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Abstract—Graph isomorphism being an NP problem, most of the systems that solves the graph isomorphism are constrained with some classes 

of the graph, and do not work for all types of graphs in polynomial time. We exploited the two particle quantum walks on different classes of 

graphs including strongly regular graphs which are co-spectral in nature. We simulated two particle quantum walks on graph using distributed 

algorithm.  

To show the effectiveness of the technique, we applied it to the large graphs derived from images using Delauney triangulation. The results show 

a remarkable speedup for large data. The two-particle quantum walks is implemented in map-reduce programming technique which scales the 

computation as the cluster get scaled to account Big data. We checked the isomorphism of the graphs with upto 100 vertices in polynomial time. 

The system is scalable to accept big inputs from any other domain in graph format. 

 

Keywords- Graph isomorphism; Distributed computing; Map-Raduce; Quantum Walks. 

__________________________________________________*****_________________________________________________ 

I.  INTRODUCTION  

In every application always there is a need to search and 

hence obviously we need to compare the objects. Nowadays 

the objects and the relations among them are getting more 

and more complex. This complexity can be represented by a 

data structure called     graph. Two graphs are isomorphic if 

one can be obtained from another by relabeling of the 

vertices. Graph isomorphism is a basic methodology used in 

various applications for comparing objects.  

The graph isomorphism is basically a hidden subgroup 

problem of the permutation group and is considered to be 

NP-complete. Checking weather two graphs are isomorphic 

is an NP-intermediate. A number of polynomial time 

methods have been suggested for finding isomorphic graphs. 

Some of these methods uses spectral analysis of graphs [1] 

and applies to specific classes of graph and doesn’t work for 

co-spectral graphs which are strongly regular graphs. The 

best general classical algorithm to date runs in O(CN 1/2log N ), 

C is a constant value and N is the number of vertices in the 

graphs being compared [2]. 

The two-particle quantum walks with hardcore bosons [3] 

can find isomorphism between two strongly regular graphs. 

The two particle QW is applied to graphs up-to 60 vertices 

and checked to be working correctly to check isomorphic 

graphs. The problem is to apply this method to graphs with 

more number of vertices. 

We exploited a map-reduce algorithm for two particle 

quantum walks to calculate the evolution factor which can 

differentiate even the SRGs. This enables us to determine the 

isomorphism with highest responses in as O(nlogn*s*(1/p)) 

where n is m*m  and m is no. of vertices in graph, s is the 

number of CPUs and p is the communication delay for one 

heartbeat time independent of the number of vertices in the 

graph. The technique is applicable to a variety of graphs that 

can be prepared from structures in image processing as well 

as other domains. Our approach is not restricted to any 

particular method or dataset; rather it provides the basis for 

scaling the number of traditionally compute-intensive graph 

processing operators from the hundreds or at most thousands 

applied in current practice to millions. We first applied the 

Delaunay triangulation method on images using batik library 

to derive graphs from images. Then we derived the 

adjacency matrix of the image. We demonstrate the efficacy 

of the approach by scaling graph isomorphism to multiple 

graph classes employing Delaunay triangulation 

preprocessing of the images representing graphs. The 

isomorphic images can be detected even if the target image 

graph undergoes multiple transformations.  

We believe the present work will accelerate the state of 

the art in object detection by increasing the number of visual 

categories by an order of magnitude or more while 

simultaneously reducing run times by a comparable factor. 

We demonstrate our approach in an implementation that 

achieves respectable performance on a standard benchmark 

for graph isomorphism, and exhibits graceful progress in 

performance with larger, automatically generated datasets 

consisting of tens of thousands of graph data. 

II. RELATED WORK  

These include probabilistic methods [4] and graph-

spectral methods which utilizes the Eigen values and 

eigenvectors of the Laplacian matrix [5]. The auxiliary graph 
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method by David Emms [6] has the complexity dominated 

by the simulation of the walk and is O(|V|6 ).By comparison, 

for the Umeyama algorithm [7] the complexity of computing 

the spectra of the two adjacency matrices is O(|V|3)and the 

complexity of using the Hungarian search method is again 

O(|V|3). This is typical of most graph-spectral methods. 

Other approximate algorithms have similar complexity. For 

instance, Gold and Rangarajan's [8] algorithm has 

complexity O(|EG |×|EH |) where EG and EH are edges in G 

and H graph respectively. There are of course more 

sophisticated inexact graph matching algorithms available. 

Douglas and Wang [9] have recently explored the use of 

discrete quantum walks for graph isomorphism. Their idea is 

to use the probability amplitudes associated with the states of 

walks on separate graphs as node-attributes. The amplitudes 

for corresponding steps of the walk on different graphs are 

compared to establish isomorphism or similarity. The 

algorithm has complexity O (|V|7).  

Two-particle interacting boson walks distinguish all non-

isomorphic pairs of SRGs, the SRGs with up to 64 vertices [3]. 

If the two-particle quantum walks can check for all types of 

isomorphic graphs, then the Graph isomorphism is a 

polynomial problem and not an NP can be proved. 

III.  TECHNICAL DETAILS  

The architecture described in this paper applies to a wide range 

of graph types, e.g., spectral and Strongly Regular graphs 

(SRG). The application and experiments presented here make 

use of the map-reduce model (MR) of Hadoop. Many other 

graph matching applications can be adapted to use our 

approach, including hidden sub graph detection [10], hidden 

group in financial transaction network [11], and 

communication networks [12]. 

A. One particle continuous time quantum walks 

The state space for the continuous-time quantum walk on a 

graph, G = (V, E), is the set of vertices, V, as is the case for the 

classical random walk. In addition, transitions only occur 

between adjacent vertices. If the walk is at a vertex u, it moves 

to adjacent vertices at a rate proportional to 1/d(u), where d(u) 

is degree at u. The basis states for the continuous-time quantum 

walk are vectors corresponding to particular vertices, as is the 

case for the classical random walk and unlike the discrete-time 

quantum walk where basis states correspond to edges. The 

basis state corresponding to the walk being at Vu  is 

written, in Dirac notation, as
u

. A general state of the walk is 

a complex–linear combination of these basis states and so the 

state of the walk at time t is given by a vector, which we write 

component wise as 

)(u(t)αψ
Vu

ut 1



 

Unlike the classical walk, the quantum walk is not a Markov 

chain. Given an initial state for the walk, 0ψ
, Eq. (1) can be 

solved to give  

)(ψeψ iLt

t 20


 

,where L=D−A is the Laplacian matrix, A is the adjacency 

matrix and D is the diagonal degree matrix.  

If we restrict ourselves to single-particle states, we find that 

adjacency matrix elements give Hamiltonian, 

)(A=j|H|i ij 3

Hence, we can easily identify the a single-particle Hamiltonian 

)(A=H 41P 
 

And Quantum Walk time evolution operator can be defined as 

)(e=U itH 5

 

An SRG is a graph in which (a) all vertices have the same 

degree, (b) each pair of neighboring vertices has the same 

number of shared neighbors, and (c) each pair of non- 

neighboring vertices has the same number of shared neighbors. 

This definition permits SRGs to be categorized into families by 

four integers (N, k, λ, μ), each of which might contain many 

non-isomorphic members. Here, N is the number of vertices in 

each graph, k is the degree of each vertex (k regularity), λ is the 

number of common neighbors shared by each pair of adjacent 

vertices, and μ is the number common neighbors shared by 

each pair of nonadjacent vertices. 

The adjacency matrix of all strongly regular graphs satisfies the 

useful relation [13] 

)(μ)A(λ+μJ+μ)I(k=A 62 
 

where I is the identity matrix, A is adjacency matrix, and  J is 

the matrix of all 1s. We can write 

)(Aγ+Jβ+Iα=A nnnn 7
 

,where γβ,α,  are functions only of the family parameters. 

That is, all SRGs of the same family have the same coefficients 

and same Hamiltonian and hence the algorithm based on 

single-particle quantum evolution fails to distinguish any non-

isomorphic SRGs that are in the same family. 
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B. Two particle continuous time quantum walks 

First, we note that we may write the Hamiltonian for any two-

boson Quantum Walk as  

)(UR+A)S)(A+(I=H 8⊕
2

1
2B 

 

Where )()(   is a Kronecker sum, 

the matrix special case of a direct sum, and 

)9(
,

iiiiRjiijS
iji

 

 
Using equation (5) we get, 

)(e=U UR]+A)(AS)+2(I[it 10⊕

 
Expanding as a power series in t, we have  

)(UR]+A)S)(A+(I[
n!

it)(
=U n

=n

n

11⊕
2

1

0







 

Numerically, it is determined [3] that a sixth-order expansion 

was necessary, and that the term B2RB3 can be used to 

distinguish the graphs up to N=40 vertices, where 

 . The component of evolution factor that 

differentiate the value of evolution factor can be used to 

represent the graph so that it can be compared with other 

graph's evolution factor. This solution is used to formulate the 

MapReduce algorithm to differentiate the graphs with number 

of vertices upto 100. 

C. Map-reduce algorithm for Quantum Walks 

MapReduce is a programming model invented for 

distributed data processing on large clusters. As part of two 

particle Quantum Walk on graph, two algorithms 

MapReduceKron and MapReduceMatrix are created for 

computing Kronecker sum B and multiplications of matrices. 

An algorithm for calculations on matrices requires a large 

amount of memory to store the input operands, intermediate 

results and output. Traditionally calculations on large arrays 

require a uniform address space on a single machine and these 

operations are performed on supercomputers with software 

customized to exploit its particular memory and interconnect 

architecture. When memory is exhausted during a computation 

number of packages may have a poor performance or may not 

work at all, as memory available in most machines is 

insufficient by orders of magnitude.  

In this paper we present a distributed implementation of 

two-particle quantum walks for large graphs on commodity 

hardware using a shared compute layer. Our prototype 

implementation runs on Hadoop clusters. Hadoop is an open 

source distributed computing framework developed by Apache 

Software Foundation. It includes fault tolerant, distributed file 

system namely HDFS, designed for high-throughput access to 

very large data sets. It also includes an implementation of Map-

Reduce, a programming model designed for processing big 

data sets on large clusters. 

Input for the map reduce is <key, value> pair i. e. two files 

containing adjacency matrices derived from two different graph 

data. It is actually edge list of the graph. 

<vertex1, vertex2, 1> 

 graphtheinedgeanisjiXA jiji  ,|,,  

The double occupancy matrix R is calculated for every 

graph, 

 

 matrixadjacencyXXR jijjiiji  ,,, |  

Kronecker sum B is calculated using map-reduce 

implementation. 

 

 

 

A distributed multiplication using map-reduce 

programming method is implemented. Evolution factor can be 

calculated using the differentiating component as B2RB3. 

The evolution factors for two graphs are U1and U2 such 

that they are elements of the matrices. These values are placed 

in the separately and sorted. The difference of these lists if zero 

then the two graphs are isomorphic else are non-isomorphic. 

It is found that evolution factor can identify distinct graphs 

upto 64 vertices for SRGs and upto 100 vertices for images. T 

he results are discussed in next section. 

IV. EXPERIMENTAL RESULTS  

In the following, we use the term one-particle algorithm to 

refer to the graph-isomorphism algorithm described in [2] 

utilizing graphs in SRG dataset. To execute map-reduce 

system we prepare the cluster of 5 machines having dual core 

and 2GB RAM, single rack based structure and Hadoop 2.6.0 

distributed system setup. One of the machine is  namenode and 

resource-manager while others slaves to work as datanode and 

nodemanager. Replication factor set to four.  By performing 

several experiments, we compare the performance of the one-

particle algorithm with the distributed two-particle algorithm 

described in the previous section, utilizing map-reduce model 

of programming as mentioned earlier. First, we demonstrate 

that the one-particle algorithm compares favorably with the 

two-particle algorithm on the SRG   dataset. Second, we show 

that two-particle distributed algorithm can scale graph-

isomorphism to hundreds of thousands of graph nodes and 

provide insight into the trade-offs involving accuracy, memory 

and computation time. We use our system for data derived 

from real-world data. For this we take images from the COIL 

database and construct Delaunay triangulations. We consider 

12 different objects from the database. We used our system to 

compare images. 

},,{
,,

,,  
m

yxi

jiji imyimxymixmixxB
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A. Dataset and implementation Details 

We first employed the SRG dataset upto 64 vertices to test 

our implementation, which work correctly to identify the non-

isomorphic SRGs from the same class of SRGs. The system 

required more time as we checked on a cluster of multiple 

nodes. In the case of a distributed system the network overhead 

is more than that of computations for small datasets. But the 

task of complex computation can be distributed in easy steps 

and same application can handle big data. We can see in the 

fig. 1 that the same number of  vertices requires more time if 

the distributed file system block size reduced. 

 
Figure 1. The time required for checking isomorphism to the 

number of vertices of graph with sparse connectivity and dense 

connectivity. 

 

 We employed the standard image dataset, COIL-20, to test 

our system. The COIL-20 dataset contains images from 

different categories with 20 images for training and validation. 

The triangulated graphs can be used to check isomorphism. We 

can consider the triangulated images close to SRG class of 

graph because certain set of triangular graphs are also SRGs. 

 
 

Figure 2. The time requires for detecting isomorphism of 

SRGs from E. Spence Dataset [14] with 64MB block size and 

128MB block size. 

 

Fig. 2 shows the results for sparse matrix that is the graph 

with less number of edges requires less time as compared to 

that for a dense graph, which has more number of edges. In 

dense graph the computations are more as we are considering 

the adjacency edges for the calculation of evolution factor. 

The Figure 2 shows the results for dense graphs derived from 

images on multiple node clusters. 

The continuous time quantum walks are better than discrete 

time quantum walks as continuous time walks corresponds to 

vertices [2]. But while implemented in map-reduce it is 

observed that more dense the adjacency matrix, more time it 

takes for distributed computation. That is the time required is 

more as the connectivity of the graph is increased. 

B.   Accuracy, speed and memory 

Our implementation is able to detect isomorphism between 

graphs of all classes with 100% accuracy. As the number of 

vertices is increased, the input is increased and thus number of 

map tasks is increased so the time required to collect result 

from multiple nodes is greater and hence total time required 

for computation is increased. But the system withstands big 

input data. 

CONCLUSIONS 

Our key contribution is a distributed approach to graph 

isomorphism that replaces computational density with 

distributed simple operations by using an efficient Map-

Reduce design. This approach is applicable to a variety of 

graphs of different classes and derived from different 

application domain. Through extensive empirical tests on 

distributed graph isomorphism system, we have shown that (a) 

the system performs comparably better to the original single 

machine algorithm for big data, (b) performance upgrades 

gracefully as the number of vertices in graph is increased, and 

(c) up to 100 vertices graph can be processed on a single 

machine in polynomial time.  
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