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Abstract—In this paper, we compare the performance of two inner coding structures for concatenated codes in slow frequency-

hopping spread spectrum multiple-access communication systems. It is assumed that two outer code symbols are transmitted 

during a hop. The first structure consists of one inner codeword per one outer code symbol, while the second structure consists of 

one inner codeword per two outer code symbols. We analyze the overall block error probability in asymptotic region and show 

that the performance of the second scheme is superior to the first one. 
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I.  INTRODUCTION 

We consider a frequency-hopped (FH) spread-spectrum 
multiple-access (SSMA) communication system utilizing 
concatenated codes. The basic features of the FHSS 
communication system are discussed in [1], and the key 
characteristics of the concatenated codes are discussed in [2]. In 
FH SSMA systems, many users are desired to share a given 
bandwidth with a given error probability and errors occur 
primarily due to multiple access interference (MAI). To 
mitigate the MAI, a concatenated coding system is employed in 
this paper. We assume throughout this paper that two outer code 
symbols are transmitted during a hop. 

Concatenated codes form a class of error-correcting codes 
that are derived by combining an inner code and an outer code. 
They were conceived as a solution to the problem of finding a 
code that has both exponentially decreasing error probability 
with increasing block length and polynomial-time decoding 
complexity. Concatenated codes became widely used in space 
communications in the 1970s and recently adopted in Digital 
Television Terrestrial Broadcasting (DTTB) [3].  

The most natural choice for outer codes is Reed-Solomon 
(RS) codes in concatenated codes. Because the RS codes, being 
maximum-distance-separable codes, make highly efficient use 
of redundancy, and well suited to burst error correction [4]. We 
will use RS codes as outer codes throughout this work. The 
inner code we consider in this paper is error detecting or 
correcting binary block code. The inner code corrects ec errors 
and detects ed errors provided 2ec + ed < dmin, where dmin is the 
minimum distance of the inner code. When an error is detected, 
every symbol of the inner code is erased. There are, however, 
errors that are not detected nor corrected by the inner code, 
which results in errors at the output of the inner decoder. The 
purpose of the outer code is to correct the errors and erasures of 
the inner code. 

Since we assume that two outer code symbols are 
transmitted during a hop, we can consider two kind of inner 
coding structures in the concatenated code. The first structure 
consists of one inner codeword per one outer code symbol; we 

will call this (N, K)(N, K) scheme. And the second structure 
consists of one inner codeword per two outer code symbols; we 
will call this (2N, 2K) scheme. In this paper, we analyse the 
overall block error probability of the concatenated codes with 
(N, K)(N, K) and (2N, 2K) schemes in asymptotic region and the 
performance of two inner coding schemes. 

This paper is organized as follows. The system and the 
channel model are introduced in Section II. The (N, K)(N, K) 
and (2N, 2K) schemes are presented Section III and Section IV, 
respectively. The asymptotic analysis and numerical results are 
provided in Section V. Finally, a conclusion is made in Section 
VI. 

II. SYSTEM AND CHANNEL MODEL 

 
 

Figure 1.   A FH SSMA communication system  with I simultaneous users 

We consider a FH/SS packet radio network in which I users 
wish to communicate simultaneously over a common channel as 
shown in Figure 1. Each source generates messages, which are 
independent of other users. There are I separate encoders, one 
for each source. The  j

th
 encoder receives only the message from 

the jth source and produces a codeword (xj1, xj2,...,xjn), xji ∈ X, 
where X is a common input alphabet. At the jth receiver, the jth 
frequency dehopper, which has knowledge of the jth hopping 
pattern dehops the received signal. And the dehopped signal is 

demodulated to produce the output vector (yj1, yj2,...,yjn), yji ∈ 
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Y, where Y is a common output alphabet. Decoding is done 
independently at each of the I receiver and thus there is no 
cooperation between users on either the transmitting and the 
receiving side. Then individual channels can be characterized 

by P(yi |xj),  j ∈ {1, 2, … , I–1}, which is identical for all users 
[1][5].  

We assume that all FH transmitters adjust their timings of 
frequency changes (synchronous frequency hopping), and 
transmit two outer code symbols during a hop (slow frequency 
hopping). Thus, the multi-user interference level during a hop 
will remain constant throughout the hop. We assume that the 
hopping pattern is essentially random, which makes the 
interference during a hop independent of that of the other hop 
intervals. When I users transmit their packets simultaneously, it 

is probable that i+1, i∈{0, 1, 2, … , I-1}, users occupy a 
particular frequency slot simultaneously. If a frequency slot is 
occupied by i+1 users, the slot can be modeled by a binary 

symmetric channel (BSC) i with a channel crossover 

probability ip  given by  

1

2 1

2

i

i i
p




                             

On the other hand, the probability of the channel I  being 

chosen, i.e. the probability of i+1 users occupying the same 

frequency slot, 
h I iP , ( ) , is given by 

 
1
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Figure 2.   M-ary erasures and errors channel model 

At the receiver side, the demodulated data is first decoded 
with the inner decoder, and then the symbols from the inner 
decoder are decoded with the outer decoder. When an inner 
code is used for detecting errors, a super channel created by the 
inner code can be modeled by M-ary erasures and errors 
channel as shown in Figure 2. The purpose of the outer code is 
to correct the errors and erasures of the inner code. From the 
minimum distance property [4], the (n, k) Reed-Solomon code 
with bounded distance decoding can correct up to e = n – k 
erasures or up to t = (n–k)/2 errors. More generally, it can 
correct any combination of l erasures and m errors provided that 
2m + l does not exceed n – k. Thus the probability of overall 
block (an outer codeword) error, PE, for the memoryless 
channel is given by 

2
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III. (N, K)(N, K) INNER CODING SCHEME 

TABLE I.  THE KINDS OF EVENTS, JOINT PROBABILITIES AND NUMBER OF 

OCCURRENCES IN THE (N, K)(N, K) SCHEME 

Kinds of Events Joint Probability No. of Occurrences 

1 2d dE E
 1 2d dP

 
n1 

1 2ud udE E
 1 2ud udP

 
n2 

1 2c cE E
 1 2c cP

 
n3 

1 2d udE E
 1 2d udP

 
n4 

1 2ud dE E
 1 2ud dP

 
n5 

1 2d cE E
 1 2d cP

 
n6 

1 2c dE E
 1 2c dP

 
n7 

1 2ud cE E
 1 2ud cP

 
n8 

1 2c udE E
 1 2c udP

 
n9 

 
In the (N, K)(N, K) scheme considered in this section, the 

two inner decoder operate independently. Then the two outer 
symbols which have passed through the super channel, have 
joint probabilities and the number of occurrences are given 
Table I. In Table I, Ei represents that the event of an outer 

symbol is  ,  , ,i i d ud c where ,  ,  d ud c represent detected error, 

undetected error, and corrected error, respectively. 1 2i jE E  

denotes that the first outer symbol is iE  and the second one is 

jE ,  , , , .i j d ud c   ,   1,2,...,.9 ,kn k  express the number of 

events occurring. Hence the condition  
9

1
/ 2

kk
n n


  should be 

satisfied, since there are / 2n transmissions to send an outer 

codeword. The distribution of / 2n  outer symbol pairs, passed 
though the super channel created by the inner code, is given by 

multinomial. Then the overall block error probability, '

EP  is 

given by 

 
1 21 2 1 2

1 2 1 2 1 2

' 1 2 3

9
2

1

4 5 6 7 8 9                                     

!
2

!

n n n
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  
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

    

Where 

2 1 4 5 6 7

2 2 4 5 8 9

e n n n n n

t n n n n n

   

   
 .                    

In (5), the probabilities 
1 2

,  , { ,  ,  },i jP i j d ud c are derived in 

Appendix A. 

IV. (2N, 2K) INNER CODING SCHEME 

If we employ one inner codeword to limit two outer 
symbols, the super channel model created by the inner code is 
M-ary erasures and errors channel, which is the same as Figure 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                      ISSN: 2321 - 8169 
Volume: 3 Issue: 2                                                                                                                                                                             741 - 745 

_______________________________________________________________________________________________ 

743 
IJRITCC | February 2015, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

2. When errors are detected or corrected by the inner code, the 
inner codeword is decoded to corresponding two outer erasures 
or corrected symbols respectively. But if errors are undetected 
by the inner code, it causes two cases. One is that the inner 
codeword is decoded to two undetected outer symbols. The 
other is that it is decoded to an undetected (or corrected) and a 
corrected (or undetected) outer symbol respectively. We ignore 
the latter case, since the probability of the latter case occurring 
is much lower than that of the former. Thus we can show that 
the overall block error probability is given by  

   "
2

4 2

!
2

1 .

! ! !
2

n
t ee t

E d ud d ud

t e n k

n

P P P P P
n

t e t e
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 
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 

  
 

     

 In (7), dP , udP  and cP  can be derived from total probability 

theorem [6].  

V. NUMERICAL RESULTS AND DISCUSSIONS 

It is very difficult to compare equation (5) with equation (7) 

in a finite region, since we must find all combination of kn , 

1, 2, . . . , 9,k   to calculate the overall block error probability '

EP  

in equation (5). It is a very time consuming job in computer 
computation. Hence we compare these two inner coding 
schemes in asymptotic region.  

From Weak Law of Large Numbers [6], it can be shown that 
(see Appendix B)  
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where 

" 2d udS P P                                   

Then we compare '1 S  with "1 S , which are the 
maximum achievable outer code rates for error free 

communication in asymptotic region. We have plotted '1 S  

and "1 S  as a function of simultaneously active users I for N = 
15, 20, 30 in Figure 3, 4, 5, respectively. We assume outer block 
length n is 2048, which is large enough to simulate asymptotic 
region. Inner message length, K, is, therefore, 11. 

We can see several facts from Figure 3, Figure 4, and Figure 
5. First, we can see that the (2N, 2K) scheme gives better 
performance than the (N, K)(N, K) scheme when N =15. 

Particularly, as the channel traffic (number of users 
simultaneously accessing a given frequency slot) gets larger, the 
performance differences between (2N, 2K) and (N, K)(N, K) 
scheme becomes more significant. But we can also note that 
there is no performance differences when N = 20 and N = 30. 
This means that the shorter the redundancy of the inner code is, 
the better the performance of (2N, 2K) scheme is than (N, K)(N, 
K) scheme. 

 
 

 
Figure 3.  Maximum achievable outer code rate by varying I.  (q = 25, n = 2

K 
= 

2048, K = 11, N = 15) 

 

 
Figure 4.  Maximum achievable outer code rate by varying I.  (q = 25, n = 2

K 
= 

2048, K = 11, N = 12) 
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Figure 5.  Maximum achievable outer code rate by varying I.  (q = 25, n = 2

K 
= 

2048, K = 11, N = 30) 

VI. CONCLUSIONS 

In this paper, we considered two kinds of inner coding 
structures of concatenated codes for slow FH/SS systems where 
particularly two outer code symbols are transmitted during a 
hop. The first structure consists of one inner codeword per one 
outer code symbol, and second structure consists of one inner 
codeword per two outer code symbols. We investigated the 
overall block error probability of two schemes in asymptotic 
region and showed that the performance of the second scheme 
is superior to the first one. 

APPENDIX A 

In this appendix, we derive the probabilities 

1 2
,  , { ,  ,  },i jP i j d ud c in (5). Let us define  
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where we assume that two received inner codewords are 
independent. This assumption can be proved as follows. 

Based on the memoryless channel, we have input vector 

1 2 1 1 2( ) ( , , )NX X x x x X  and output vector 1 2( )Y Y Y  

1 2 2( , , , ).Ny y y   From the definition, 

2

1

( ) ( ),
N

i i
i

P P y x


Y X                              

which implies the channel crossover probability, p, is time 
invariant and independent from bit to bit. Then (15) is written 
by 

  
2

1 1 1 1
1

1 1 2 2

( ) ( ) ( )

             ( ) ( ).

N N

i i N

P P y x P y x

P Y X P Y X

 

  



Y X
                

Therefore, each output symbols depends only on corresponding 
each input symbols, indicating that we can assume two input 

symbols 1 2,  X X are independent. 

APPENDIX B 

In this appendix, we first provide the proof of (8). Let 

random variables / 2,  i nX Y and / 2nZ be defined as 

if the two received symbols        
0,

are both corrected

if one received symbol is
1,

corrected and the other is erased 

if the two received symbols are   

2, both erased or one is corrected 

and the other

iX 

 is in error 

if one received symbol is erased  
3,

and the other is in error

if the two received symbols         
4,

are both in error


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
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
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/ 2

/ 2
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n i
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Y X
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   ,                         

and   

/ 2 / 2
/ 2

/ 2

[ ]
  ,

[ ]

n n
n

n

Y E Y
Z

Var Y


                           

respectively. In (19), / 2[ ]nE Y and Var / 2[ ]nY are the mean and the 

variance of / 2nY . Then / 2nY  is the total number of erasures and 

twice the number of errors in the received outer codeword. 

Therefore the overall block error probability, '

EP , is given by 

 ' / 2
/ 2 2(1 )

/ 2

n
E n

Y
P P Y n k P r

n

 
      

 
.         

From the weak law of large number [6],  

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                      ISSN: 2321 - 8169 
Volume: 3 Issue: 2                                                                                                                                                                             741 - 745 

_______________________________________________________________________________________________ 

745 
IJRITCC | February 2015, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

 / 2lim 0
/ 2

n
i

n

Y
P E X

n




 
   

 
                       

For any ,  this implies  

 

 
/ 2

2(1 )

1, [ ]
 1

2
lim 2(1 )

/ 2 2(1 )

0, [ ]
 1

2

i

i

n

n
i

i

r E X

E X
r

Y
P r

n r E X

E X
r





   


 
      

    
    


     

  

  .    

Therefore, we get  
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Here we assume , 1,  2, ,  / 2,iX i n are the independent and 

identically distributed random variable. Then, from central limit 
theorem [6] 
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Also it can be also shown that 
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We now have 
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Combining (23), (25), and (26) yields 
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Following again the above procedure, the proof of (10) is 
straightforward.  
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