
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321 - 8169
Volume: 3 Issue: 2 890 - 894

890
IJRITCC | February 2015, Available @ http://www.ijritcc.org

Survey on Parallel Computing and Performance Modelling in High Performance

Computing

Chaitali S.Jadhav

P.G Student M.E Computer science &

Engineering,

Shriram Institute of Eng. & Technology,

Paniv, Maharashtra, India

Email id:chaitalijadhav999@gmail.com

Dr. Deshmukh Pradeep K.

Principal Computer science &

Engineering

Shriram Institute of Eng. & Technology

Paniv, Maharashtra, India

Email id:-principalsietc@gmail.com

Prof. Yevale Ramesh S.

Head of CSE Dept.

ME(CSE)*

Email-id:ryevale33@gmail.com

Prof. Dhainje Prakash B

Vice Principal at Shriram institute,Paniv India

Abstract— The parallel programming come a long way with the advances in the HPC. The high performance computing landscape is shifting
from collections of homogeneous nodes towards heterogeneous systems, in which nodes consist of a combination of traditional out-of-order

execution cores and accelerator devices. Accelerators, built around GPUs, many-core chips, FPGAs or DSPs, are used to offload compute-
intensive tasks. Large-scale GPU clusters are gaining popularity in the scientific computing community and having massive range of
applications. However, their deployment and production use are associated with a number of new challenges including CUDA. In this paper, we
present our efforts to address some of the issues related to HPC and also introduced some performance modelling techniques along with GPU
clustering.

Keywords:Accelerators,GPU,HPC etc.

__*****___

I. INTRODUCTION

In the eras of eighty it was believed computer performance

was best improved by creating faster and more efficient

processors. This idea was challenged by parallel processing,

which in essence means linking together two or more

computers to jointly solve a computational problem. Since the

early 90s there has been an increasing trend to move away

from expensive and specialized proprietary parallel

supercomputers towards networks of computers. Parallel

computing mainly involving clusters. Clusters use intelligent

mechanisms for dynamic and network-wide resource sharing,

which respond to resource requirements and availability.

These mechanisms support scalability of cluster performance
and allow a exile use of workstations, since the cluster or

network-wide available resources are expected to be larger

than the available resources at any one node/workstation of the

cluster. These intelligent mechanisms also allow clusters to

support multiuser, time-sharing parallel execution

environments, where it is necessary to share resources and at

the same time distribute the workload dynamically to utilize

the global resources efficiently. Scalable computing clusters,

ranging from a cluster of PCs or workstations, to SMPs, are

rapidly becoming the standard platforms for high-performance

and large-scale computing. The main attractiveness of such
systems is that they are built using a orderable, low-cost,

commodity hardware fast LAN such as Myrinet, and standard

software components such as UNIX, MPI, and PVM parallel

programming environments. These systems are scalable, i.e.,

they can be tuned to available budget and computational needs

and allow efficient execution of both demanding sequential

and parallel applications.

II. RELATED DATA

In this paper we will summarize how the parallel computing is

beneficial with the advances in various tools available and

along with the high performance computing. And some

concepts in GPU and issues in HPC are of more considerable.

Firstly there are some advantages of parallel computing are

summarized here.

The important advantages of parallel computing are given

below.

1. Programmability

A set of ready-to-use solutions for parallelization will

considerably increase the productivity of the programmers: the

idea is to hide the lower level details of the system, to promote

the reuse of code, and relieve the burden of the application

programmer. This approach will increase the programmability

of the parallel systems.

2. Reusability

Reusability is a hot-topic in software engineering. The

provision of skeletons or templates to the application
programmer increases the potential for reuse by allowing the

same parallel structure to be used in different applications.

This avoids the replication of efforts involved in developing

and optimizing the code specific to the parallel template. In it

was reported that a percentage of code reuse rose from 30

percent up to 90 percent when using skeleton-oriented

programming. Since the programmer will have more time to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321 - 8169
Volume: 3 Issue: 2 890 - 894

891
IJRITCC | February 2015, Available @ http://www.ijritcc.org

spend in optimizing the applications itself, rather than on low-

level details of the underlying programming system.

3. Portability

Providing portability of the parallel applications is a problem

of paramount importance. It allows applications developed on
one platform to run on another platform without the need for

redevelopment.

4. Efficiency

There could be some connecting trade-offs between optimal

performance and portability/programmability. Both portability

and efficiency of parallel programming systems play an

important role in the success of parallel computing.

A.GPU

Generally the graphics processing unit (GPU) is a specialized
unit and highly parallel microprocessor designed to offload

and accelerate 2D or 3D rendering from the central processing

units. GPUs can be found in a wide range of systems, from

desktops and laptops to mobile phones and super computers

[12]. As we see the evolution of GPU hardware architecture

has gone from a very firstly the single core, fixed function

hardware pipeline implementation made solely for graphics, to

a set of highly parallel and programmable cores for more

general and easy purpose computation. The trend in GPU

technology has undoubtedly adding more programmability and

parallelism to a GPU core architecture that is ever evolving
towards a general purpose more CPU resembling core. A

graphics processing unit (GPU) is a dedicated parallel

processor optimized for parallel floating point computing

power found in a modern GPU is orders of magnitude higher

than a CPU [13]. Recently, NVIDIA refreshed their Fermi-

based gaming card, the GTX580,by adding one more SM and

offering a slightly higher memory bandwidth. Now, the

architecture of many-core GPUs are starting to look more and

more like multi-core, general purpose CPUs [14]. In that

respect, Fermi can essentially be thought of as a 16-core CPU

with 32-way hyper-threading per core, with a wide vector

width. The General Purpose GPU (GPGPU) had come a long
way .But GPGPU was far from easy back then, even for those

who know graphics programming languages such as OpenGL.

Developers had to map scientific calculations onto problems

that could be represented by triangles and polygons. GPGPU

was practically found more difficult to those who hadn't know

the latest graphics In 2003, a team of researchers leading by

Ian Buck unveiled Brook, firstly adopted programming model

to extend C with data parallel constructs. They have used the

concepts like streams, kernels and reduction operators, the

Brook compiler and runtime system exposed the GPU as a

general-purpose processor in a high- level language. Here the
most important and considerable thing was the programs

designed by Brook were very much easy to write than hand-

tuned GPU code, and they were faster seven times than similar

code which was existing currently. The massively parallel

hardware architecture and high performance of floating point

arithmetic and memory operations on GPUs make them

particularly well-suited to many of the same scientific and

engineering workloads that occupy HPC clusters, leading to

their incorporation as HPC accelerators. Beyond their appeal

as cost-effective HPC accelerators, GPUs also have the

potential to significantly reduce space, power, and cooling

demands, and reduce the number of operating system images

that must be managed relative to traditional CPU-only clusters

of similar aggregate computational capability. Although

successful use of GPUs as accelerators in large HPC clusters
can confer the advantages, they present a number of new

challenges in terms of the application development process job

scheduling and resource management, and security. After

evolution of parallel programming the concept of high -

performance computing evolved with GPUs. The high

performance computing landscape is shifting from collections

of homogeneous nodes towards heterogeneous systems, in

which nodes consist of a combination of traditional out-of-

order execution cores and accelerator devices. Large-scale

GPU clusters are gaining popularity in the scientific

computing community. However, their deployment and

production use are associated with a number of new
challenges. In this paper, we have introduced some of the

challenges with building and running GPU clusters in HPC

environments.

B. GPU CLUSTER PROGRAMMING

There are mainly three principal components used in a GPU

cluster:

Host nodes, GPUs, and interconnect. Since the expectation is

for the GPUs to carry out a substantial portion of the

calculations, host memory and network interconnect

performance characteristics need to be matched with the GPU

performance in order to maintain a well-balanced system. The

GPU Code Development Tools what we have are of two

abstraction levels as High abstraction subroutine libraries that

provide commonly used algorithms with auto generated or
self-contained GPU kernels, e.g., CUBLAS, CUFFT, and

CUDPP. And another is Low abstraction lightweight GPU

programming toolkits, in which the programmers write GPU

kernels entirely by themselves with no automatic code

generation, e.g., CUDA and Open CL.

1. CUDA C

CUDA is a scalable parallel programming model and software

model developed for parallel computing which is widely

deployed through thousands of applications and published

research papers and supported by an installed base of over
375 million CUDA-enabled GPUs in notebooks, workstations,

compute clusters and supercomputers. Currently, NVIDIA's

CUDA toolkit is widely used GPU programming toolkit which

are available. The CUDA programming model is focused

entirely on data parallelism, and provides convenient

lightweight programming abstractions which allow

programmers to express kernels in terms of a single thread of

execution, which is expanded at runtime to a collection of

blocks of tens of threads that cooperate with each other and

share resources, which expands further into an aggregate of

tens of thousands of such threads running on the entire GPU

device. Since CUDA uses language the work of packing and
unpacking GPU kernel parameters and specifying various

runtime kernel launch parameters is largely taken care of by

the CUDA compiler. This makes the host side of CUDA code

relatively uncluttered and easy to read. The CUDA toolkit

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321 - 8169
Volume: 3 Issue: 2 890 - 894

892
IJRITCC | February 2015, Available @ http://www.ijritcc.org

provides a variety of synchronous and asynchronous APIs for

performing host-GPU I/O, launching kernels, recording

events, and overlapping GPU computation and I/O from

independent execution streams. Let’s have a look over a basics

of CUDA Programming. It is consists of following hierarchy.

Software stack-

CUDA can scales up to 100s of cores and 1000s of parallel

threads. The focus is totally on parallel algorithms rather than

parallel computing. It can also be deployed on heterogeneous

systems (CPU+GPU).Now coming to CUDA Kernels in which

the application is running in parallel portion is executed on a

device known as kernels. Only one kernel can execute at a

time. But there may be many threads can execute on each

kernel. threads are very lightweight. CUDA kernels are

executed by an array of threads. The main feature of CUDA is

thread cooperation. The second part comes as the
Data management-The data management involves

management of memory by managing data. CPU and GPU

having separate memory spaces. Host codes which are

considered asCPU manages the device which is nothing but

GPU memory. It firstly allocates the memory or releases it.

Then it copies data to and from device. And at last applies to

the global device memory. Here are some functions which are

used in memory allocation and release like cudaMalloc,

cudaMemset and cudaFree.

Next and the last part of the hierarchy is Execution of codes

on GPU-

It is mainly kernel with C. Though there are some functions

which are having some restrictions like it cant access host

memory and having no any ststic variable.The function

arguments automatically copied from host to device.Kernels

designated by function qualifires like _global_

Fig 1: Data management in CUDA

.

2. Open CL

The Open CL programming model is based on the notion of a

host device, supported by an application API, and a number of

devices connected through a bus. These are programmed using

Open CL C. The host API is divided into platform and runtime
layers. Open CL C is a C-like language with extensions for

parallel programming such as memory fence operations and

barriers.Open CL is a newly developed industry standard

computing library that targets not only GPUs, but also CPUs

and potentially other types of accelerator hardware. Once the

Open CL kernels are compiled, the calling application must

manage these kernels through various handles provided by the

API. In practice, this involves much more code than in a

comparable CUDA-based application, though these operations

are fairly simple to manage. Most Open CL programs follow

the same pattern. Given a specific platform, select a device or

devices to create a context, allocate memory, create device-
specific command queues, and perform data transfers and

computations. Generally, the platform is the gateway to

accessing specific devices, given these devices and a

corresponding context, the application is independent of the

platform. Open CL uses all computational resources in the

system. Open CL applications works in a way that firstly the

serial code executes in a Host CPU Thread and after that

parallel code executes in many devices (GPU) threads across

multiple process elements. Open CL decomposes task into

work-items which defines N-dimensional computation

domain. And executes a kernel at each point in computation
domain. Open CL execution model consists of the application

runs on a Host which submits work to the Devices. Work-item

is the basic unit of work on an Open CL device. Kernel is the

code for a work-item which is basically a C function. Program:

Collection of kernels and other functions.The application runs

on a Host which submits work to the Devices. Many

operations are performed with respect to a given context there

are many operations that are specific to a device. For example,

program compilation and kernel execution are done on a per-

device basis. Performing work with a device, such as

executing kernels or moving data to and from the device’s
local memory, is done using a corresponding command queue.

A command queue is associated with a single device and a

given context.

 C .HPC

High performance computing as we see it in very simple way

is nothing but collection of computers, networks, algorithms

and environments to make such system usable. So very big

hardware architectures and high performance of floating point

arithmetic and memory operation make them suited on to
many same scientific and engineering workloads which

occupy HPC clusters. HPC is nothing but the aggregation of

computing powers which delivers higher performance than

typical machine, together. As we take a look over HPC it is

becoming more important and popular emerging trends for

national economics because HPC also called as

supercomputing, and which is linked to economic compressive

and competitive and scientific advances. HPC consisting of

some parallel architectures as Single instruction Single data

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321 - 8169
Volume: 3 Issue: 2 890 - 894

893
IJRITCC | February 2015, Available @ http://www.ijritcc.org

sequential machine, Multiple instruction Single data, Single

instruction multiple data, and Multiple instruction multiple

data.TESLA is an important concept in HPC which is a high-

end GPU oriented to general-purpose computing. HPC come

up with clusters. Cluster is nothing but all of those components

working together to form one big computer. The HPC cluster
needs several computers, nodes, one or more interconnected

networks and software that allows the nodes to communicate

with each other. HPC comes with communication overhead as

latency and bandwidth.

Latency- Start up time for each message transaction which is

in order of 1 µs.

Bandwidth- The rate at which the messages are transmitted

across the nodes /processors whose order is of 10 Gbits / Sec.

HPC having applications in the fields like simulation of
physical phenomenon like climate modelling and galaxy

formation. Also in field of Data mining in gene sequencing.

And also for visualisation purposes in reducing large data sets

into pictures for scientific understandings.

Performance issues in HPC can be summed up as following

equations: Speed up

Speed up = Time for sequential code

 Time for parallel code

 Sp = Ts 1 ≤ Sp ≤ P

 Tp

Efficiency

 Sp

Ep = 0 < Ep < P

 P

EP = 1 = > SP = P 100% Efficient

D. Performance modelling

There are mainly three models for performance modelling as

per our review are simulation, analytical modelling, machine

learning.

1. Simulation

A simulator is a system representation which able to map,

step-by-step, the behavior of the target system. Simulators are

widely used for carrying out performance studies of existing
hardware and software platforms, and also analyze platforms

that either do not exist, or are not available. The accuracy of

the output information provided by a simulator depends on

many factors, which vary upon number of details. Some

Simulators of GPU-based accelerators are accelerators are

GPGPU-Sim [8], [9] and Barra [10], [11]. Both are

simulations of NVIDIA and uses CUDA implementation.

2. Analytical Model

An analytical model is an abstraction of a system in the form

of a set of equations. These equations try to represent and

comprise all of the characteristics of the system.

3. ML Model

ML model is mainly designed to predict execution times of a

particular application on a particular hardware platform with a

specific configuration may take as training dataset the

execution times of applications running in the same or similar

hardware for a variety of different configurations. Generally

all these models are different from each other.

III. CONCLUSION

There are many emerging technologies in parallel

programming along with HPC. The appearance of new
computing devices and the design of new algorithms in

different fields of science and technology is forcing a fast

evolution of HPC. Designing and developing programs that

use currently available computing resources efficiently is not

an easy task. As stated in present-day parallel applications

differ from traditional ones, as they have lower instruction-

level parallelism, more challenging branches for the branch-

predictors and more irregular data access patterns. The goal of

these architectures is twofold: providing an unified address

space that eliminates the need to interchange data with an

external accelerator using a system interconnect and
improving power efficiency reducing the total transistor count.

A majority of the models discussed in this review have been

designed for CUDA, the most mature development

environment for GPGPU. However the vendor neutrality of

Open CL and its availability. For non-GPU accelerators is

increasing its adoption by HPC programmers. In the past,

Open CL tools produced less efficient codes than their CUDA

counterparts, but this is no longer true with the most current

versions of Open CL ,SDKs. So this paper is an overview of

all these concepts.

IV. ACKNOWLEDGMENT

The survey is based on IEEE Transaction paper under the title

A Survey of Performance Modelling and Simulation

Techniques for Accelerator-based Computing .published in

IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS. And still the work is going on

this topic.

V.REFERENCES

[1] N. Goswami, R. Shankar, M. Joshi, and T. Li, “Exploring

GPGPU workloads: Characterization methodology,
analysis and microarchitecture evaluation implications,” in
IEEE Int. Symp. on Workload Characterization (IISWC),
2010, pp. 1–10.

[2] N. Brunie, S. Collange, and G. Diamos, “Simultaneous
branch and warp interweaving for sustained GPU

performance,” SIGARCH Comput. Archit. News, vol. 40,
no. 3, pp. 49–60, 2012.I. S. Jacobs and C. P. Bean, “Fine
particles, thin films and exchange anisotropy,” in

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321 - 8169
Volume: 3 Issue: 2 890 - 894

894
IJRITCC | February 2015, Available @ http://www.ijritcc.org

Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271–350.

[3] R. Jain, The Art of Computer Systems Performance
Analysis. Wiley,1991.

[4] G. Wilson. Parallel Programming for Scientists and

Engineers. MIT Press, 1.Z. Fan, F. Qiu, A. Kaufman, S.
Yoakum-Stove, “GPU Cluster for High Performance
Computing,”, in Proc. ACM/IEEE conference on
Supercomputing, 2004.

[5] H, Takizawa and H. Kobayashi, “Hierarchical parallel
processing of large scale data clustering on a PC cluster
with GPU co-processing,” J. Supercomputer., vol. 36, pp.
219--234, 2006.

[6] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick,
S. Buijssen, M. Grajewski, and S. Tureka, “Exploring weak
scalability for FEM on a GPU-enhanced cluster,” Parallel
Computing, vol. 33, pp. 685-699, Nov 2007.

[7] M. Arora, S. Nath, S. Mazumdar, S. Baden, and D. Tullsen,
“Redefining the Role of the CPU in the Era of CPU-GPU
Integration,”Micro, IEEE, vol. 32, no. 6, pp. 4–16, 2012.

[8] “GPGPU-Sim Online Manual,” http://gpgpu-

sim.org/manual/ index.php5/GPGPU-Sim 3.x Manual/,
Apr. 2013.

[9] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,
“Analyzing CUDA workloads using a detailed GPU
simulator,” in IEEE Int. Symp. on Performance Analysis of
Systems and Software.ISPASS 2009., pp. 163–174.

[10] S. Collange, M. Daumas, D. Defour, and D. Parello,

“Barra: a parallel functional simulator for GPGPU,” in
IEEE Int. Symp. On Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS),
2010, pp. 351–360.

[11] “Barra GPU Simulator,” https://code.google.com/p/barra-
sim/, Apr. 2013.

[12] Wikipedia: Video Card. Retrieved November 2010. http
://en.wikipedia.org/wiki/Video_card

[13] Wikipedia: Graphics Processing Unit. Retrieved November
2010.http :/ / en . wikipedia . org / wik i / Graphics
processing uni t

[14] AMD Fusion whitepaper. 2010 AMD.http
://sites.amd.com/us/Documents/48423B_fusion_whitepaper
_WEB.pdf

http://www.ijritcc.org/
http://gpgpu-sim.org/manual/
http://gpgpu-sim.org/manual/
https://code.google.com/p/barra-sim/
https://code.google.com/p/barra-sim/

