
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 431 - 437

431
IJRITCC | February 2015, Available @ http://www.ijritcc.org

Directed Graph based Distributed Sequential Pattern Mining Using Hadoop

Map Reduce

Sushila S. Shelke, Suhasini A. Itkar,

PES’s Modern College of Engineering, Shivajinagar, Pune

Abstract - Usual sequential pattern mining algorithms experiences the scalability problem when trade with very big data sets. In existing
systems like PrefixSpan, UDDAG major time is needed to generate projected databases like prefix and suffix projected database from given
sequential database. In DSPM (Distributed Sequential Pattern Mining) Directed Graph is introduced to generate prefix and suffix projected
database which reduces the execution time for scanning large database. In UDDAG, for each unique id UDDAG is created to find next level

sequential patterns. So it requires maximum storage for each UDDAG. In DSPM single directed graph is used to generate projected database

and finding patterns. To improve the scanning time and scalability problem we introduce a distributed sequential pattern mining algorithm on

Hadoop platform using MapReduce programming model. We use transformed database to reduce scanning time and directed graph to
optimize the memory storage. Mapper is used to construct prefix and suffix projected databases for each length-1 frequent item parallel. The
Reducer combines all intermediary outcomes to get final sequential patterns. Experiment results are compared against UDDAG, different
values of minimum support, different massive data sets and with and without Hadoop platform which improves the scaling and speed
performances. Experimental results show that DSPM using Hadoop MapReduce solves the scaling problem as well as storage problem of
UDDAG.

Index Terms — Distributed Environment, Directed Graph, Sequential Pattern Mining, Transformed Database.

__*****___

I. INTRODUCTION

Sequential pattern mining is an vital data mining practice

widely used in many applications, like Bioinformatics,

customer behavior guesses in transaction history, web

mining, intrusion detection in network attack. Usually, the

main intention of sequential pattern mining is to find

frequent sequences within a sequential database. The

problem was first proposed in [1]. There is good progress

towards mining sequential patterns like GSP [2], SPAM [3]
Apriori-based algorithm , FreeSpan [4], PSPM [5]

projection-based, SPADE [6] vertical data format based

algorithm and pattern growth based approach in PrefixSpan

[7], UDDAG [8], have been proposed. Pattern growth

approach is significantly used in many algorithms owing to

its advantages like Divide and conquer strategy, compact

database and without candidate generation. Mainly

execution of all above algorithms is on standalone

environment which has some weaknesses like scalability

problem, less efficient for huge dataset, large scanning time

for database. To increase the performance and resolve the
scalability issues of sequential pattern mining many

researchers have provide different methods to work on

distributed environment like parallel mining , distribute the

mining computation over different nodes, apply different

distributed environments like grid computing, cluster, cloud,

Hadoop, etc.

 In this paper we have proposed Directed Graph as a data

structure to store the database efficiently which optimizes

the memory and reduce the number of scans. Our algorithm

is extended from UDDAG algorithm which is implemented

using MapReduce programming model on hadoop
distributed environment. Due to its execution on hadoop

distributed environment, it solves the scalability problem.

 The rest of the paper is structured as section 2 defines

the problem statement and related works. Section 3

explains preliminary review of UDDAG and Hadoop

MapReduce model. Section 4 gives algorithm for Directed

Graph based distributed Sequential Pattern Mining on

Hadoop MapReduce. Experiment results and performance

evaluation are mentioned in section 5. Section 6 conclude

the paper and discuss about issues that need to be consider
in future work.

II. PROBLEM DEFINITION AND RELATED WORK

2.1 Problem Definition:

Let 𝐷𝑆 be a sequence database, and 𝐼 = 𝑥1 , … , 𝑥𝑚 be a

set of m different items, 𝑆 = 𝑠1 , … , 𝑠𝑖 is a sequence

which contains an ordered list of itemsets. An itemset 𝑠𝑖 is

a subset of items ⊆ I. A sequence 𝑆𝑎 = 𝑎1 , … , 𝑎𝑛 is a

subsequence of sequence 𝑆𝑏 = 𝑏1 ,… , 𝑏𝑚 where 1 ≤ 𝑖1 < .

. . < 𝑖𝑛 ≤ m such that 𝑎1 ⊆ 𝑏𝑖1
, 𝑎2 ⊆ 𝑏𝑖2

, … , 𝑎𝑛 ⊆ 𝑏𝑖𝑛
.

Sequential pattern mining is to find out the complete set

of sequential patterns whose frequency count ≥ min_sup

* |D|, where min_sup is a minimum support threshold.

Table 1 represents the example of sequence database.

Finding sequential patterns from massive dataset is not

efficient on standalone system due to large scanning time

and more memory storage. So, to discover the complete set

of sequential patterns from massive datasets this paper

proposed a system which uses MapReduce programming

model on distributed environment Hadoop to increase the
speed and scalability performance. Proposed system uses

the directed graph for memory optimization and less

scanning time.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 431 - 437

432
IJRITCC | February 2015, Available @ http://www.ijritcc.org

TABLE 1

Example of Sequence Database

Seq_Id Sequence

1 1 1, 2, 3 1, 3 4 3, 6

2 1, 4 3 2, 3 1, 5

3 5, 6 1, 2 4, 6 3 2

4 5 7 1, 6 3 2 3

2.2 Related Work:

 Large research has been done and going on in the area of

parallel and distributed sequential pattern mining on

different environments like Grid, cluster, cloud , Hadoop,

Distributed processors or nodes, etc. A frequent sequence

mining algorithm based on variant of the parallel tree

projection is designed by Guralnik and Karypis [11]. The

Par-CSP algorithm (parallel closed sequential pattern

mining) which runs on distributed memory system was

introduced in [12]. Their parallel algorithm is based on the

modern frequent closed sequence mining algorithm BIDE
[13]. In [9] [10] by using Apriori method, GSP algorithm is

executed on grid computing environment which is

straightforward for loosely coupled methods. Grid

computing platform requires a sophisticated method of data

partitioning, stratagem to determine and allot the job to grid

node dynamically and a smaller amount controlling grid can

decrease the performance of entire structure. Cluster based

algorithm is developed in [14], in which matching definition

algorithm collects the sequence data into several clusters

and then on parallel computers which are distributed

memory modes clusters are distributed. SPAMC is nothing

but Sequential pattern mining on the cloud algorithm which
is extended from SPAM [15] is implemented on MapReduce

framework in [16]. Pattern growth based PrefixSpan

algorithm which performs pattern mining on huge data set

on Hadoop environment by using MapReduce programming

model has been projected in [17]. Multidimensional

sequential pattern mining is performed on distributed sites in

[18][21].

 This paper is extended from UDDAG algorithm and

concept of MapReduce programming model on Hadoop

environment.

III. PRELIMINARIES

3.1 Up Down Directed Acyclic Graph:

 In UDDAG, a new data structure, UpDown Directed

Acyclic Graph for efficient mining of sequential patterns is

used. DAG (Directed Acyclic Graph) represents patterns as

vertexes with ids of transaction containing the pattern and
directed edge as relationship of patterns. Up DAG

represents DAG for patterns found in Prefix projected

database while Down DAG represents DAG for patterns

found in Suffix projected database of Frequent item x and

by merging both DAG represents UDDAG with root vertex

x. UDDAG allows bidirectional pattern growth from both

the ends for detected sequential pattern. UDDAG algorithm

uses transformed database where for each frequent item x,

the algorithm creates a root vertex for x detects all the

patterns from prefix and suffix projected database of x and

then it creates directed acyclic graph to represent the

enclose relationship of frequent items. UDDAG generates

less projected database compare to PrefixSpan as UDDAG

consider prefix and suffix projected database at the same
time. UDDAG eliminates unnecessary candidate generation.

Data structure in UDDAG requires more memory storage

than PrefixSpan but it involves major cost of storing

projected database. UDDAG has some challenging issues

like independent frequent item detection, large memory

usage for data structure UDDAG. The new system uses

directed graph to store transformed database and it allows

bidirectional pattern growth without creating projected

database as like UDDAG.

3.2 Hadoop MapReduce:

Hadoop MapReduce is a software framework which

allows distributed processing of huge amounts of data

(multi-terabyte data-sets) on thousands of nodes of service

hardware in a consistent, fault-tolerant manner [19]. A

MapReduce job usually divides the input data-set into

independent structures which are executed by the map

tasks in a fully parallel manner. The outputs of the map

functions are sorted by framework, which are then given as

input to the reduce tasks. Typically inputs and the outputs

of the job are stored in terms of file system. The

framework takes care of tasks like scheduling, monitoring

and re-execution of failure tasks. Map Reduce is trigger by

the map and reduce operations in LISP like functional

languages. This model solves the computation problem

through two functions: map and reduce. Essentially, the

MapReduce model permits users to write map and reduce

components with functional-style code. Finally, these

components are scheduled by the MapReduce system to

scattered assets for execution while handling many tough

problems such as network communication, parallelization

and fault tolerance.

FIGURE 1 MAP REDUCE ARCHITECTURE

Input for the map function is a key-value pair which

produces a list of key-value couples as output which is

characterized as:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 431 - 437

433
IJRITCC | February 2015, Available @ http://www.ijritcc.org

𝑚𝑎𝑝 ∶∶ 𝑘𝑒𝑦1 , 𝑣𝑎𝑙𝑢𝑒1 ⇒ 𝑙𝑖𝑠𝑡 𝑘𝑒𝑦2 , 𝑣𝑎𝑙𝑢𝑒2

 A reduce function acquires all the output with similar key

values and produce a single list as output which is

characterized as:

𝑟𝑒𝑑𝑢𝑐𝑒 ∶∶ 𝑘𝑒𝑦2 , 𝑙𝑖𝑠𝑡 𝑣𝑎𝑙𝑢𝑒2 ⇒ 𝑙𝑖𝑠𝑡 𝑣𝑎𝑙𝑢𝑒3

The architecture of MapReduce model is shown in

figure1. A MapReduce program mainly executes in two

phases for parallel execution. In first phase, the input reader

from master node splits the data into small parts and

submits them to selected mapper programs randomly. In

this process mappers perform their task in parallel

processing stage and produces a group of [key, value] pairs.

Each generated item is sorted and forwarded to the reducer.

In second phase, reducer program combines all the items

with given key and finds a single entity as a result. All

reduce operations are performed independently similar to

map operations. Input, final outputs are stored on a

distributed file system whereas intermediate results are

stored on local file system of map and reducer worker.

IV. DIRECTED GRAPH BASED SEQUENTIAL PATTERN MINING

ON HADOOP MAPREDUCE

 This section explains the directed graph based sequential

pattern mining on Hadoop MapReduce, which transforms

the original sequence database and then constructs the

directed graph for storing transformed database. The

construction of directed graph is done centrally and

distributed at each node. Instead of projecting the database

from transformed database and then constructing prefix and

suffix projected database for finding sequential patterns as

like UDDAG, directed graph based system make use of

directed graph for construction of prefix and suffix database

without constructing projected database. Construction of
prefix and suffix database is done parallel by mapper and

intermediate results are given as input to reducer to find the

sequential patterns.

4.1 Database Transformation:

 Definition 1 (Frequent item set): The absolute support for

an item set in a sequence database is the frequency count of
transactions whose sequences involve the item set. Frequent

item (FI) set is an item set with a support count larger than

minimum support frequency.s First we assign unique id to

all frequent items in FI set in sequence database D. For

example, Frequent items of length 1 for Table 1database are:

[1], [1, 2], [2], [2, 3], [3], [4], [5], [6]. By assigning a unique

id to each FI, we get [1] - 1, [1, 2] - 2, [2] - 3, [2, 3] - 4, [3] -

5, [4] - 6, [5] - 7, [6] - 8.

 Definition 2 (Item pattern): An item pattern is a sequential

pattern with accurately one item in each item set it contains.

 Definition 3 (Transformed Database): Let 𝐷𝑆 be a

sequence database , by replacing item sets in each sequence

with ids of FIs contained in the item set we get transformed

database DT. Transformed database is shown in Table 2.

TABLE 2

Transformed Database

Seq_Id Sequence

1 1 1, 2, 3, 4, 5 1, 5 6 5, 8

2 1, 6 5 3, 4, 5 1, 7

3 7, 8 1, 2, 3 6, 8 5 3

4 7 1, 8 5 3 5

4.2 Construction of Directed Graph:

 Construct Directed graph for DT which contains vertex

and directed edges. Vertex represents unique id assigned

for frequent item. Each vertex also stores transaction ids

where it appears in database and element id where frequent
item appears. Figure 2 shows directed graph for table 2.

FIGURE 2 DIRECTED GRAPH

 Let, set of unique ids for each FI contains n ids

are 𝐼1 , 𝐼2, … , 𝐼𝑛 . Vertex 𝐼1 stores transaction ids and each

transaction id stores element id which is represented as:

𝐼1 → 𝑇1 , 𝑇2 , … , 𝑇𝑚 → 1

m → number of transactions in the database

𝑇1 → 𝑇11 ,𝑇12 ,𝑇13 ,

 → 2

𝑇2 → 𝑇21 ,𝑇24

 → 3

𝑇𝑚 → 𝑇𝑚1 ,…,𝑇𝑚𝑛 ,

For example, for vertex 1 as per transformed database
1 → 1,2,3,4
 → 4

1→ 11 , 12 , 13

2→ 21 , 24

3→ 32

4→ 42

 Edges in the graph are represented by item sequence in
element in the sequence database which is used to traverse

the graph while detecting the in between pattern.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 431 - 437

434
IJRITCC | February 2015, Available @ http://www.ijritcc.org

4.3 Prefix and Suffix Projected Database:

 Prefix and suffix database is created for each vertex by

using directed graph. Suppose for vertex 𝐼1 transaction ids

are as shown in equation 1 and element ids for each

transaction are shown in equation 2 ,3,etc. While

constructing Prefix database it ignore higher element id

means ignore 𝑇13 𝑎𝑛𝑑 𝑇24 from equation 2 and 3. However

while constructing suffix database it ignore lower element id

means ignore 𝑇11 𝑎𝑛𝑑 𝑇21 from equation 2 and 3. For

example let 𝐼1= 1 and set of transaction ids and element ids

are as shown in equation 4then prefix and suffix database

for 1 is as shown below:

Pre (1𝐷) = 1. < 1, 1 >

 2. < 1 >

Suf (1𝐷) = 1. < 1, 1 >

 2. < 1 >

4.4 Sequential Pattern Mining:

 Sequential pattern mining is performed by considering

following three cases

1. Each vertex in directed graph is itself a sequential

pattern.

2. Sequential pattern from Prefix and Suffix Projected

Database

Find the frequent items from prefix and suffix

projected database by checking the support count

value then detect the frequent patterns as below.

To find the sequential patterns from prefix Projected

database; if FI in Pre (𝑎𝐷) for pattern a then append

a after each FI.

For example, a = 8, FI set for Pre 8𝐷 = 1, 2, 3, 7

Then sequential patterns are

 1,8 , 2,8 , 3,8 , 7,8

To find the sequential patterns from suffix Projected

database; if FI in Suf (𝑎𝐷) for pattern a then append

each FI after a.

For example, a = 8, FI set for Suf 8𝐷 = 3, 5

Then sequential patterns are 8,3 , 8,5

3. Discover Sequential patterns where length-1 pattern

exist in between. Sequential patterns in this case

are like length-1 pattern exist in between the

beginning and ending of sequential patterns by

considering its prefix and suffix database. First find

the frequent pattern as in case 2.

Let,

𝑃𝑟𝑒 𝑎𝐷 = 𝑏, 𝑐, 𝑑, 𝑒 → 𝑃

𝑆𝑢𝑓 𝑎𝐷 = 𝑑, 𝑓 → 𝑆

Give unique ids to each frequent item in P and S

then intersection of each element in P and a (the

item pattern) with each element in S and find

common transaction ids as 𝑃𝑖 ∩ 𝑎 ∩ 𝑆𝑗 where i and j

are ids of frequent item in P and S.

For example,

𝑎 = 8𝑃 = 1,2,3,7 𝑆 = 3,5

Take intersection as 𝑃1 ∩ 8 ∩ 𝑆1 that is

1 ∩ 8 ∩ 3 = 3,4

Now check the sequence of element ids for 3rd and

4th transaction for vertex 1, 8 and 3 in directed

graph. If the sequence for all above vertex is not in

ascending order then there is 0 support count for

this pattern else count the frequency count as 1. For

vertex 1, 8 and 3 the sequence is 32 → 31 , 35 →

32 , 35 no frequency count. For Vertex 7, 8, 3, the

common transaction ids are 7 ∩ 8 ∩ 3 = {3, 4} and

the sequence for 3rd is 31 → 31 , 33 → 32 , 35 .

Consider 31 → 33 → 35 as ascending order so

frequency count for pattern 783 for 3rd transaction is

1.

4.5 Architecture of for Directed Graph based
Distributed Sequential Pattern Mining on Hadoop

MapReduce

FIGURE 3 DSPM ARCHITECTURE

Architecture diagram for DSPM on hadoop Map reduce is

shown in figure 3. MapReduce model is applied in two

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 431 - 437

435
IJRITCC | February 2015, Available @ http://www.ijritcc.org

phases. Phase 1 finds length-1 frequent items from sequence

database and minimum support threshold value using map

reduce model. Transformed database is generated from

length-1 frequent items. Directed graph is constructed to

store transformed database which is used as input for next

map reduce model in phase 2. In this prefix and suffix

databases are generated and frequent item which support

minimum support count value are generated by mapper and

reducer. Combined output of all reducer is nothing but final

sequential patterns.

4.6 Algorithm for Directed Graph based Distributed
Sequential Pattern Mining:

Input: Sequence Database D, Minimum Support value as

min_sup

Output: P the complete set of patterns in D

Algorithm:

1. Input is given to mapreduce framework where it

scans the database D and find length-1 FI as

FISet=D.getFI(min_sup) .

2. Transform the sequence database by calling

D.transform(D,FISet).

3. Construct the directed graph by calling

D.constructDG(Transformed Database, FISet)

4. Assign task of generating prefix and suffix database

to mapper function as

genpresufdb(Dgraph,min_sup) parallelely on

multiple nodes.

5. Intermediate result of step 5 is passed as input to

reducer function to find the sequential patterns by

following 3 ways

a. Copy all length-1 frequent items to list of

sequential pattern P.

b. Find FI from prefix and suffix database by

using case 2 and append it to pattern P.

c. Find FI for in between pattern using case

3.

 The algorithm first scans the database and generates

length-1 FI set which is used to create transformed database

using mapreduce. Next step in is to construct directed graph
by using transformed database and FI set. Mapper function

on different node generate prefix and suffix projected

database parallel. Intermediate result of mapper function is

passed as input to reducer function to find the sequential

patterns as mentioned in section 4.4. Task of finding length-

1 frequent item and finding patterns from prefix and suffix

database is done on hadoop mapreduce platform to perform

the task on distributed environment where it achieves

maximum scalability.

Final sequential patterns for database in Table 1 by using

above algorithm are discovered for each vertex in directed

graph are listed below as Sequential Pattern (𝑆𝑃𝑖) where i

indicates vertex in graph.

𝑆𝑃1 = 1 , 1,1

𝑆𝑃2 = 2

𝑆𝑃3 = 3 , 1,3 , 3,1 , 1,3,1

𝑆𝑃4 = 4 , 1,4 , 4,1 , 1,4,1

𝑆𝑃5 =
 5 , 1,5 , 2,5 , 3,5 , 5,5 , 1,3,5 , 1,5,5 ,

 5,1 , 5,3 , 1,5,1 , 1,5,3

𝑆𝑃6 =

 6 , 1,6 , 2,6 , 3,6 , 6,3 , 6,5 , 6,5,3 ,

 3,6,5 , 2,6,5 , 1,6,5

𝑆𝑃7 =
 7 , 7,1 , 7,3 , 7,1,3 , 7,5 , 7,1,5 , 7,3,5 ,

 7,5,3

𝑆𝑃8 =

 8 , 1,8 , 2,8 , 3,8 , 7,8 , 8,3 , 8,5 ,
 8,3,5 , 8,5,3 , 7,8,3 , 7,8,5 , 7,8,5,3

 In Proposed system task of constructing prefix and suffix

database is done on multiple nodes parallel so, it reduces the

execution time as compare to old algorithms. Also, it uses

directed graph to store database which gives better memory

optimization and less scanning time.

V. EXPERIMENTAL RESULTS

 The proposed system is tested on synthetic data sets

which are generated by IBM Quest Synthetic Data

Generator [21]. Experimental result shows the scalability

performance between Directed Graph based system verses

existing sequential pattern algorithm UDDAG, comparison

of Directed Graph with and without Hadoop platform.

Performance of the system will be calculated against

different sizes of datasets, different values of minimum

support and number of nodes in distributed environment.

 The data sets were generated for parameters shown in

table 3.

TABLE 3

Parameters for generating Datasets

Symbol Name

C Number of Sequences

N Number of Different Items

S Average number of items per sequence

T Average number of items in transactions

I
Average number of items in transaction

in pattern

Experiment Result1 shows the performance for dataset

C5N100S8T3I3 having 5k sequences, 100 distinct items

and 50% min_support in figure 4. It highlights the

scalability performance for UDDAG, Directed Graph

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 431 - 437

436
IJRITCC | February 2015, Available @ http://www.ijritcc.org

and Directed Graph on Hadoop.

FIGURE 4 EXECUTION TIME COMPARISONS WITH MIN_SUP 50%

Experiment 2 display the performance for same dataset

but with different min_sup values as 5%, 10% and 20% for

all three algorithms. It is given table 4 as well as in figure 5.

TABLE 4

EXECUTION TIME COMPARISONS FOR UDDAG, DG AND DG ON

HADOOP

FIGURE 5 EXECUTION TIME COMPARISONS FOR UDDAG, DG AND DG

ON HADOOP

Experiment 3 shows the performance for C800S8I8

dataset having 800k sequences, 1000 distinct items with

min_sup 10%, 20% and 50% and the result is taken on 2

and 4 nodes. It is shown in figure 6.

FIGURE 6 COMPARISONS ON DIFFERENT NODES

Experiment 4 shows the performance on different nodes

like 2 and 4 for two different datasets as C800S8I8and

C1000S8T5I8 with minimum support 50%. It is

displayed in figure 7. By increasing the different number

of nodes system gives better speed and scalability

performance.

FIGURE 7 COMPARISONS ON DIFFERENT NODES WITH DIFFERENT

DATASETS

VI. CONCLUSION AND FUTURE WORK

This paper studies many existing sequential pattern

mining algorithm which are implemented on distributed

environment like Grid, Cloud, Cluster and Hadoop

MapReduce. New system is implemented in this paper

which uses Hadoop MapReduce environment to find

sequential patterns. DSPM first converts the sequence

database into transformed database which is represented

by directed graph as data structure to reduce memory

storage and scanning time of database frequently.

Because of distributed environment like Hadoop the

scaling problem is improved in the new system. DSPM is

compared with UDDAG on single system and it gives

better performance using directed graph data structure.

0

5
10
15

20
25

30
35
40

45

UDDAG Directed GraphDirected Graph
on Hadoop

E
x
e
c
u

ti
o

n
 t

im
e
 (

S
)

C5N100S8T3I3 with Minimum Support 50 %

0

10

20

30

40

50

60

70

5 10 20

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
)

Minimum Support %

UDDAG

DG

DGH

0

2

4

6

8

10

12

14

10 20 30 50

E
x
e
c
u

ti
o

n
 T

im
e
 (
M

in
)

Minimum Support %

Performance on Different Nodes

2 Nodes

4 Nodes

0

2

4

6

8

10

12

14

2 4

Ex
ec

u
ti

o
n

 T
im

e
(M

in
)

Number of Nodes

C800S8T3I8

C1000S8T5I8

Minimum

Support
%

UDDAG
(Seconds)

Directed

Graph
(Seconds)

Directed

Graph on
Hadoop

(Seconds)

5 61.621 44.178 28.475

10 65.592 46.021 26.926

20 47.59 25.598 16.579

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 2 431 - 437

437
IJRITCC | February 2015, Available @ http://www.ijritcc.org

DSPM with directed graph is tested on 2 as well as 4

nodes and it shows good performance. There are some

challenging issues that need to be solved in future like

finding constraint based , closed sequences sequential

patterns on distributed environment.

REFERENCES

[1] R. Agrawal and R. Srikant,”Mining Sequential Patterns”,
Proc. of the 11th Int’l Conf. on Data Engineering
(ICDE’95), 1995.

[2] Srikant R. and Agrawal R., “Mining sequential patterns:
Generalizations and performance improvements”, In
Proceedings of the 5th International Conference
Extending Database Technology, 1996, pp 1057, 3-17.

[3] J. Ayres, J. Gehrke, T. Yu, and J. Flannick, “Sequential
Pattern Mining Using a Bitmap Representation”, Proc.
Int’l Conf. knowledge Discovery and Data Mining 2002,

pp. 429-435, 2002.

[4] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and
M.C. Hsu, ”FreeSpan: Frequent Pattern-Projected
Sequential Pattern Mining”, Proc. of the 6th ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining (KDD’00), 2000.

[5] Taoshen Li, Weina Wang, Qingfeng Chen, “On the
Sequential Pattern Mining Algorithm Based on
Projection position”, The 8th International Conference
on Computer Science & Education (ICCSE 2013) April
26-28, 2013. Colombo, Sri Lanka.

[6] ZakiM, ”SPADE: an efficient algorithm for mining
frequent sequences”, Mach Learn, 2001.

[7] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong
Wang, Helen Pinto, Qiming Chen, Umeshwar Dayal,
Mei-Chun “Mining Sequential Patterns by Pattern –
Growth: The PrefixSpan Approach”, IEEE Transaction
on Knowledge and Data Engineering, Vol. 16, No. 10,
Oct 2004.

[8] Jinlin Chen, “An UpDown Directed Acyclic Graph
Approach for Sequential Pattern Mining”, IEEE
Transaction on Knowledge and Data Engineering, Vol.
22, No. 7, Oct 2010.

[9] Chih-Hung Wu, Yu-Chieh Lo, “Mining Sequential
Patterns on a Grid-Computing Environment”, IEEE
International Conference on Systems, Man, and
Cybernetics October 8-11, 2006, Taipei, Taiwan.

[10] Chih-Hung Wu, Chih-Chin Lai, Yu-Chieh Lo, “An
empirical study on mining sequential patterns in a grid
computing environment”, Expert Systems with
Applications, 2012 5748–5757.

[11] Guralnik V, Karypis G.,”Parallel tree-projection-based
sequence mining algorithms”, Parallel Computing, 2004.

[12] Cong S, Han J, Padua D., ”Parallel mining of closed
sequential patterns”, In Proceeding of the Eleventh ACM
SIGKDD International Conference on Knowledge
Discovery in Data Mining, Chicago, USA, 2005: 562-
567.

[13] Wang J, Han J.,”BIDE: Efficient mining of frequent

closed sequences”, In: Proceedings of the 20th
International Conference on Data Engineering. Boston,
USA, 2004: 79-91.

[14] Shaochun Wu, Genfeng Wu, Shenjie Jin, “Pre-Clustering
based Sequential Pattern mining”, IEEE, 2004.

[15] J. Ayres, J. Gehrke, T. Yu, and J. Flannick, “Sequential

Pattern Mining Using a Bitmap Representation,” Proc.

Int’l Conf. knowledge Discovery and Data Mining , pp.
429-435, 2002.

[16] Chun-Chieh Chen, Chi-Yao Tseng,Ming-Syan Chen,
"Highly Scalable Sequential Pattern Mining Based on

MapReduce Model on the Cloud", IEEE International
Congress on Big Data, 2013.

[17] Wei Yong-qing, Liu Dong, Duan Lin-shan," Distributed
PrefixSpan Algorithm Based on MapReduce",
International Symposium on Information Technology in
Medicine and Education, 2012.

[18] Kong-Fa-Hu, Chang-Hai Zhang, Ling Chen, "A Scalable
Method of Mining Approximate Multidimensional
Sequential Patterns on Distributed Systems",
Proceedings of the Sixth International Conference on
Machine Learning and Cybernetics, Hong Kong, 19-22
August 2007.

[19] Apache Hadoop http://hadoop.apache.org/

[20] IBM Quest Synthetic Data Generator www.phillipe-
fournier-
viger.com/spmf/datasets/IBM_Quest_data_generator.zip

[21] S. Itkar, S. Shelke, “Sequential Pattern Mining and
Distributed sequential pattern mining- A Survey and
Future Scope”,ICACCE-2014, PP 112-117.

