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Abstract— The parallel programming come a long way with the advances in the HPC. The high performance computing landscape is shifting 
from collections of homogeneous nodes towards heterogeneous systems, in which nodes consist of a combination of traditional out-of-order 

execution cores and accelerator devices. Accelerators, built around GPUs, many-core chips, FPGAs or DSPs, are used to offload compute-
intensive tasks. Large-scale GPU clusters are gaining popularity in the scientific computing community and having massive range of 
applications. However, their deployment and production use are associated with a number of new challenges including CUDA. In this paper, we 
present our efforts to address some of the issues related to HPC and also introduced some performance modelling techniques along with GPU 
clustering. 
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I. INTRODUCTION 

In the eras of eighty it was believed computer performance 

was best improved by creating faster and more efficient 

processors. This idea was challenged by parallel processing, 

which in essence means linking together two or more 

computers to jointly solve a computational problem. Since the 

early 90s there has been an increasing trend to move away 

from expensive and specialized proprietary parallel 

supercomputers towards networks of computers. Parallel 

computing mainly involving clusters. Clusters use intelligent 

mechanisms for dynamic and network-wide resource sharing, 

which respond to resource requirements and availability. 

These mechanisms support scalability of cluster performance 
and allow a exile use of workstations, since the cluster or 

network-wide available resources are expected to be larger 

than the available resources at any one node/workstation of the 

cluster. These intelligent mechanisms also allow clusters to 

support multiuser, time-sharing parallel execution 

environments, where it is necessary to share resources and at 

the same time distribute the workload dynamically to utilize 

the global resources efficiently. Scalable computing clusters, 

ranging from a cluster of PCs or workstations, to SMPs, are 

rapidly becoming the standard platforms for high-performance 

and large-scale computing. The main attractiveness of such 
systems is that they are built using a orderable, low-cost, 

commodity hardware fast LAN such as Myrinet, and standard 

software components such as UNIX, MPI, and PVM parallel 

programming environments. These systems are scalable, i.e., 

they can be tuned to available budget and computational needs 

and allow efficient execution of both demanding sequential 

and parallel applications.  

  

II. RELATED DATA 

 

In this paper we will summarize how the parallel computing is 

beneficial with the advances in various tools available and 

along with the high performance computing. And some 

concepts in GPU and issues in HPC are of  more considerable. 

Firstly there are some advantages of parallel computing are 

summarized here. 

 

The important advantages of parallel computing are given 

below. 

 
1. Programmability 

A set of ready-to-use solutions for parallelization will 

considerably increase the productivity of the programmers: the 

idea is to hide the lower level details of the system, to promote 

the reuse of code, and relieve the burden of the application 

programmer. This approach will increase the programmability 

of the parallel systems. 

 

2. Reusability 

Reusability is a hot-topic in software engineering. The 

provision of skeletons or templates to the application 
programmer increases the potential for reuse by allowing the 

same parallel structure to be used in different applications. 

This avoids the replication of efforts involved in developing 

and optimizing the code specific to the parallel template. In it 

was reported that a percentage of code reuse rose from 30 

percent up to 90 percent when using skeleton-oriented 

programming. Since the programmer will have more time to 
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spend in optimizing the applications itself, rather than on low-

level details of the underlying programming system. 

 

3. Portability 

Providing portability of the parallel applications is a problem 

of paramount importance. It allows applications developed on 
one platform to run on another platform without the need for 

redevelopment. 

 

4. Efficiency 

There could be some connecting trade-offs between optimal 

performance and portability/programmability. Both portability 

and efficiency of parallel programming systems play an 

important role in the success of parallel computing. 

 

A.GPU 

 

Generally the graphics processing unit (GPU) is a specialized 
unit and highly parallel microprocessor designed to offload 

and accelerate 2D or 3D rendering from the central processing 

units. GPUs can be found in a wide range of systems, from 

desktops and laptops to mobile phones and super computers 

[12]. As we see the evolution of GPU hardware architecture 

has gone from a very firstly the single core, fixed function 

hardware pipeline implementation made solely for graphics, to 

a set of highly parallel and programmable cores for more 

general and easy purpose computation. The trend in GPU 

technology has undoubtedly adding more programmability and 

parallelism to a GPU core architecture that is ever evolving 
towards a general purpose more CPU resembling core. A 

graphics processing unit (GPU) is a dedicated parallel 

processor optimized for parallel floating point computing 

power found in a modern GPU is orders of magnitude higher 

than a CPU [13]. Recently, NVIDIA refreshed their Fermi-

based gaming card, the GTX580,by  adding one more SM and 

offering a slightly higher memory bandwidth. Now, the 

architecture of many-core GPUs are starting to look more and 

more like multi-core, general purpose CPUs [14]. In that 

respect, Fermi can essentially be thought of as a 16-core CPU 

with 32-way hyper-threading per core, with a wide vector 

width. The General Purpose GPU (GPGPU) had come a long 
way .But GPGPU was far from easy back then, even for those 

who know graphics programming languages such as OpenGL. 

Developers had to map scientific calculations onto problems  

that could be represented by triangles and polygons. GPGPU 

was practically found more difficult to those who hadn't know  

the latest graphics In 2003, a team of researchers leading by 

Ian Buck unveiled Brook, firstly  adopted programming model 

to extend C with data parallel constructs. They have used the 

concepts like streams, kernels and reduction operators, the 

Brook compiler and runtime system exposed the GPU as a 

general-purpose processor in a high- level language. Here the 
most important and considerable thing was the programs 

designed by Brook  were very much easy to write than hand-

tuned GPU code, and they were faster seven times than similar  

code which was existing currently. The massively parallel 

hardware architecture and high performance of floating point 

arithmetic and memory operations on GPUs make them 

particularly well-suited to many of the same scientific and 

engineering workloads that occupy HPC clusters, leading to 

their incorporation as HPC accelerators. Beyond their appeal 

as cost-effective HPC accelerators, GPUs also have the 

potential to significantly reduce space, power, and cooling 

demands, and reduce the number of operating system images 

that must be managed relative to traditional CPU-only clusters 

of similar aggregate computational capability. Although 

successful use of GPUs as accelerators in large HPC clusters 
can confer the advantages, they present a number of new 

challenges in terms of the application development process job 

scheduling and resource management, and security. After 

evolution of parallel programming the concept of high - 

performance computing evolved with GPUs. The high 

performance computing landscape is shifting from collections 

of homogeneous nodes towards heterogeneous systems, in 

which nodes consist of a combination of traditional out-of-

order execution cores and accelerator devices. Large-scale 

GPU clusters are gaining popularity in the scientific 

computing community. However, their deployment and 

production use are associated with a number of new 
challenges. In this paper, we have introduced   some of the 

challenges with building and running GPU clusters in HPC 

environments.  

 

B. GPU CLUSTER PROGRAMMING 
 

There are mainly three principal components used in a GPU 

cluster: 

Host nodes, GPUs, and interconnect. Since the expectation is 

for the GPUs to carry out a substantial portion of the 

calculations, host memory and network interconnect 

performance characteristics need to be matched with the GPU 

performance in order to maintain a well-balanced system. The 

GPU Code Development Tools what  we have are of two 

abstraction levels as High abstraction subroutine libraries that 

provide commonly used algorithms with auto generated or 
self-contained GPU kernels, e.g., CUBLAS, CUFFT, and 

CUDPP. And another is Low abstraction lightweight GPU 

programming toolkits, in which the programmers write GPU 

kernels entirely by themselves with no automatic code 

generation, e.g., CUDA and Open CL. 

 

1. CUDA C 

CUDA is a scalable parallel programming model and software 

model developed for parallel computing which is widely 

deployed through thousands of applications and published 

research papers and supported by an installed  base of over 
375 million CUDA-enabled GPUs in notebooks, workstations, 

compute clusters and supercomputers. Currently, NVIDIA's 

CUDA toolkit is widely used GPU programming toolkit which 

are available. The CUDA programming model is focused 

entirely on data parallelism, and provides convenient 

lightweight programming abstractions which allow 

programmers to express kernels in terms of a single thread of 

execution, which is expanded at runtime to a collection of 

blocks of tens of threads that cooperate with each other and 

share resources, which expands further into an aggregate of 

tens of thousands of such threads running on the entire GPU 

device. Since CUDA uses language the work of packing and 
unpacking GPU kernel parameters and specifying various 

runtime kernel launch parameters is largely taken care of by 

the CUDA compiler. This makes the host side of CUDA code 

relatively uncluttered and easy to read. The CUDA toolkit 
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provides a variety of  synchronous and asynchronous APIs for 

performing host-GPU I/O, launching kernels, recording 

events, and overlapping GPU computation and I/O from 

independent execution streams. Let’s have a look over a basics 

of CUDA Programming. It is consists of following hierarchy. 

 

Software stack- 

 

CUDA can scales up to 100s of cores and 1000s of parallel 

threads. The focus is totally on parallel algorithms rather than 

parallel computing. It can also be deployed on heterogeneous 

systems (CPU+GPU).Now coming to CUDA Kernels in which 

the application is running in parallel portion is executed on a 

device known as kernels. Only one kernel can execute at a 

time. But there may be many threads can execute on each 

kernel.  threads are very lightweight. CUDA kernels are 

executed by an array of threads. The main feature of CUDA is 

thread cooperation. The second part comes as the  
Data management-The data management involves 

management of memory by managing data. CPU and GPU 

having separate memory spaces. Host codes which are 

considered asCPU manages the device which is nothing but 

GPU memory. It firstly allocates the memory or releases it. 

Then it copies data to and from device. And at last applies to 

the global device memory. Here are some functions which are 

used  in memory allocation and release like cudaMalloc, 

cudaMemset and cudaFree. 

 

Next and the last part of the hierarchy is Execution of codes 

on GPU- 

 

It is mainly kernel with C. Though there are some functions 

which are having some restrictions like it cant access host 

memory and having no any ststic variable.The function 

arguments automatically copied from host to device.Kernels 

designated by function qualifires like _global_ 

 

 
Fig 1: Data management in CUDA 

 

. 

 

2. Open CL 

 

The Open CL programming model is based on the notion of a 

host device, supported by an application API, and a number of 

devices connected through a bus. These are programmed using 

Open CL C. The host API is divided into platform and runtime 
layers. Open CL C is a C-like language with extensions for 

parallel programming such as memory fence operations and 

barriers.Open CL is a newly developed industry standard 

computing   library that targets not only GPUs, but also CPUs 

and potentially other types of accelerator hardware. Once the 

Open CL kernels are compiled, the calling application must 

manage these kernels through various handles provided by the 

API. In practice, this involves much more code than in a 

comparable CUDA-based application, though these operations 

are fairly simple to manage. Most Open CL programs follow 

the same pattern. Given a specific platform, select a device or 

devices to create a context, allocate memory, create device-
specific command queues, and perform data transfers and 

computations. Generally, the platform is the gateway to 

accessing specific devices, given these devices and a 

corresponding context, the application is independent of the 

platform. Open CL uses all computational resources in the 

system. Open CL applications works in a way that firstly the 

serial code executes in a Host CPU Thread and after that 

parallel code executes in many devices (GPU) threads across 

multiple process elements. Open CL decomposes task into 

work-items which defines N-dimensional computation 

domain. And executes a kernel at each point in computation 
domain. Open CL execution model consists of the application 

runs on a Host which submits work to the Devices. Work-item 

is the basic unit of work on an Open CL device. Kernel is the 

code for a work-item which is basically a C function. Program:  

 

Collection of kernels and other functions.The application runs 

on a Host which submits work to the Devices. Many 

operations are performed with respect to a given context there 

are many operations that are specific to a device. For example, 

program compilation and kernel execution are done on a per-

device basis. Performing work with a device, such as 

executing kernels or moving data to and from the device’s 
local memory, is done using a corresponding command queue. 

A command queue is associated with a single device and a 

given context. 

 

 C .HPC  

 

High performance computing as we see it in very simple way 

is nothing but collection of computers, networks, algorithms 

and environments to make such system usable. So very big 

hardware architectures and high performance of floating point 

arithmetic and memory operation make them suited on to 
many same scientific and engineering workloads which 

occupy HPC clusters. HPC is nothing but the  aggregation of 

computing powers which delivers higher performance than 

typical machine, together. As we take a look over HPC it is 

becoming more important and popular emerging trends for 

national economics because HPC also called as 

supercomputing, and which is linked to economic compressive 

and competitive and scientific advances. HPC consisting of 

some parallel architectures as Single instruction Single data 
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sequential machine, Multiple instruction Single data, Single 

instruction multiple data, and Multiple instruction multiple 

data.TESLA is an important concept  in HPC which is a high-

end GPU oriented to general-purpose computing. HPC come 

up with clusters. Cluster is nothing but all of those components 

working together to form one big computer. The HPC cluster 
needs several computers, nodes, one or more interconnected 

networks and software that allows the nodes to communicate 

with each other. HPC comes with communication overhead as 

latency and bandwidth. 

 

Latency- Start up time for each message transaction which is 

in order of  1  µs. 

 

Bandwidth- The rate at which the messages are transmitted 

across the nodes /processors whose order is of 10 Gbits / Sec.  

 

HPC having applications in the fields like simulation of 
physical phenomenon like climate modelling and galaxy 

formation. Also in field of Data mining in gene sequencing. 

And also for visualisation purposes in reducing large data sets 

into pictures for scientific understandings. 

 

Performance issues in HPC can be summed up as following 

equations:  Speed up 

 

Speed up =   Time for sequential code 

                      Time for parallel code 
 
 

   Sp = Ts                            1 ≤ Sp ≤ P 

           Tp 

 

Efficiency 

                 Sp                                               

Ep  =                                 0 < Ep < P 

                  P 
 

EP   = 1  = > SP = P          100% Efficient  
 

 

D. Performance modelling  

 

There are mainly three models for performance modelling as 

per our review are simulation, analytical modelling, machine 

learning. 

 

1. Simulation 

 

A simulator is a system representation which able to map, 

step-by-step, the behavior of the target system. Simulators are 

widely used for carrying out performance studies of existing 
hardware and software platforms, and also analyze platforms 

that either do not exist, or are not available. The accuracy of 

the output  information provided by a simulator depends on 

many factors, which vary upon number of details. Some 

Simulators of GPU-based accelerators are accelerators are 

GPGPU-Sim [8], [9] and Barra [10], [11]. Both are 

simulations of  NVIDIA and uses CUDA implementation. 

2. Analytical Model 

 

An analytical model is an abstraction of a system in the form 

of a set of equations. These equations try to represent and 

comprise all of the characteristics of the system. 

 

3. ML Model 

 
ML model is mainly designed to predict execution times of a 

particular application on a particular hardware platform with a 

specific configuration may take as training dataset the 

execution times of applications running in the same or similar 

hardware for a variety of different configurations. Generally 

all these models  are different from each other. 

 

                        

III. CONCLUSION 

 

There are many emerging technologies in parallel 

programming along with HPC. The appearance of new 
computing devices and the design of new algorithms in 

different fields of science and technology is forcing a fast 

evolution of HPC. Designing and developing programs that 

use currently available computing resources efficiently is not  

an easy task. As stated in present-day parallel applications 

differ from traditional ones, as they have lower instruction-

level parallelism, more challenging branches for the branch-

predictors and more irregular data access patterns. The goal of 

these architectures is twofold: providing an unified address 

space that eliminates the need to interchange data with an 

external accelerator using a system interconnect and 
improving power efficiency reducing the total transistor count. 

A majority of the models discussed in this review have been 

designed for CUDA, the most mature development 

environment for GPGPU. However the vendor neutrality of 

Open CL and its availability. For non-GPU accelerators is 

increasing its adoption by HPC programmers. In the past, 

Open CL tools produced less efficient codes than their CUDA 

counterparts, but this is no longer true with the most current 

versions of Open CL ,SDKs. So this paper is an overview of 

all these concepts. 
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