
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1302 – 1306

1302
IJRITCC | March 2015, Available @ http://www.ijritcc.org

A Technical Road Map from System Verilog to UVM

Ms. Deepa Kaith

Student- M.Tech ECE

Amity University Haryana

Gurgaon, Haryana

deepakaith@rediffmail.com

Dr. Janakkumar B. Patel

Professor (ECE)

Amity University Haryana

Gurgaon, Haryana

janakbpatel71@gmail.com

Mr. Neeraj Gupta

Assistant Professor (ECE)

Amity University Haryana

Gurgaon, Haryana

neerajsingla007@gmail.com

Abstract— As the fabrication technology is advancing more logic is being placed on a silicon die which makes verification more challenging

task than ever. More than 70% of the design cycle is used for verification. To improve the time to market we need a reusable verification

environment that detects all functional errors and avoid re-spin. Universal verification methodology was introduced to fulfill these goals. UVM

is well structured, reusable with little or no modifications, do not interfere with the device under test (DUT) and gives the speed of verification.

UVM is supported by all major simulator vendors, which was not in earlier methodologies. This methodology provides a standard unified

solution that compiles on all tools. This paper introduces the advantages of UVM over System Verilog, basic terminologies used in UVM and a

simple functional verification environment construction using UVM.

Keywords- Functional Verification, Universal Verification Methodology, DUT, System Verilog

__*****___

I. INTRODUCTION

As the design becomes large and concurrent, it becomes

difficult to verify the functionality of the design using

traditional testbenches. Thus, hardware verification languages

like system verilog are used for designing. More than 70% of

the time is spent on verification which also consumes more

resources than the design [1]. This arise the need for

developing modular, reusable and robust environment for

verification. Open Core Protocols (OCP) were introduced to

interface address communication between the functional units

of System on Chip. OCP provides independence from bus

protocols without sacrificing high performance access to on-

chip interconnects [6].

The Open Verification Methodology (OVM) developed as a

joint initiative of Mentor Graphics and the Cadence Design

System provides the first open and interoperable verification

methodology in the VLSI industry. Then Mentor’s AVM,

Mentor & Cadence’s OVM, Verisity’s eRM, and Synopsys’s

VMM-RAL were introduced [11].

Universal Verification Methodology (UVM) created by

Accellera based on OVM version 2.1.1 is methodology for

functional verification. UVM 1.0 was released on May17,

2010 [6]. Its Class Library provides the building blocks

needed to quickly develop well-constructed and reusable

verification components and test environments. It uses system

Verilog as its language an all three of the major simulation

vendors (Synopsys, Cadence and Mentor) support UVM today

which was not possible with earlier verification

methodologies.

Verification is the process for ensuring the specifications of

the design unit prior to mapping it into the chip. As the design

becomes large and complex there are more chances of bugs in

the design and that requires diverse verification which is done

at unit level, block level, subsystem level and at IP level.

Verification of a design is the most critical phase in chip

design cycle. System-Verilog is a special hardware

verification language that provides complex data types and

constructs to enable a higher level of abstraction and modeling

of complex data types [1]. Similarly a methodology is

applying a language in a planned and structured way for doing

verification of a design unit.

Universal Verification Methodology is an open source

methodology for using System-Verilog. It is designed mainly

for verification IP and testbench components so that

testbenches are reusable and verification code is more portable

and universal [2][3]. Each verification component follows a

consistent architecture and a complete set of elements for

simulating, checking and collecting functional coverage. The

verification environment developed through System-Verilog

may be different depending upon implementer, while that built

using UVM remains the same irrespective of the vendor.

II. SYSTEM VERILOG

SystemVerilog (SV) is a special digital hardware verification

language used for functional verification of the design. It is a

complete object-oriented programming language that includes

domain-specific features to support verification [3].

SystemVerilog provides constructs and can be used to

simulate the HDL design and verify them by high level test

case. SystemVerilog aims to provide a constrained random

generation, temporal assertion, and functional coverage

constructs. Despite the richness of the base SystemVerilog

language the implementer faces many challenges while using

System Verilog which limits its usefulness.

http://www.ijritcc.org/
mailto:deepakaith@rediffmail.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1302 – 1306

1303
IJRITCC | March 2015, Available @ http://www.ijritcc.org

A. Supports large features, lacks reusability

The SystemVerilog language reference manual defines more

than 200 reserved words, run over 1300 pages and it continues

to develop. Due to richness in features all the major vendors

provides a different subset of the System Verilog. It presents a

chief obstacle if for any commercial or technical reason the

user wants to transfer their program code from one vendor's

tools to another. Consequently, software developed using one

vendor's tools would be unusable with a different vendor's

implementation.

B. An open reusable verification IP

The creation of a high quality infrastructure for verification of

even one interrelated protocol is a difficult task. So, there is an

open active market for verification intellectual property (VIP)

in which third party supplier configures and maintains the

reusable verification components (VC). The market’s

successful operation requires that the VCs of various vendors

are interoperable in each user's design environment. For this a

common language to have a consistent form and a shared set

of rule regardless of the vendor is to be used.

C. An easily usable toolkit

In every project verification has a persistent set of problems

that is chosen to be solved off-the-shelf. System Verilog

provides a rich set of library functions with ready-to-use

execution of a common constraint [5]. It is thus, logical to

have verification-focused library that can be made accessible

by all verification engineers.

III. DISTRIBUTING TASKS AMONG A LANGUAGE AND A

LIBRARY

SystemVerilog is very large and it is irrationally difficult for a

designer to become familiar with all the features, drawbacks

and difficulties. If the language was smaller and the features

were added in the form of library support it would be

preferable. Also, it is difficult for this language to carry out

every specific requirement as the features are built-in and

cannot be extended by user.

A. Some features should be a part of core language

As the language is very large it seems better to remove some

core features and put them in the library. But there are few

domain-specific requirements which cannot be easily

implemented as a library function. Apart from this, a large

subset of System Verilog like switch and gate-level modeling

must be continued for backward compatibility support.

B. Some features should be a part of a library

If any language is powerful enough to allow some of the

functionality as an add-on library, it is unreasonable to add

that functionality to the core programming language [7].

System Verilog has some built-in functions like string and

array implementations that can be provided as library

functions without considerable loss of usability.

The balance between SystemVerilog and the UVM to provide

a designing language and a verification methodology is

broadly right. Methodology like major base classes and

synchronization should be provided in a library and not be

built into the language as exactly in UVM. This helps in the

growth of the toolkits like UVM and also to take the

advantages of the upgradation in the methodology and also

avoid the interference that would arise if the alterations were

introduced to the main language.

IV. COMPARISON OF SV AND UVM

 In UVM communication is done using ports and exports

and in system verilog mailboxes are used for the same.

 It takes less time to develop a testbench using UVM as

compared to System Verilog.

 UVM has many predefined functions that can be called

directly from the library. In system Verilog we have to

write our own logic codes for functions like copy, print,

pack etc.

 Many predefined macros are available in UVM which

are not available in System Verilog. eg `uvm_error,

`uvm_info etc.

 The testbench developed using UVM is interoperable

and robust.

V. UNIVERSAL VERIFICATION METHODOLOGY

The testbench designed to determine the correctness of the

DUT so that the design meeting the specification is confirmed.

The testbench creates constrained random stimulus, and

gathers functional coverage [7]. The testbench includes the

following steps given below

 Generate the stimulus

 Apply stimulus to the DUT

 Gather the response

 Observe the correctness

 Measure progress against overall functional coverage.

Fig.1 Basic Testbench Environment

A. Testbench architecture using UVM

A testbench in UVM can be divided into following three parts.

The Test,Top module comes first which instantiates the DUT

and interfaces for communication with main testbench

components. Then comes Testbench containing all UVM

verification components, sequencer and register model. The

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1302 – 1306

1304
IJRITCC | March 2015, Available @ http://www.ijritcc.org

third is Test scenario which defines the input stimulus that is

applied as a sequence in UVM. All components in these are

objects of classes which are inherited from class library. The

testbench contains Universal Verification Components used

for interfacing is a reusable verification IP. Virtual sequencer

class has all interfaces and register block handles for every IP

[3]. The uvm_test class defines the Test scenario, the

testbench for the DUT and is specified in the Test top.

Testcase creates an Environment object and defines the

required test specific functionality. Verification environment

contains the declarations of the virtual interfaces. These virtual

interfaces are made to point to the physical interfaces in the

Testcase which are declared in the top module [10].

Fig.2 Architecture of Testbench using UVM

B. UVM Class Library

This Class library provides the basic building blocks

needed for developing well-constructed and reusable VCs

and test environments [11]. Its library provides base class

and the facility to configure them. Base class falls into two

different categories: components or data. The

uvm_component provides a component class hierarchy

used to make permanent structures of the testbench. The

uvm_sequence_item provides data class used to design

transactions.

C. UVM Component Class

All the components in a UVM for verification infrastructure

are derived from the uvm_component class and it forms a

hierarchy which includes: sequencers, drivers, monitors,

scoreboards, environments, coverage collectors and tests.

Design Under Test

It is the design whose specifications need to be confirmed.

This is basically the RTL description in the designing

language. It tells the features and the functions of the design.

Sequencer

Sequencer is the entity on which the sequences will run. To

test DUT behavior, sequence of transaction needs to be

applied. Sequencer runs stimulus generation code and sends

sequence items down to driver whenever driver demands by it.

Driver

Driver is used to drive the DUT signals. It receives the

transaction object from the sequencer and maps the sequence

items to the signal level format required by the DUT interface.

It can generate read, write, address or data signal to be

transferred [6]. It is the active element of the verification logic.

Monitor

A monitor is the passive element of the verification

environment and is independent to an application. It scans the

DUT signal to and from the interface without driving them. It

assembles the pin information in the form of a packet and then

transfers it to scoreboard and test verification environment for

coverage information.

Agent

Agent is an abstract container. It encapsulates a driver, a

monitor and a sequencer. It has two modes of operation:

passive and active [1]. In active mode it drives the signal to the

DUT and thus, driver and sequencer are instantiated in active

mode. In passive mode it scans the DUT signals without

driving them. So, monitor is instantiated in passive mode.

Scoreboard

Scoreboard is build to check the response from the DUT

against the expected response. It is done by comparing them to

the Reference Model. It keeps the track of how many times the

response matched and how many times it failed.

Coverage collector

Coverage collector measures the verification process by

registering the kind of tests and results that can occur in a

Functional Coverage Model in advance. Both coverage

collectors and scoreboards code is usually highly application-

specific and less affected by the interface protocols and

timings [11].

Environment

It is at the top of the test bench architecture that assembles the

structure. It contains one or more agents, global scoreboard

and other components for measurement and checking

depending on design. It has parameters to be used for

restructuring and reusing for various scenarios.

Test

It is the top-level of the component hierarchy in which

interface instances and clock is generated. DUT instance is

formed and combined with the interface instance. Tests in

UVM are classes that are derived from an uvm_test class. The

test class enables configuration of the testbench and

verification components to determine the dynamic behavior of

the processes by using sequences.

D. UVM Data class

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1302 – 1306

1305
IJRITCC | March 2015, Available @ http://www.ijritcc.org

The UVM data domain in the verification environment is

represented by:

Data Items/Transaction

Data item are basically the input to the DUT. All the transfer

between different verification components in UVM is done

through transaction object. Data items are generated and

applied by top level Test and by randomizing the data item

object we can check corner cases and maximize the coverage

on the DUT.

Sequence items

They are the primary data objects that are passed between

components. Sequence items represent communication at an

abstract level.

Sequences

These are gathered from sequence items and to build a real set

of stimuli. Sequences create a specific pre-determined set of

randomized transactions. Sequences can run other sequences

and can also be layered providing transactions at various

levels.

E. The UVM Class Library Hierarchy

uvm_object is the base class for all components and sequences

in UVM. uvm_component class is derived from this class and

all uvm components extends the uvm_component class.

Transaction class is derived from uvm_object class and

sequence_item and sequence extends the uvm_transaction

class [2].

Fig.3 Partial UVM class library hierarchy

F. UVM Phases

Different from System Verilog, UVM simulation runs in

predefine phases. All the components used in the verification

environment need to implement the phase methods [6] and this

will be called in order as defined in fig.3.

build phase: It is used to instantiate the child and parent

component instance .

connect phase: It is used in child components to connect ports

to exports, exports to ports and ports to ports.

end_of_elaboration phase: It is used to provide fine-tuning in

the testbenches, to print the topology and for opening the files.

It indicates that verification environment has been completely

assembled.

start_of_simulation phase: It gives notification to DUT for

simulation and indicates that verification environment is

completely configured and is ready to start.

run phase: It is used to run simulation and is divided into

several run phases. It is the only phase using task to define as

this phase consumes more time. All other phases run in zero

simulation time use function.

extract phase: It is used to extract data from different points of

the verification environment. It will take all data from

scoreboard and extract it.

check phase: It checks any unexpected condition in

verification environment.

report phase: It provides the report of the particular performed

test .

final phase: It tells that all the phases are completed and that

simulation can be terminated.

VI. CONCLUSION

It is concluded that SystemVerilog lacks built-in reflection and

has only limited macro and function capabilities as compared

to UVM. Although there are a few SystemVerilog features that

could instead have been provided as library functions and

using SystemVerilog and UVM together, the balance between

library and core is broadly satisfactory. It is not easy to build a

robust and reusable verification environment. A proper

framework and support from the base classes is needed to

construct it. UVM provides a rich set of base class library and

features required for efficient verification. It gives an

environment that is robust, easy to understand and thus,

reusable by others vendors. Using UVM it requires less time to

generate a testbench as it offers higher level of abstraction. It

covers almost all the possible scenarios and corner cases and

thus, increases the functional coverage.

VII. REFERENCES

[1] Mulani P, Patoliya J, Patel H, Chauhan D. “Verification of I2C

DUT using SystemVerilog”, International Journal of Advanced

Engineering Technology, Vol. 1, No. 3, pp 130-134, Oct.-Dec

2010.

[2] Accellera Organization, “Universal Verification Methodology

(UVM) 1.1 Class Reference”, June 2011

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1302 – 1306

1306
IJRITCC | March 2015, Available @ http://www.ijritcc.org

[3] Young-Nam Yun, Jae-Beom Kim, Nam-Do Kim, Byeong Min,

“Beyond UVM for practical Soc Verification”, IEEE- 978-1-

4577-0711-7, pp 158-162, 2011.

[4] Neumann F, Sathyamurthy M. Kotynia L, “UVM-based

verification of smart-sensor systems”, International Conference

on Synthesis, Modeling, Analysis and Simulation Methods and

Applications to Circuit Design (SMACD)- pp. 21-24, June 2012.

[5] Jain A., Bonanno G., Gupta H. and Goyal A., “Generic system

verilog universal verification methodology based reusable

verification environment for efficient verification of image

signal processing IPs/SoCs”, International Journal of VLSI

design & Communication Systems (VLSICS),Vol. 3, No. 6, pp.

13-25, Dec 2012.

[6] Bhaumik Vaidya, Nayan Pithadiya “An Introduction to

Universal Verification Methodology” Journal of Information

Knowledge and Research in Electronics and Communication

Engineering-ISSN: 0975 – 6779, Volume – 02, Issue – 02, pp

420-424 Oct. 2013.

[7] Nimesh Prajapati, “How easier to built Basic Verification

Testbench using UVM compared to SystemVerilog”

International Journal of Engineering Research & Technology

(IJERT), ISSN: 2278-0181, Vol. 2 Issue 11, November – 2013

[8] Alexander W. Rath, Volkan Esen and Wolfgang Ecker, “A

Transaction-Oriented UVM-Based Library for Verification of

Analog Behavior”, IEEE- 978-1-4799-2816-3, pp 806-811,

2014

[9] Hung-Yi Yang, “Highly Automated and Efficient Simulation

Environment with UVM” IEEE -978-1-4799-2776-0, 2014

[10] T Tarun Kumar, CY Gopinath “Verification of I2C Master Core

using System Verilog-UVM” International Journal of Science

and Research (IJSR), ISSN - 2319-7064, Volume 3 Issue 6,

June 2014.

[11] Juan Francesconi, J. Agustin Rodriguez, Pedro M. Julian “UVM

Based Testbench Architecture for Unit Verification” ISBN: 978-

987-1907-86-1 IEEE Catalog Number CFP1454E-CDR, 2014.

http://www.ijritcc.org/

