
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 1 294 - 297

294
IJRITCC | January 2015, Available @ http://www.ijritcc.org

Applying Background Garbage Collection to the SBAST Flash Translation Layer

Scheme

Ilhoon Shin

Department of Electronic Engineering & IT Media

Seoul National Univ. of Science & Tech.

Seoul, South Korea

ilhoon.shin@snut.ac.kr

Abstract—NAND-based block devices have the overhead of performing the garbage collection to reclaim clean pages. A feasible solution to this

problem is performing a background garbage collection that is executed in advance in idle time. Because the background garbage collection can

hurt the latency of the foreground requests, it needs to identify stable states of the background garbage collection so that it can be terminated

instantly when a new I/O request arrives. This work applies the background garbage collection to one of the hybrid FTL, the SBAST scheme by

analyzing the garbage collection process and identifying the stable states. The analysis shows that the worst influence on the foreground requests

is limited to multiple page copies and one block erase.

Keywords-background garbage collection; SBAST; flash translation layer; NAND flash memory

__*****___

I. INTRODUCTION

NAND flash memory is widely used as storage media for

mobile devices. Its strengths such as light-weight, silence,

shock-resistant, and energy efficiency have driven the success

and made it possible to replace hard disk drives. The restriction

of NAND flash memory is that it does not provide an overwrite

operation directly because of an erase-before-write feature. To

overcome it, NAND-based block devices employ a firmware

called flash translation layer (FTL) to emulate the overwrite

operation. The FTL processes an overwrite request in an out-

of-place update, which writes new data to a new clean page. By

the out-of-place update, clean pages are eventually exhausted

and a garbage collection process is initiated to reclaim the

invalidated pages to clean pages.

The detailed process of the garbage collection is different

according to the FTL schemes. The basic steps are selecting the

victim block, moving the valid pages of the victim blocks, and

reclaiming clean pages by an erase operation. It generally

accompanies multiple page read/write and block erasures,

which degrades the response time of a foreground request,

significantly. Thus, it is important to reduce the frequency and

the latency of the garbage collection. One possible solution for

it is to perform the garbage collection in advance in idle time,

which is called a background garbage collection. The previous

research [1] has designed and evaluated the background

garbage collection for the page mapping scheme [2]. However,

as to other FTL schemes, the background garbage collection

has not been designed in detail. The goal of the work is to

design the background garbage collection for one of the hybrid

mapping schemes, the SBAST (Shared Block Association

Sector Translation) scheme [3].

The remainder of the paper is organized as follows. Section

2 gives a description of background knowledge such as NAND

flash memory and the representative FTL schemes. Section 3

designs the background garbage collection for the SBAST

scheme. Section 4 draws a conclusion.

II. BACKGROUND

NAND flash memory is a semiconductor that consists of

blocks and pages. A page is a read/write unit, and a block is an

erase unit. A block consists of multiple pages. NAND flash

memory has the erase-before-write feature. Data can be written

only in clean pages. Once data are written to a page, the page

cannot be updated. In order to write new data to the page, the

page should be changed to clean status, in other words, the

block that the page belongs to should be erased. Thus, the

overwrite operation is generally supported by the out-of-place

update.

In the out-of-place update, the location of valid data is

changed on every write. Thus, we need to remember the current

location of valid data. For this purpose, FTL maintains the

mapping table between the logical address space that is used by

file systems and the physical address space. By the granularity

of the mapping table, FTL is classified to page mapping [2],

block mapping [4], and hybrid mapping [3, 5, 6].

In the page mapping scheme [2], the mapping granularity is

a page. Upon a write request, data are written in clean pages in

a page unit. If clean pages are scarce, the garbage collection is

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 1 294 - 297

295
IJRITCC | January 2015, Available @ http://www.ijritcc.org

performed. It selects a victim block, moves valid pages of the

victim to an extra clean block, and then reclaims clean pages by

erasing the victim. It delivers a good performance, and however

large memory is required to maintain the mapping table

because FTL maintains the mapping between logical page

number (LPN) and its physical page number (PPN).

The block mapping scheme [4] uses a block as the mapping

granularity to reduce the mapping table. Upon a write request,

data are written in clean blocks in a block unit. If the modified

data are smaller than a block, the unmodified data of the old

block are also copied to the new block. Thus, its performance is

significantly downgraded.

The hybrid schemes mix both schemes. They use a portion

of NAND blocks as write buffer called log blocks, which are

managed by the page mapping. The other blocks called data

blocks are managed by the block mapping. In the BAST (Block

Associative Sector Translation) scheme [5], log blocks and data

blocks are associated with one to one mapping. On a write

request, data are written to the log block associated with the

target data block. If there is no associated log block, a clean log

block is allocated. If there is no clean log block, the garbage

collection is started. It selects a victim log block, copies valid

pages of the victim log block and the old data block to a new

data block. Finally, the victim log block and the old data block

are erased. The BAST scheme is vulnerable in a random write

pattern because log blocks are merged and erased with having

clean pages [6].

In order to solve the drawback of the BAST scheme, the

FAST (Full Associative Sector Translation) scheme [6] lets

data blocks share log blocks. On a write request, data are

written to a working log block regardless of the target data

block. If there is no clean page in the working log block, a

clean log block becomes a new working log block. If there is

no clean log block, the garbage collection is started. It selects a

victim log block and merges it with the associated data blocks.

Different from the BAST scheme, log blocks can be associated

with multiple data blocks and thus the merge operation is

repeatedly performed until there is no valid page in the log

block. Therefore, the latency of the garbage collection can be

prolonged.

The SBAST scheme [3] also allows data blocks to share log

blocks. However, a data block can be associated with only one

log block. Thus, the association degree of log blocks is mostly

lower than the FAST scheme. But, the garbage collection

latency can still be prolonged according to the association

degree. In order to solve this problem, previous research [7] has

proposed to perform the log block move selectively. For

example, if the victim log is associated with multiple log blocks,

the garbage collection copies valid pages of the victim log to a

clean data block. The victim log block is erased and inserted to

a pool of clean data blocks. The data block that has moved

valid pages is switched to a log block. This log block move and

the repeated log block merge are selectively performed based

on the cost-benefit analysis.

III. DESIGNING BACKGROUND GARBAGE COLLECTION FOR

THE SBAST SCHEME

The background garbage collection is an effective solution

to hide the overhead of the long garbage collection. In this

section, we design the background garbage collection for the

SBAST scheme. When designing the background garbage

collection, we should minimize the harmful influence on a

foreground request. In other words, if a new request arrives

during the background garbage collection, it should be

terminated to a stable state as soon as possible to serve the

foreground request [1].

Fig. 1 shows the state transition of the log block move

process in the SBAST scheme. If the garbage collection is

performed with the log block move, it first selects a victim log

block. Then, if there are valid pages in the victim, copying

valid pages to a clean data block are repeatedly performed until

there are no valid pages in the victim log. Then, the victim is

erased, and the victim and the data block are switched. Thus,

there are seven states (S0 – S6) from the start to the termination

of the garbage collection.

If new I/O requests arrive in the middle of the background

garbage collection, it should be terminated in a stable state.

Among the states, only S1 is a stable state except the start and

the termination. Once copying valid pages to a data block is

started (S2), the states are unstable because the valid pages are

scattered to the victim log block, the current data block, and a

new data block. Thus, we wait until the garbage collection is

finished. However, the waiting time is not very long because it

performs multiple page copies and one block erase.

Figure 1. Work flow of the log block move.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 1 294 - 297

296
IJRITCC | January 2015, Available @ http://www.ijritcc.org

Figure 2. Work flow of the log block merge.

Meanwhile, Fig. 2 shows the state transition of the repeated

log block merge process. It first selects a victim log block.

Then, it searches for an associated data block. If there is no

associated data block, that is, there is no valid pages, it erases

the victim block and the garbage collection is finished.

However, if the associated data block is found, the merge with

the data block is performed. Valid pages are copied to a new

data block, and the old data block is erased. This merge is

repeated performed until there is no valid page. Finally, the log

block is erased. Thus, there are eight states (S0 – S7) from the

start to the termination of the garbage collection.

Among the states, S3 and S4 are unstable. Once the merge

with a data block is started, valid pages are scattered. Thus, we

wait until the merge with the data block is finished. Then, the

garbage collection is instantly terminated. When the next

garbage collection is initiated, it will find this victim log block

again, and its association degree is lower than before. The

worst-case waiting time is one block merge time, which

includes multiple page copies and one block erase. Fig. 3

shows the pseudo code of the background garbage collection.

Figure 3. Pseudo code of background garbage collection.

IV. CONCLUSION

This work designed the background garbage collection that

performed the garbage collection in advance in the idle time for

the SBAST FTL scheme with the selective garbage collection.

If the I/O requests arrived in the middle of the background

garbage collection, it should be terminated in stable states to

serve the requests instantly. For the purpose, we analyzed each

garbage collection process and identified the stable states. From

the analysis, the worst influence on the foreground requests

was limited to multiple page copies and one block erase. With

this cost, we can get a considerable performance benefit

because log blocks are reclaimed in advance or the association

degree of log blocks is lower.

ACKNOWLEDGMENT

This study was supported by the Research Program funded

by the Seoul National University of Science and Technology

(2104-0744).

REFERENCES

[1] I. Shin, “Performance Evaluation of Background Garbage

Collection for Solid State Drives”, Information Journal, vol. 17,

pp. 5557–5566, November 2014.

[2] A. Ban, “Flash file system”, U.S. Patent, 5,404,485, April 1995.

[3] I. Shin, “Light Weight Sector Mapping Scheme for NAND-

based Block Devices”, IEEE Trans. on Consumer Electronics,

vol. 56, pp. 651–656, May 2010.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 1 294 - 297

297
IJRITCC | January 2015, Available @ http://www.ijritcc.org

[4] A. Ban, “Flash file system optimized for page-mode flash

technologies”, U.S. Patent. 5,937,425, August 1999.

[5] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho, “A space-

efficient flash translation layer for compactflash systems”, IEEE

Transactions on Consumer Electronics, vol. 48, pp. 366–375,

2002.

[6] S. W. Lee, D. J. Park, T. S. Chung, W. K. Choi, D. H. Lee, S.

W. Park, and H. J. Song, “A log buffer based flash translation

layer using fully associative sector translation”, ACM

Transactions on Embedded omputing Systems, vol. 6, 2007.

[7] I. Shin, “Selective Garbage Collection for Hybrid Mapping

Flash Translation Layer based on Cost-benefit Analysis”,

Information Journal, vol. 17, pp. 6427–6432, December 2014.

