
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 641 - 645

641
IJRITCC | February 2015, Available @ http://www.ijritcc.org

 Type Ahead Search in Database using SQL

Salunke Shrikant Dadasaheb
Dattakala Group of Institutions, Faculty of Engineering

University of Pune

shrikantsalunke25@gmail.com

Prof. Bere Sachin Sukhadeo
Dattakala Group of Institutions, Faculty of Engineering

University of Pune

sachinbere@gmail.com

Abstract— A type ahead search system computes answers on the fly as a user types in a keyword query character by character. We are going to
study how to support type ahead search on data in a relational DBMS. We focus on how to help this type of search using the SQL. A prominent
task that tests is how to influence existing database functionalities to meet the high performance to achieve an interactive speed. We extended the

efficient way to the case of fuzzy queries, and suggested various techniques to improve query performance. We suggested incremental
computation method to answer multi keyword queries, and calculated how to support first N queries and incremental updates. Our experimental
results on large and real data sets showed that the proposed techniques can enables DBMS systems to support search as you type on large tables.

Keywords— Fuzzy search, DBMS, SQL, Keyword query, incremental computation.

__*****___

I. INTRODUCTION

Any data system today improves user search experiences

by providing direct feedback as users formulate search

queries. Most search engines and on-line search forms

support motor vehicle completion, that shows urged queries

or maybe answers “on the fly” as a user sorts in a very
keyword question character by character. For instance, take

under consideration the net search interface at Netflix, one

that permits a user to go looking for moving picture info. If

user sorts in a very partial question “mad,” the system shows

movies with a title matching this keyword as a prefix, like

“Madagascar” and “Mad Men.” the moment feedback helps

the user not solely in formulating the question, however

conjointly in understanding the underlying knowledge. This

sort of search is usually referred to as type ahead search or

type-ahead search.

Since several search systems store their info in very
backend relative software, an issue arises naturally: a way to

support type ahead search on the info residing in a very

DBMS? Some databases like Oracle and SQL server already

support prefix search, and that we may use this feature to try

and do type ahead search. However, not all databases give

this feature. For this reason, we have a tendency to study

new ways which will be employed in all databases. One

approach is to develop a separate application layer on the

info to construct indexes, and implement algorithms for

respondent queries. Whereas this approach has the

advantage of achieving a high performance, its main

disadvantage is duplicating knowledge and indexes, leading
to extra hardware prices. Another approach is to use info

extenders, like DB2 Extenders, Informix Data Blades,

Microsoft SQL Server Common Language Runtime (CLR)

integration, and Oracle Cartridges, which permit developers

to implement new functionalities to software. This approach

isn't possible for databases that don't give such Associate in

nursing extender interface, like MySQL. Since it has to

utilize proprietary interfaces provided by info vendors, an

answer for signal info is might not be transportable to

others. Additionally, Associate in nursing extender-based

answer, particularly those enforced in C/C++, may cause

serious irresponsibleness and security issues to info engines.

A main question once adopting this enticing plan is: Is it

possible and scalable? Specifically, will SQL meet the high

performance demand to implement Associate in nursing

interactive search interface? Studies have shown that such

Associate in Nursing interface needs every question be

answered among a hundred milliseconds [38]. Software

systems don't seem to be specially designed for keyword

queries, creating it more difficult to support type ahead
search. As we are going to see later during this paper, some

vital practicality to support type ahead search needs be part

of operations that might be rather high-priced to execute by

the question engine.

The quantifiability becomes even additional unclear if we

wish to support 2 helpful options in type ahead search,

particularly multi keyword search and fuzzy search. In multi

keyword search, we have a tendency to permit a question

string to possess multiple keywords, and notice records that

match these keywords, even though the keywords seem at

completely different places. As an example, we have a
tendency to permit a user UN agency sorts in a very

question “privacy mining rack” to search out a publication

by “Rakesh Agrawal” with a title as well as the keywords

“privacy” and “mining,” even supposing these keywords are

at completely different places within the record. In fuzzy

search, we wish to permit minor mismatches between

question keywords and answers. As an example, a partial

question “aggraw” ought to notice a record with a keyword

“Agrawal” despite the erratum within the question. Whereas

these options will additional improve user search

experiences, supporting them makes it even more difficult to

try and do type ahead search within software systems.
In this paper we have a tendency to study a way to

support type ahead search on software systems victimization

the native command language (SQL). In different words, we

wish to use SQL to search out answers to a pursuit question

as a user sorts in keywords character by character. Our goal

is to utilize the inherent question engine of the info system

the maximum amount as attainable. During this method, we

will scale back the programming efforts to support type

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 641 - 645

642
IJRITCC | February 2015, Available @ http://www.ijritcc.org

ahead search. Additionally, the answer developed on one

info victimization commonplace SQL techniques is

transportable to different databases that support constant

commonplace. Additionally to the present to support prefix

matching, we have a tendency to planned solutions that use

auxiliary tables as index structures and SQL queries to
support type ahead search. We have a tendency to extend the

techniques to the case of fuzzy queries, and planned varied

techniques to boost question performance. We have a

tendency to planned incremental-computation techniques to

answer multi-keyword queries, and studied a way to support

first-N queries and progressive updates. Our experimental

results on giant, real knowledge sets showed that the

planned techniques will modify software systems to support

type ahead search on giant tables.

II. PROPOSED APPROACH FRAMEWORK AND DESIGN

Problem Definition

Most search engines and on-line search forms support

motor vehicle completion, which provides instructed queries

or perhaps answers “on the fly” as user varieties during a

keyword question character by character. Since several

search systems store their data during a backend relative

package, a matter arises naturally: the way to support type

ahead search on the information residing during a DBMS?

Some databases like Oracle and SQL server already support

prefix search, and that we may use this feature to try and do

type ahead search. However, not all databases give this

feature. For this reason, we have a tendency to study new

ways that may be utilized in all databases. One approach is

to develop a separate application layer on the information to

construct indexes, and implement algorithms for respondent

queries.

In associate degree existing systems don't seem to be

specially designed for keyword queries, creating it tougher

to support type ahead search. SQL meet the high

performance demand to implement associate degree

interactive search interface. Some necessary practicality to

support type ahead search needs be a part of operations that

can be rather valuable to execute by the question engine.

Proposed System Architecture

 In this we are presenting the new architecture which is

based on incremental based search with fuzzy methodology.

Based on these terminologies below is proposed architecture

in figure 1.

In this paper, we develop various methods to address

changes. We propose two types of methods to support type

ahead search for single-keyword queries, based on whether

they require additional index structures stored as auxiliary

tables.

III. NO-INDEX METHODS:

 A clear-cut thanks to support type ahead search is to

issue associate degree SQL question that scans every record

and verifies whether or not the record is a solution to the

question. There are a unit 2 ways that to try and do the

checking: 1) vocation User-Defined Functions (UDFs). We

will add functions into databases to verify whether or not a

record contains the question keyword; and 2) victimization

kind predicate. Databases give a LIKE predicate to permit

users to perform string matching. We will use kind predicate

to examine whether or not a record contains the question

keyword. This technique might introduce false positives,

e.g., keyword “publication” contains the question string

“ic,” however the keyword doesn't have the question string

“ic” as a prefix. We will take away these false positives by

vocation UDFs. the 2 no-index ways would like no extra

house, however they will not scale since they have to scan

all records within the table.

Fig 1: Proposed system architecture

 Index-Based Methods:

 In this section, we have a tendency to propose to create

auxiliary tables as index structures to facilitate prefix search.

Some databases like Oracle and SQL server already support

prefix search, and that we might use this feature to try to

prefix search. However, not all databases give this feature.

For this reason, we have a tendency to develop a

replacement methodology that may be employed in all

databases. Additionally, our experiments in Section eight.3

show that our methodology performs prefix search

additional expeditiously.

 Inverted-index table:

Given a table T, we tend to assign distinctive ids to the

keywords in table T, following their alphabetical order. We

tend to produce AN inverted-index table IT with records

within the type hkid; ridi, wherever child is that the id of a

keyword and disembarrass is that the id of a record that

contains the keyword. Given an entire keyword, we will use

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 641 - 645

643
IJRITCC | February 2015, Available @ http://www.ijritcc.org

the inverted-index table to search out records with the

keyword.

 Prefix table:

Given a table T, for all prefixes of keywords in the table, we

build a prefix table PT with records in the form hp; lkid;

ukidi, where p is a prefix of a keyword, lkid is the smallest

id of those keywords in the table T having p as a prefix, and

ukid is the largest id of those keywords having p as a prefix.

An interesting observation is that a complete word with p as

a prefix must have an ID in the keyword range =lkid; ukid_,

and each complete word in the table T with an ID in this

keyword range must have a prefix p.

IV. WORK DONE

In this section we represent the input, result of practical
work and environment used for implementation. Until now

we implemented simple keyword search, fuzzy keyword

search, index based search etc

Multi keyword queries: We implemented six methods for

multi keyword queries:

1. using UDF;

2. using the LIKE predicate;

3. using full-text indexes and UDF (called “FI+UDF”);

4. using full-text indexes and the LIKE predicate

(called “FIþLIKE”);

5. using the inverted-index table and prefix table

(IPTables);
6. using the word-level incremental method (called

“IPTablesþ”)

4.1 Input Dataset:
 For this implementation, we use the dataset DBLP.SQL

which contains information related to keywords.

4.2 Hardware and Software Used

4.2.1 Hardware Configuration
- Processor - Pentium IV 2.6 GHz

- RAM - 512 mb dd ram
- Monitor - 15” color

- Hard Disk - 20 GB

- Key Board - Standard Windows Keyboard

4.2.2 Software Configuration
- Operating System - Windows XP/7

- Programming Language - Java

- Database - MySQL

- Tool - Net beans

4.3 Mathematical Model

T- Relational Table

R- Content of Record

W – Set of tokenized table

Aj – Attribute

A1,A2,A3,……..,Al.

R={r1,r2,…….,rn}

Be the collection of records in T, and ri. Aj denote the

content of record ri in attribute Aj. Let W be the set of

tokenized keywords in R.

R={r1,r2,……r10}.

A1=title,

A2=authors

A3=booktitle

A4=year

r3[booktitle]=”sigmod”.
Without loss of generality, each tokenized keyword in the

data set and queries is assumed to use lower case characters.

W= {privacy, sigmod, sigir,….}.

T – Threshold

The edit distance between two strings s1 and s2, denoted

by Ed (s1, s2), is the minimum number of single-character

edit operations (i.e., insertion, deletion, and substitution)

needed to transform s1 to s2. For example, (correlation;

correlation) 1 an n d (correlation, correlation) 2. Given an

edit-distance threshold , we say a prefix
p of a keyword in W is similar to the partial keyword w .We

say a keyword d inW is similar to the partial keyword w if d

has a prefix p such that . Fuzzy search
finds the records with keywords similar to the query

keywords.

UDFs to support fuzzy search. We use a UDF

 that takes a keyword w and a string s as two

parameters, and returns the minimal edit distance between w

and the prefixes of keywords in s.

As r10 contains a prefix “pub” with edit distance of 1 to the

query.

We can improve the performance by doing early termination

in the dynamic programming computation using an edit-

distance threshold (if prefixes of two strings are not similar

enough, then the two substrings cannot be similar), and

devise a new UDF . If there is a

keyword in string s having prefixes with an edit distance to

w within T, PEDTH returns true. In this way, we issue an

SQL query that scans each record and calls UDF PEDTH to

verify the record.

S1 - String

S2 – String

Q-

Substrings with length q. Let denote the set4 of its

q-grams and denote the size of . For

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 641 - 645

644
IJRITCC | February 2015, Available @ http://www.ijritcc.org

example, for “pvldb” and “vldb,” we have

db}

. Strings s1 and s2 have
an edit distance within threshold T if

Where js1j and js2j are the lengths of string s1 and s2,

respectively. This technique is called count filtering.

4.4 Results of Practical Work

 Here fig 2 shows framework of search as you type, in this

initially user has to enter keywords to search related terms
from database, if user not select any technique then system

give results based on simple search.

Fig 2: Framework of system

Fig 3: Result

Fig 4: Screenshot3

 Fig 5 shows result of fuzzy index based search, here we
combine fuzzy and index based methods to get better and

accurate results from system.

 Fig 5 Graph Result

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of using SQL to

support type ahead search in data bases. We focused on the
challenge of how to leverage existing DBMS functionalities

to meet the high-performance requirement to achieve an

interactive speed. To support prefix matching, we proposed

solutions that use auxiliary tables as index structures and

SQL queries to support type ahead search. We extended the

techniques to the case of fuzzy queries, and proposed

various techniques to improve query performance.

We suggested incremental-computation techniques to

answer multi keyword queries, and studied how to support

first-N queries and incremental updates. Our experimental

results on large, real data sets showed that the proposed

techniques can enable DBMS systems to support type ahead
search on large tables.

REFERENCES

Main Reference paper:
 S. Agrawal, K. Chakrabarti, S. Chaudhuri, and V. Ganti,

“Scalable Ad-Hoc Entity Extraction from Text Collections,”
Proc. VLDB Endowment, vol. 1, no. 1, pp. 945-957, 2008.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 641 - 645

645
IJRITCC | February 2015, Available @ http://www.ijritcc.org

 S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A System

for Keyword-Based Search over Relational Data Bases,” Proc.
18th Int’l Conf. Data Eng. (ICDE ’02), pp. 5-16, 2002.

 A. Arasu, V. Ganti, and R. Kaushik, “Efficient Exact Set-

Similarity Joins,” Proc. 32nd Int’l Conf. Very Large Data
Bases (VLDB ’06), pp. 918-929, 2006.

 H. Bast, A. Chitea, F.M. Suchanek, and I. Weber, “ESTER:

Efficient Search on Text, Entities, and Relations,” Proc. 30th
Ann. Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR ’07), pp. 671-678, 2007.

 H. Bast and I. Weber, “Type Less, Find More: Fast

Autocompletion Search with a Succinct Index,” Proc. 29th
Ann. Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR ’06), pp. 364-371, 2006.

 H. Bast and I. Weber, “The Complete Search Engine:

Interactive, Efficient, and Towards IR & DB Integration,”
Proc. Conf. Innovative Data Systems Research (CIDR), pp. 88-

95, 2007.

 R.J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all Pairs
Similarity Search,” Proc. 16th Int’l Conf. World Wide Web

(WWW ’07), pp. 131- 140, 2007.

 G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.

Sudarshan, “Keyword Searching and Browsing in Data Bases
Using Banks,” Proc. 18th Int’l Conf. Data Eng. (ICDE ’02),
pp. 431- 440, 2002.

 K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin, “An

Efficient Filter for Approximate Membership Checking,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD
’08), pp. 805- 818, 2008.

 S. Chaudhuri, K. Ganjam, V. Ganti, R. Kapoor, V. Narasayya,

and T. Vassilakis, “Data Cleaning in Microsoft SQL Server
2005,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’05), pp. 918-920, 2005.

 S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust

and Efficient Fuzzy Match for Online Data Cleaning,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD
’03), pp. 313- 324, 2003.

 S. Chaudhuri, V. Ganti, and R. Kaushik, “A Primitive

Operator for Similarity Joins in Data Cleaning,” Proc. 22nd
Int’l Conf. Data Eng. (ICDE ’06), pp. 5-16, 2006.

 S. Chaudhuri, V. Ganti, and R. Motwani, “Robust

Identification of Fuzzy Duplicates,” Proc. 21st Int’l Conf. Data
Eng. (ICDE), pp. 865- 876, 2005.

 S. Chaudhuri and R. Kaushik, “Extending Autocompletion to
Tolerate Errors,” Proc. 35th ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’09), pp. 433-439, 2009.

 B.B. Dalvi, M. Kshirsagar, and S. Sudarshan, “Keyword
Search on External Memory Data Graphs,” Proc. VLDB

Endowment, vol. 1, no. 1, pp. 1189-1204, 2008.

 B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin,
“Finding Top-K Min-Cost Connected Trees in Data Bases,”

Proc. IEEE 23rd Int’l Conf. Data Eng. (ICDE ’07), pp. 836-
845, 2007.

 L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas, S.

Muthukrishnan, and D. Srivastava, “Approximate String Joins
in a Data Base (Almost) for Free,” Proc. 27th Int’l Conf. Very
Large Data Bases (VLDB ’01), pp. 491-500, 2001.

 M. Hadjieleftheriou, A. Chandel, N. Koudas, and D.

Srivastava, “Fast Indexes and Algorithms for Set Similarity
Selection Queries,” Proc. IEEE 24th Int’l Conf. Data Eng.
(ICDE ’08), pp. 267-276, 2008.

 M. Hadjieleftheriou, N. Koudas, and D. Srivastava,

“Incremental Maintenance of Length Normalized Indexes for
Approximate String Matching,” Proc. 35th ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’09), pp. 429-440,
2009.

 M. Hadjieleftheriou, X. Yu, N. Koudas, and D. Srivastava,

“Hashed Samples: Selectivity Estimators for Set Similarity
Selection Queries,” Proc. VLDB Endowment, vol. 1, no. 1, pp.
201-212, 2008.

http://www.ijritcc.org/

