
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 1 162 - 164

162
IJRITCC | January 2015, Available @ http://www.ijritcc.org

A Review on Implementation of RSA Cryptosystem Using Ancient Indian

Vedic Mathematics

Shahina M. Salim
M.E. Student, Department of Electronics and Tele-

communication,

 G. H. Raisoni C.O.E.T, S.G.B. Amravati University,

Amravati(Maharashtra State),India.

shahina.salim786@gmail.com

 S. A. Lakhotiya
Professor, Department of Electronics and Tele-

communication,

Amravati(Maharashtra State),India

sonal.lakhotiya@raisoni.net

Abstract— RSA is one of the most safest standard algorithm based on public key, for providing security in network. The hierarchical overlay

multiplier is used in RSA circuitry for multiplication operation. The most significant aspect is the development of division architecture based on

Ancient Indian Vedic Mathematics and embedding it in RSA encryption/decryption circuitry for improved efficiency. Typically, modular-

multiplication algorithm is used since no trial division is necessary, and the carry-save addition (CSA) is employed to reduce the critical path.

The implementation of RSA encryption/decryption algorithm using the algorithm of Ancient Indian Vedic Mathematics that have been modified

to improve performance. RSA circuitry implemented using vedic multiplication is efficient in terms of area, speed compared to its

implementation using conventional multiplication.

Keywords— RSA Cryptosystem, Modular Multiplication,, Modular exponentiation, Vedic Mathematics, FPGA, VHDL.

__*****___

I. INTRODUCTION

The word ‗Vedic‘ is derived from the word ‗veda‘ which

means the store-house of all knowledge. Vedic mathematics is

mainly based on 16 Sutras (or aphorisms) dealing with various

branches of mathematics like arithmetic, algebra, geometry

etc.

 The standard techniques for providing privacy and security in

data networks include encryption/decryption algorithms such

as Advanced Encryption System (AES) (private-key) and RSA

(public- key). Rivest–Shamir–Adleman (RSA) is one of the

most widely preferred algorithms used in public-key

cryptography systems. RSA is one of the safest standard

algorithms, based on public-key, for providing security in

networks. RSA has a very slow ciphering rate if used in

software. Security has become an increasingly important

feature with the growth of electronic communication. The

development of public-key cryptography (PKC) is the greatest

and perhaps the only true revolution in the entire history of

cryptography . Many PKC algorithms such as Rivest–Shamir–

Adleman (RSA) algorithm and Diffie–Hellman algorithm

have been proposed. PKC is asymmetric involving the use of

two separate keys, in contrast to symmetric conventional

encryption, which uses only a single key. The use of two keys

provides solution to key management and user authentication

in a cryptosystem.

RSA algorithm is the best known, the most versatile and

widely used public key algorithm today RSA depends on the

modular exponentiation of long integers, which is the critical

operation for a variety of the most widely accepted

cryptosystems . Therefore, fast modular multiplication

becomes the key to real-time encryption and decryption since

a high throughput is needed in data communication. The most

widely used algorithm for efficient modular multiplication is

Montgomery‘s algorithm. The binary Montgomery‘s modular-

multiplication algorithm employs only simple addition,

subtraction, and shift operation to avoid trial division, a critical

and time-consuming operation in conventional modular

multiplication. The modular exponentiation is usually

accomplished by performing repeated modular multiplications.

II. LITERATURE REVIEW

 Sriraman, L, Kumar K.S, Prabakar, T.N [1] presented Vedic

mathematics is one of the ancient Indian mathematics which

contains sixteen sutras. These sutras can be used to solve

problems in any branch of Mathematics in a faster way. The

proposed squarer is based on sutra called Ekadhikena Purvena.

It means that ―one more than the previous‖. This sutra is used

for finding the square of decimal numbers ending with `5'. In

this paper this sutra is generalized and used for squaring of

binary numbers.

Gustavo D. Sutter, Jean-Pierre Deschamps, and José Luis

Imaña [2] presented Modular exponentiation with large

modulus and exponent, which is usually accomplished by

repeated modular multiplications, has been widely used in

public key cryptosystems. Typically, the Montgomery‘s

modular-multiplication algorithm is used since no trial

division is necessary, and the carry–save addition (CSA) is

employed to reduce the critical path. In this paper, we

optimize the Montgomery‘s multiplication and propose

architectures to perform the least significant bit first and the

most significant bit first algorithm [3],[4],[5].

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 1 162 - 164

163
IJRITCC | January 2015, Available @ http://www.ijritcc.org

Xiaoming Tang [6] presented A certain range of real number

presented by ASCII code is converted to single precision

floating-point by pipeline processing with VHDL language.

Through functional simulation and download verification, the

conversion time is about 10 us when the clock is 50 MHz .

Huddar, S.R. , Rupanagudi, S.R. , Kalpana, M. , Mohan, S. [7]

presented With the advent of new technology in the fields of

VLSI and communication, there is also an ever growing

demand for high speed processing and low area design. It is

also a well known fact that the multiplier unit forms an

integral part of processor design. Due to this regard, high

speed multiplier architectures become the need of the day. In

this paper, we introduce a novel architecture to perform high

speed multiplication using ancient Vedic maths techniques.

Jaina, D, Sethi, K. , Panda, R. [8] presented Real-time signal

processing requires high speed and high throughput

Multiplier-Accumulator (MAC) unit that consumes low

power, which is always a key to achieve a high performance

digital signal processing system. In this paper, design of MAC

unit is proposed. The multiplier used inside the MAC unit is

based on the Sutra "Urdhva Tiryagbhyam" (Vertically and

Cross wise) which is one of the Sutras of Vedic mathematics.

Vedic mathematics is mainly based on sixteen Sutras and was

rediscovered in early twentieth century. In ancient India, this

Sutra was traditionally used for decimal number

multiplications within less time. The same concept is applied

for multiplication of binary numbers to make it useful in the

digital hardware.

G.P. Saggese , L. Romano[9] presented An accelerator which

can effectively improve the security and the performance of

virtually any RSA cryptographic application. The accelerator

integrates two crucial security- and performance enhancing

facilities: an RSA processor and an RSA key-store. An RSA

processor is a dedicated hardware block which executes the

RSA algorithm. An RSA key-store is a dedicated device for

securely storing RSA key-pairs. We chose RSA since it is by

far the most widely adopted standard in public key

cryptography[10].

III. PROPOSED WORK

The RSA Algorithm is based on the mathematical fact that it is

easy to find and multiply the large prime numbers together,

but it is extremely difficult to factor their product. The public

and private keys in RSA are based on very large prime

numbers[10]. The algorithm is simple but the complexity lies

in the selection and generation of public and private keys. The

algorithm steps are as follows:

Fig: Flow chart of RSA algorithm

The RSA algorithm involves three steps: key generation,

encryption and decryption.

1. Key generation :

RSA involves a public key and a private key. The public key

can be known by everyone and is used for encrypting

messages. Messages encrypted with the public key can only be

decrypted in a reasonable amount of time using the private

key[11]. The keys for the RSA algorithm are generated the

following way:

1. Choose two distinct prime numbers p and q.

 For security purposes, the integers p and q should be

chosen at random, and should be of similar bit-length.

Prime integers can be efficiently found using a

primality test.

2. Compute n = pq.

 n is used as the modulus for both the public and

private keys. Its length, usually expressed in bits, is

the key length.

3. Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1) = n - (p + q

-1), where φ is Euler's totient function.

4. Choose an integer e such that 1 < e < φ(n) and gcd(e,

φ(n)) = 1; i.e., e and φ(n) are coprime.

 e is released as the public key exponent.

 e having a short bit-length and small Hamming

weight results in more efficient encryption – most

commonly 2
16

 + 1 = 65,537. However, much smaller

http://en.wikipedia.org/wiki/Key_%28cryptography%29
http://en.wikipedia.org/wiki/Private_key
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Primality_test
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Key_length
http://en.wikipedia.org/wiki/Euler%27s_totient_function
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Coprime
http://en.wikipedia.org/wiki/Bit-length
http://en.wikipedia.org/wiki/Hamming_weight
http://en.wikipedia.org/wiki/Hamming_weight
http://en.wikipedia.org/wiki/Hamming_weight

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 1 162 - 164

164
IJRITCC | January 2015, Available @ http://www.ijritcc.org

values of e (such as 3) have been shown to be less

secure in some settings.

5. Determine d as d ≡ e
−1

 (mod φ(n)); i.e., d is the

multiplicative inverse of e (modulo φ(n)

 This is more clearly stated as: solve for d given d⋅e ≡

1 (mod φ(n))

 This is often computed using the extended Euclidean

algorithm. Using the pseudocode in the Modular

integers section, inputs a and n correspond to e and

φ(n), respectively.

 d is kept as the private key exponent.

The public key consists of the modulus n and the public (or

encryption) exponent e. The private key consists of the

modulus n and the private (or decryption) exponent d, which

must be kept secret. p, q, and φ(n) must also be kept secret

because they can be used to calculate d.

2. Encryption :

A transmits its public key (n, e) to B and keeps the private key

d secret. B then wishes to send message P to A , then

computes the ciphertext C corresponding to

C = P
e
 (mod n)

This can be done efficiently, even for 500-bit numbers, using

Modular exponentiation. B then transmits C to A[10].

3. Decryption :

A can recover P from C by using its private key exponent d

via computing

 P = C
d
 (mod n)

Thus we get the original message.

IV. CONCLUSION

The RSA encryption/decryption system is implemented using

the Vedic Mathematics algorithm to increase its computation

speed. The advantage of the Vedic multiplier is that it

calculates the partial products in one single step and there are

no shift operations which saves the time and the hardware. As

the number of message bits increases the gate delay as well as

the area increase slowly. Hence it can be used effectively in all

the cryptographic applications. It is found that this design is

quite efficient in terms of silicon area and speed and should

result in substantial savings of resources in hardware when

used for crypto and security applications.

REFERENCES

[1] Sriraman, L. Dept. of Electron. & Commun. Eng., Oxford

Eng. Coll., Trichy, India ; Kumar, K.S. ; Prabakar, T.N ,―

Design and FPGA implementation of binary squarer using

Vedic mathematics‖ IEEE Trans. Ind. Electron., July 2013.

[2] Gustavo D. Sutter, Member, IEEE, Jean-Pierre Deschamps,

and José Luis Imaña ,― Modular Multiplication and

Exponentiation Architectures for Fast RSA Cryptosystem

Based on Digit Serial Computation‖ IEEE Trans. Ind.

Electron., vol. 57, no. 10, pp. 3308–3316, Oct. 2010.

[3] E. Monmasson and M. N. Cirstea, ―FPGA design

methodology for industrial control systems—A review,‖

IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1824–1842,

Aug. 2007.

[4] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes,

―Features, design tools, and application domains of

FPGAs,‖ IEEE Trans. Ind. Electron., vol. 54, no. 4, pp.

1810–1823, Aug. 2007.

[5] R. L. Rivest, A. Shamir, and L. Adleman, ―A method for

obtaining digital signatures and public-key cryptosystems,‖

Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978.

[6] Xiaoming Tang ; Res. Inst. of Inf. Fusion, Naval Aeronaut.

& Astronaut. Univ., Yantai, China; Tao Zhang ; Zhenjie

Wang ; Wenliang Yuan, ―A novel data format conversion

method based on FPGA‖ IEEE Trans. Ind. Electron ,July

2011.

[7] Huddar, S.R. ; WorldServe Educ., Bangalore, India ;

Rupanagudi, S.R. ; Kalpana, M. ; Mohan, S. , ―Novel high

speed vedic mathematics multiplier using compressors‖

IEEE Trans. Ind. Electron ,March 2013.

[8] Jaina, D. ; Dept. of Electron. & Telecommun. Eng., VSS

Univ. of Technol., Burla, India ; Sethi, K. ; Panda, R,

―Vedic Mathematics Based Multiply Accumulate Unit‖

IEEE Trans. Ind. Electron ,Oct. 2011.

[9] G.P. Saggese a, L. Romano a,*, N. Mazzocca b, A.

Mazzeo, ―A tamper resistant hardware accelerator for RSA

cryptographic applications, Journal of Systems Architecture

50 (2004) 711–727 ‖.

[10] William Stallings, ― Cryptography and Nework Security‖,

Third Edition, Pearson Education, 2003

[11] S.E. Eldridge, C.D. Walter, Hardware Implementation of

Montgomery‘s modular multiplication algorithm, IEEE

Trans. Comput. 42 (6) (1993) 693–699.

[12] A.Z. Alkar, R. So¨ nmez, An ASIC Implementation of the

RSA Algorithm 18th MUG International Conference,

February 2002.

[13] Sumit Vaidya, Deepak Dandekar, ―Delay-Power

Performance Comparison of multipliers in VLSI circuit

design‖, International Journal of Computer Networks &

Communications (IJCNC), Vol.2, No.4, July 2010.

http://en.wikipedia.org/wiki/Modular_multiplicative_inverse
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers
http://en.wikipedia.org/wiki/Modular_exponentiation

