed puzzle. Hence, it

would be more convenient to simply take a picture of the

Sudoku puzzle and convert it into a digital format, in order to

solve it.

This paper details the steps which are used to detect and

extract the Sudoku puzzle from an image. A modular

architecture for this purpose is proposed. Since various

different techniques are used in the process of extracting the

Sudoku puzzle, a modular architecture allows for improvement

and maintainability of an implementation of this process as

individual module implementations can be changed more easily

without affecting the rest of the software implementation.

Image processing components give us the digital grid of the

Sudoku puzzle as output. This is stored as an appropriate data

structure and then given to an AI module for solving the

puzzle. Like the image processing steps, the AI component is

modular. Hence, it is easy to swap out the algorithm used for

solving the Sudoku puzzle or improve the AI implementation

gradually, over time.

II. PROBLEM STATEMENT

Extracting the Sudoku puzzle from an image involves the

following steps in general:

1. Preprocessing the image

2. Finding the Sudoku grid’s outer box

3. Finding the box corners

4. Using the box corners to extract cells

5. Detecting the number present in each cell

6. Creating a virtual Sudoku grid

Various image processing and computer vision techniques

may be applied at each individual step. Preprocessing

constitutes of resizing the image to an appropriate size, noise

removal and thresholding [1]. Finding the outer Sudoku puzzle

box involves region detection. Extracting box corners can be

done by using filters for corner detection. These corners can

then be used to extract the 81 cells of the image and then

template matching can be done to find the value of the digit in

non-empty cells.

Solving a Sudoku puzzle is an interesting area of research.

This is because Sudoku is an NP-Complete problem [2]. The

proposed architecture converts Sudoku puzzles into digital

versions which reduces the tedium involved in creating

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1472 - 1475

1473
IJRITCC | March 2015, Available @ http://www.ijritcc.org

multiple Sudoku grids by hand, when multiple Sudoku puzzles

are required to carry out research into solving Sudoku puzzles

or developing new and improving old algorithms for solving

problems lying in the class of NP-Complete..

III. SOLUTION APPROACH AND METHODOLOGY

As we have seen in the previous section, extracting the

Sudoku puzzle from an image follows a certain process.

Therefore, it is possible to create a modular architecture for

extracting the Sudoku puzzle from an image containing a

Sudoku puzzle. This architecture is given in Figure 1.

The steps as detailed in the Problem Statement are

expanded upon in the following sections.

A. Preprocessing

The image is resized to some suitable dimensions. An

image size of 480 x 480 is sufficient for further processing. The

colour image has to be converted into a binary image. Objects

of interest, like the Sudoku grid and digits, are to be labelled as

object or foreground pixels and everything else is to be labelled

as background. Local or global thresholding may be used for

this purpose. Local thresholding is preferred over global as

local thresholding is more resistant to strong illumination

gradients or shadows [3].

The captured image may have noise and so noise removal

would be beneficial for extracting the correct information from

the image. Median filter can be applied to remove the salt and

pepper noise.

B. Finding the Sudoku grid’s outer box

Region Detection can be applied to find the various regions

in the image. For finding the image regions, edge detection

may first be applied: this will result in regions having only

boundary pixels. This would improve the results of the region

detection. Out of all the regions, the outer Sudoku grid box

would be the largest region. Therefore, by calculating the

number of pixels constituting the border of the region and

selecting the largest result would be one possibility for finding

the outer box. Another approach could be to calculate the area

of the regions and select the region with maximum area [1].

C. Finding box corners

Once the Sudoku box is detected, its four corners need to be

extracted. This is done so that the four corner pixels can be

used as reference to extract the 81 cells of the Sudoku puzzle.

Finding the box corners can be done using filters for detecting

corners or by using corner detection techniques like Harris

operator. However, due to inevitable skews induced in the

image, the box may have multiple corner points detected. In

this case, there may be a need to change the parameters of

corner detection method used or use a different technique for

corner detection. Alternatively, the algorithm developed by us

can be used. This algorithm accepts a list of corner pixels

detected on a box and selects the best four corner pixels

possible.

Figure 1

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1472 - 1475

1474
IJRITCC | March 2015, Available @ http://www.ijritcc.org

Initially, the corner pixels are sorted in ascending according

to their column values. Then, the list of corners is traversed

row-wise to find the optimal corners. A simple textual

representation for this algorithm to find the lower left corner is

given as follows:

1. START

2. Assign first value as the upper left corner

3. Assign second value as the lower left corner

4. Loop through all the corner pixels

i. If the current pixel is below the current lower

left corner by a certain threshold, then go

to step ii; else go to step iv

ii. If the current pixel value is to the left of, or

within the allowable tolerance limit, to

the right of the current lower left corner,

go to the next step; else go to step iv

iii. If the distance between the upper left and

current pixel is greater than the distance

between the upper left and current lower

left pixel, then set the current pixel as the

new lower left pixel

iv. If there are corners left, go to step i; else go

to step 5

5. END

The above algorithm finds the lower left corner by taking

reference of an estimated upper left corner. Using this value of

the lower left corner, the accurate value of the upper left corner

can be found. Similarly, by looping backwards appropriately,

we can find the upper right and lower right corner pixels.

D. Using the box corners to extract cells

Once the four corners of the box have been detected, these

four corner values can be used to divide the Sudoku box into 9

x 9 cells. The advantage of this approach is that it is easier to

find out which cell is placed where in the grid. Many of the

grids would be empty; hence it would be advantageous to apply

template matching on non-empty cells. Finding the average of

all pixel values inside a cell and taking those cells whose

average values are above a certain threshold would be one

method of selecting non-empty cells. However, if grid lines are

present inside an extracted cell, this would induce errors. A

better method would be to only consider the average of the

pixel values inside a central window so as to not allow the grid

lines lying at the edge of cells to induce errors.

E. Detecting the numbers present in each cell

Once we have extracted the cells from the image, we can

apply template matching on non-empty cells. The digits inside

the cells may be skewed due to improper placement of the

camera. Hence, robust template matching is required [4]. A set

of templates may be made as per the requirement. Multiple

sets of different templates fonts can also be used. If multiple

template sets are to be used, then template matching may need

to be applied on each and every cell using each and every set.

However, this may be avoided if while template matching, a

particularly high confidence value is encountered for a

particular digit, allowing us to recognize that particular digit.

In this case, we may proceed with only that template set for

the entire image and abandon processing using other template

sets.

F. Creating a digital Sudoku grid

Once all the digits have been identified, a data structure has

to be made to store the Sudoku grid. A two dimensional array

may be used to store the values conveniently, with zeroes

representing blank cells. Alternate representations can also be

implemented for particular cases, e.g. storing it as a single

dimensional array may be faster for an AI or a Sudoku solving

algorithm’s implementation to solve the puzzle [6].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1472 - 1475

1475
IJRITCC | March 2015, Available @ http://www.ijritcc.org

G. Solving the Sudoku puzzle

Once all the digits have been identified and an appropriate

data structure has been made, this is passed to the AI

component for solving. Sudoku is traditionally solved as a

Constraint Satisfaction Problem (CSP) using Backtracking

technique.

A novel mothed for solving Sudoku by using Backtracking

is considered for use [5]. Instead of backtracking over all 81

cells, permutations are made for all subgrids and CSP is applied

for these subgrids, in a predefined order. This reduces

redundant calculations, thus speeding up overall solving

process of the puzzle.

IV. CONCLUSION

We have proposed a modular architecture for solving a

Sudoku puzzle from an image. The advantage of following this

architecture is its modularity: if a module’s implementation

needs to be improved, it can be changed relatively easily, as

long as the input to the module and output from the module

remains unchanged. Such an architectural model would be

useful for developing applications which work on Sudoku

puzzles, as the modular nature allows for quickly customizing

the nature of the output supplied by simply changing

parameters or modules of the architecture.

Furthermore, the Sudoku solving component can also be

replaced with different modules, new algorithms can be rapidly

integrated into a software implementation following this

architecture and by modifying appropriate modules the

proposed architecture could also be used for researching and

solving NP-Complete problems.

V. FURTHER WORK

We now aim to find a concrete and efficient

implementation of the proposed architecture as well as apply

and compare various Sudoku solving techniques to find an

optimal Sudoku solver for the proposed architecture.

ACKNOWLEDGMENT

We would like to extend our sincerest gratitude to our

esteemed mentor for this project, Prof. Sai Deepthi Pabba.

REFERENCES

[1] Simha, P.J.; Suraj, K.V.; Ahobala, T.; “Recognition of numbers

and position using image processing techniqures for solving

Sudoku Puzzles”, Advances in Engineering, Science and

Management (ICAESM), 2012 International Conference on

Year: 2012 ; Pages: 1-5

[2] Aaronson, L.; "Sudoku Science", Spectrum, IEEE (Volume:43,

Issue: 2), Year: 2006, Pages: 16-17

[3] B. Kim ; D. Park; "Adaptive image normalisation based on block

processing for enhancement of fingerprint image"; Electronics

Letters (Volume: 38, Issue: 14), Year: 2002 ; Pages: 696-698

[4] W. Xu ; X. Huang ; X. Li ; Y. Zhann ; J. Zhang ; W. Zhang; "An

affine invariant interest point and region detector based on

Gabor filters", Control Automation Robotics & Vision

(ICARCV), 2010 11th International Conference on, Year: 2010,

pages: 878-883

[5] Maji, A.K.; Pal, R.K.; "Sudoku solver using minigrid based

backtracking", Advance Computing Conference (IACC), 2014

IEEE International, Year: 2014, Pges: 36-44

WEB REFERENCES

[6] Norvig, P.; "Solving Every Sudoku Puzzle",

http://norvig.com/sudoku.html, Last Accessed on: 1st April, 201

http://www.ijritcc.org/

