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Abstract— RSA is one of the most safest standard algorithm based on public key, for providing security in network. The hierarchical overlay 

multiplier is used in RSA circuitry for multiplication operation. The most significant aspect is the development of division architecture based on 

Ancient Indian Vedic Mathematics and embedding it in RSA encryption/decryption circuitry for improved efficiency. Typically, modular-

multiplication algorithm is used since no trial division is necessary, and the carry-save addition (CSA) is employed to reduce the critical path. 

The implementation of RSA encryption/decryption algorithm using the algorithm of Ancient Indian Vedic Mathematics that have been modified 

to improve performance. RSA circuitry implemented using vedic multiplication is efficient in terms of area, speed compared to its 

implementation using conventional multiplication. 
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I. INTRODUCTION 

The word ‗Vedic‘ is derived from the word ‗veda‘ which 

means the store-house of all knowledge. Vedic mathematics is 

mainly based on 16 Sutras (or aphorisms) dealing with various 

branches of mathematics like arithmetic, algebra, geometry 

etc. 

 The standard techniques for providing privacy and security in 

data networks include encryption/decryption algorithms such 

as Advanced Encryption System (AES) (private-key) and RSA 

(public- key).  Rivest–Shamir–Adleman (RSA) is one of the 

most widely preferred algorithms used in public-key 

cryptography systems. RSA is one of the safest standard 

algorithms, based on public-key, for providing security in 

networks. RSA has a very slow ciphering rate if used in 

software. Security has become an increasingly important 

feature with the growth of electronic communication. The 

development of public-key cryptography (PKC) is the greatest 

and perhaps the only true revolution in the entire history of 

cryptography . Many PKC algorithms such as Rivest–Shamir–

Adleman (RSA) algorithm  and Diffie–Hellman algorithm 

have been proposed. PKC is asymmetric involving the use of 

two separate keys, in contrast to symmetric conventional 

encryption, which uses only a single key. The use of two keys 

provides solution to key management and user authentication 

in a cryptosystem.  

 

RSA algorithm is the best known, the most versatile and 

widely used public key algorithm today  RSA depends on the 

modular exponentiation of long integers, which is the critical 

operation for a variety of the most widely accepted 

cryptosystems . Therefore, fast modular multiplication 

becomes the key to real-time encryption and decryption since 

a high throughput is needed in data communication. The most 

widely used algorithm for efficient modular multiplication is 

Montgomery‘s algorithm. The binary Montgomery‘s modular-

multiplication algorithm employs only simple addition, 

subtraction, and shift operation to avoid trial division, a critical 

and time-consuming operation in conventional modular 

multiplication. The modular exponentiation is usually 

accomplished by performing repeated modular multiplications. 

II. LITERATURE REVIEW 

 Sriraman, L, Kumar K.S, Prabakar, T.N [1] presented Vedic 

mathematics is one of the ancient Indian mathematics which 

contains sixteen sutras. These sutras can be used to solve 

problems in any branch of Mathematics in a faster way. The 

proposed squarer is based on sutra called Ekadhikena Purvena. 

It means that ―one more than the previous‖. This sutra is used 

for finding the square of decimal numbers ending with `5'. In 

this paper this sutra is generalized and used for squaring of 

binary numbers. 

 

Gustavo D. Sutter, Jean-Pierre Deschamps, and José Luis 

Imaña [2] presented Modular exponentiation with large 

modulus and exponent, which is usually accomplished by 

repeated modular multiplications, has been widely used in 

public key cryptosystems. Typically, the Montgomery‘s 

modular-multiplication algorithm is used since no trial 

division is necessary, and the carry–save addition (CSA) is 

employed to reduce the critical path. In this paper, we 

optimize the Montgomery‘s multiplication and propose 

architectures to perform the least significant bit first and the 

most significant bit first algorithm [3],[4],[5]. 
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Xiaoming Tang [6] presented A certain range of real number 

presented by ASCII code is converted to single precision 

floating-point by pipeline processing with VHDL language. 

Through functional simulation and download verification, the 

conversion time is about 10 us when the clock is 50 MHz . 

 

Huddar, S.R. , Rupanagudi, S.R. , Kalpana, M. , Mohan, S. [7] 

presented With the advent of new technology in the fields of 

VLSI and communication, there is also an ever growing 

demand for high speed processing and low area design. It is 

also a well known fact that the multiplier unit forms an 

integral part of processor design. Due to this regard, high 

speed multiplier architectures become the need of the day. In 

this paper, we introduce a novel architecture to perform high 

speed multiplication using ancient Vedic maths techniques. 

 

Jaina, D, Sethi, K. , Panda, R. [8] presented Real-time signal 

processing requires high speed and high throughput 

Multiplier-Accumulator (MAC) unit that consumes low 

power, which is always a key to achieve a high performance 

digital signal processing system. In this paper, design of MAC 

unit is proposed. The multiplier used inside the MAC unit is 

based on the Sutra "Urdhva Tiryagbhyam" (Vertically and 

Cross wise) which is one of the Sutras of Vedic mathematics. 

Vedic mathematics is mainly based on sixteen Sutras and was 

rediscovered in early twentieth century. In ancient India, this 

Sutra was traditionally used for decimal number 

multiplications within less time. The same concept is applied 

for multiplication of binary numbers to make it useful in the 

digital hardware. 

 

G.P. Saggese , L. Romano[9] presented An accelerator which 

can effectively improve the security and the performance of 

virtually any RSA cryptographic application. The accelerator 

integrates two crucial security- and performance enhancing 

facilities: an RSA processor and an RSA key-store. An RSA 

processor is a dedicated hardware block which executes the 

RSA algorithm. An RSA key-store is a dedicated device for 

securely storing RSA key-pairs. We chose RSA since it is by 

far the most widely adopted standard in public key 

cryptography[10]. 

III. PROPOSED WORK 

The RSA Algorithm is based on the mathematical fact that it is 

easy to find and multiply the large prime numbers together, 

but it is extremely difficult to factor their product. The public 

and private keys in RSA are based on very large prime 

numbers[10]. The algorithm is simple but the complexity lies 

in the selection and generation of public and private keys. The 

algorithm steps are as follows: 

 

 

 
Fig: Flow chart of RSA algorithm 

The RSA algorithm involves three steps: key generation, 

encryption and decryption. 

1. Key generation : 

RSA involves a public key and a private key. The public key 

can be known by everyone and is used for encrypting 

messages. Messages encrypted with the public key can only be 

decrypted in a reasonable amount of time using the private 

key[11]. The keys for the RSA algorithm are generated the 

following way: 

1. Choose two distinct prime numbers p and q. 

 For security purposes, the integers p and q should be 

chosen at random, and should be of similar bit-length. 

Prime integers can be efficiently found using a 

primality test. 

2. Compute n = pq. 

 n is used as the modulus for both the public and 

private keys. Its length, usually expressed in bits, is 

the key length. 

3. Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1) = n - (p + q 

-1), where φ is Euler's totient function. 

4.  Choose an integer e such that 1 < e < φ(n) and gcd(e, 

φ(n)) = 1; i.e., e and φ(n) are coprime. 

 e is released as the public key exponent. 

 e having a short bit-length and small Hamming 

weight results in more efficient encryption – most 

commonly 2
16

 + 1 = 65,537. However, much smaller 
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values of e (such as 3) have been shown to be less 

secure in some settings.  

5. Determine d as d ≡ e
−1

 (mod φ(n)); i.e., d is the 

multiplicative inverse of e (modulo φ(n) 

 This is more clearly stated as: solve for d given d⋅e ≡ 

1 (mod φ(n)) 

 This is often computed using the extended Euclidean 

algorithm. Using the pseudocode in the Modular 

integers section, inputs a and n correspond to e and 

φ(n), respectively. 

 d is kept as the private key exponent. 

The public key consists of the modulus n and the public (or 

encryption) exponent e. The private key consists of the 

modulus n and the private (or decryption) exponent d, which 

must be kept secret. p, q, and φ(n) must also be kept secret 

because they can be used to calculate d. 

2. Encryption : 

A transmits its public key (n, e) to B and keeps the private key 

d secret. B then wishes to send message P  to A ,  then 

computes the ciphertext C corresponding to  

C = P
e
 (mod n) 

This can be done efficiently, even for 500-bit numbers, using 

Modular exponentiation. B then transmits C to A[10]. 

3. Decryption : 

A can recover P from C  by using its  private key exponent d 

via computing 

                       P = C 
d
 (mod n) 

 

Thus we get the original message. 

 

IV. CONCLUSION 

The RSA encryption/decryption system is implemented using 

the Vedic Mathematics algorithm to increase its computation 

speed. The advantage of the Vedic multiplier is that it 

calculates the partial products in one single step and there are 

no shift operations which saves the time and the hardware. As 

the number of message bits increases the gate delay as well as 

the area increase slowly. Hence it can be used effectively in all 

the cryptographic applications. It is found that this design is    

quite efficient in terms of silicon area and speed and should     

result in substantial savings of resources in hardware when  

used for crypto and security applications. 
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