
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 1 131 - 135

131
IJRITCC | January 2015, Available @ http://www.ijritcc.org

Real-time capabilities in the standard Linux Kernel: How to enable and use

them?

1
Luc Perneel,

2
Fei Guan,

3
Long Peng,

4
Hasan Fayyad-Kazan,

5,6
Martin Timmerman

1
Electronics and Informatics Department

Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel-Belgium

{
1
luc.perneel,

 2
feiguan,

3
longpeng,

4
hafayyad,

5
martin.timmerman } @vub.ac.be

6
CEO Dedicated Systems Experts NV/SA Belgium m.timmerman@dedicated-systems.com

Abstract— Linux was originally designed as a general purpose operating system without consideration for real-time applications. Recently, it

has become more attractive to the real-time community due to its low cost and open source approach. In order to help the real-time community,

we will present in this paper the practical steps required to achieve a real-time Linux by applying the PREEMPT-RT patches which will provide

Linux with these capabilities. We will also focus on some of the kernel configuration that should get attention while building the kernel in order

to maintain the real-time behavior of the system during runtime.

__*****___

I. INTRODUCTION

Because of its free open source advantage, stability and

supporting multi-processor architecture, Linux operating

system (OS) stands high in many (embedded) commercial

product developers’ favor and becomes the fastest-growing

one of (embedded) operation systems [1]. Moreover, its

reliability and robustness made it widely used in safety

margins and mission critical systems.

In these contexts, time is extremely important: these

systems must meet their temporal requirements in every

failure and fault scenario. A system where the correctness of

an operation depends upon the time in which the operation is

completed is called a real-time system. [2]

Real-time is an often misunderstood and/or misapplied

property of operating systems. It doesn’t mean fast; Real-time

deals with guarantees, not with raw speed [3]. In other words,

the system must be deterministic to guarantee timing behavior

in the face of varying loads (from minimal to worst case) [4].

Although Linux is a popular and widely used OS, the

standard Linux kernel fails to provide the timing guarantees

required by critical real-time systems [5]. To circumvent this

problem, academic research and industrial efforts have created

several real-time Linux implementations [6]. The most

adopted solutions are RTLinux/RTCore, RTAI, Xenomai and

the PREEMPT-RT [7] patch. Each one of these real-time

enhanced kernels has its internal architecture, its strength and

weaknesses [8]. All these approaches operate around the

periphery of the kernel, except PREEMPT-RT patch which is

mainlined in the current kernel and used by great actors such

as WindRiver in their Linux4 [9] solution.

We will focus in this paper on the real-time capabilities

provided by PREEMPT-RT patch to the standard 2.6 kernel,

and show how to enable and use them correctly.

II. REAL-TIME MUST BE EITHER HARD OR SOFT

Real-time systems and applications can be classified in

several ways. One classification divides them in two classes:

“hard” real-time and “soft” real-time.

A hard real-time system is characterized by the fact that

meeting the applications’ deadlines is the primary metric of

success [10]. In other words, failing to meet the applications’

deadlines can have a catastrophic result.

Conversely, a soft real-time system is suitable to run

applications whose deadlines must be satisfied “most of the

times,” [10]. In other words, a soft real-time system can miss

deadline without the overall system failing.

III. LINUX PREEMPT-RT

Linux Preempt-RT (LinuxPrt) [11, 12] is a Linux real-time

patch maintained by Ingo Molnar and Thomas Gleixner [15].

This patch is the most successful Linux modification that

transforms the Linux into a fully preemptible kernel without

the help of microkernel (the architecture implemented in RTAI

or RTLinux) [13]. It allows almost the whole kernel to be

preempted, except for a few very small regions of code

(“raw_spinlock critical regions”). This is done by replacing

most kernel spinlocks with mutexes that support priority

inheritance and are preemptive, as well as moving all

interrupts to kernel threads [8, 14].

Also, this patch presents new operating system enrichments

to reduce both maximum and average response time of the

Linux kernel [8]. These enhancements were progressively

added to the Linux kernel to offer real-time capabilities. The

most important enhancements are: High resolution timers (a

patch set, which is independently maintained by Thomas

Gliexner [15], which allows precise timed scheduling and

removes the dependency of timers on the periodic scheduler

tick [16]) , complete kernel preemption, interrupts

management as threads, hard and soft IRQ as threads, and

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 1 131 - 135

132
IJRITCC | January 2015, Available @ http://www.ijritcc.org

Figure 1: Standard 2.6 Linux kernel with preemption

priority inheritance mechanism. Some of these new features

like threaded IRQ are currently pushed to the mainline kernel

by the patch maintainers [8].

IV. REAL-TIME IN THE STANDARD 2.6 KERNEL

Since the kernel version 2.4, a lot of improvements

regarding real-time behaviour found their way into the

standard “Vanilla” kernel. In this kernel version (2.4), when a

user space process makes a call into the kernel (through a

system call), it cannot be preempted. This means that if a low-

priority process makes a system call, a high-priority process

must wait until that call is complete before it can gain access

to the CPU.

But some patches were already there to enable some

“voluntary” preemption, in a way that the kernel allowed

preemption on locations where it believed it was safe to do so.

Since the Linux 2.6 (Figure 1) releases, these voluntary

preemption points

were introduced in

the Vanilla kernel.

Also in Linux

version 2.6, a more

predictable O(1)

scheduler was

introduced which is

a great benefit for

the performance,

even when a

large number of

tasks exists, as it can operate in bounded time regardless of the

number of tasks to execute [4]).

Remark that for non-real-time threads, the O(1) scheduler

has been replaced by the “Completely Fair Scheduler” (CFS)

in Linux version 2.6.23, which is a O(log N) scheduler.

Linux is not a hard real-time operating system as it does

not guarantee a task to meet strict deadlines [17]. Today, in the

2.6 kernel, you can get soft real-time performance through a

simple configuration to make the kernel fully preemptable [4].

This can be achieved by applying the PREEMPT-RT patch

that adds the new configuration option

CONFIG_PREEMPT_RT which tries to minimize the time that

preemption is disabled (by locks, interrupts, soft interrupt

handling and so on). [18]

Although this configuration option enables soft real-time

performance, it does so at a cost. That cost is slightly lower

throughput and a small reduction in kernel performance

because of the added overhead of the CONFIG_RTPREEMPT

option [4]. This is normal and a fundamental rule in real-time

software: latency improvements have a negative impact on

throughput. We did some quick measurements using an NFS

exported partition on the unit under test and reading a huge file

from this exported file system mounted on a remote machine.

To avoid file system caching effects, the test was done after a

reboot of both machines. This very rudimentary test showed a

negative throughput impact between 5 and 10% by enabling

the PREEMPT_RT patch!

Note that the Linux kernel base code is continuously

growing with modifications and enhancements through the

Linux evolution. For instance, more and more PREEMPT_RT

features made their way into the Vanilla kernel. An example of

that is the “priority inheritance mutex” concept which is the

solution of the priority inversion avoidance mechanisms on

protection mechanisms, where a low priority thread cannot

block a high priority one, moved from the PREEMPT_RT

patch to the Vanilla kernel in V2.6.18.

Also the “kernel lock” concept (the famous Big Kernel

Lock (BKL)) which was introduced for multiprocessor

systems support was removed in the kernel version 2.6.39

because of its serious impact on latencies in such systems.

Although a lot of improvements moved from the

PREEMPT_RT to the mainline Vanilla kernel, there are still

different things lacking and therefore the PREEMPT_RT

patch is still required and maintained.

V. BUILDING REAL-TIME LINUX FOR X86 PLATFORM USING

PREEMPT_RT

Building a complete Linux environment for a custom board

remains a daunting task if you have to do everything by

yourself (build cross-tool chains, libraries, kernel, and setup

root system). Furthermore, you will need a boot loader (mostly

u-boot is used). Luckily, most board vendors deliver their

boards with all tools needed and pre-configured kernel / root

file system.

Setting up the kernel configuration is needed to define how

the kernel will behave. For example, will it be preemptible or

not? Also, the kernel configuration should define the hardware

it needs to support (linked in the kernel itself or by using

loadable modules).

In general, you should know the Linux kernel internals in

order to setup a configuration that is specific for your

platform. Surely, when the RAM size is limited, disabling

some kernel features and modules can decrease the required

memory size for running the kernel. Sometimes you need to

take a look into the code to understand the impact of some

options. Anyhow, setting up a Board Support Package (BSP)

configuration is a difficult task for any operating system and

requires some (serious) expertise from the developer.

Remark as well that some modules and/or kernel options

can affect the real-time performance. So you should be careful

in this issue and it is recommended that you start from a

specialised vendor release or from an OSADL version.

We built a real-time (RT) Linux version for an x86 platform

using the Vanilla Linux 2.6.33.7 and the PREEMPT_RT patch

v30. This PREEMPT_RT patch was the latest version

officially released by OSADL [19] (the Open Source

Automation Development Lab).

We started with the ODSAL kernel configuration. We

removed only the unnecessary kernel modules in order to have

the minimal kernel footprint. (Ex: USB support was omitted in

the kernel). Our configuration is considered as an optimistic

“best possible” configuration. Further, we changed some

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 1 131 - 135

133
IJRITCC | January 2015, Available @ http://www.ijritcc.org

kernel configurations because their default settings may

seriously jeopardize the real-time behaviour.

We are going to highlight on some of the configuration

options that should get some care when building a RT kernel

in order not to affect the real time performance and behaviour

of Linux during the runtime. Those configuration options are

the following:

1) Optimize for size

This option is typically used in embedded systems due to the

RAM size constraint. Remark that this option can increase

cache hits and thus performance as well. But this will largely

depend on your application and target.

2) Tickless system

This option generates an operating system clock tick only

when a thread wants to be waken-up instead of a periodic one.

This improves power consumption and CPU usage (it was

mainly introduced for decreasing large virtual machine farms

CPU usage). However, the clock tick becomes more complex

with this option, and this option does not avoid clock ticks. So

in the end, you will have less but longer ticks, which is not

good for real-time performance.

3) RT Preemption model

This option should be enabled with the value of real-time to

make sure that the kernel is a real-time preemptible kernel.

4) Power management

It should be disabled. We do not want to put the CPU in a

lower power state. The reason for this is that it can take some

time to throttle back towards full CPU speed. Again this can

impact latency on critical moments and is thus bad for real-

time purposes.

5) Minimal modules

Do not add modules that you will not use. The less code

included in the kernel, the less that can jeopardize the real-

time behaviour. Not all modules are already well behaving.

6) Disable memory swapping

When memory is swapped away onto some storage medium,

the time to retrieve it when needed is a huge factor slower than

when loaded from RAM. So it is not something you want to do

when keeping deadlines is your concern.

The selected configuration settings will be finally stored in a

.config file. This .config file will be used by the makefile for

setting the compile options, creating configuration header files

and selecting the files that should be compiled.

This file can be easily found in a running Linux distribution

in the directory /proc under the name config.gz (path:

/proc/config.gz) (at least if this option is built in the kernel).

This file can also be manually adapted (if you are

experienced!) and can be used as a base for setting up a new

configuration (by using make oldconfig).

VI. KERNEL RUNTIME CONFIGURATION

Building a kernel with the PREEMPT_RT patch and

configuring it correctly is not always enough to guarantee real-

time latencies. Some precautions still have to be taken at

kernel runtime configuration.

The build “run-away” protection in the kernel is an

important one. If the real-time priority threads take too much

CPU time (default: if more than 950ms used during a second),

then all real-time priority scheduling is stopped for 50ms.

Although at first sight this looks a nice to have safety system,

it is not something you want in a real-time system! The latency

is suddenly increased with a horrible 50ms. Real-time systems

should keep their deadlines and should go into a safe state

when these deadlines are missed (which are typically done by

external monitoring and watchdogs). You should disable this

feature by setting the kernel variable

/proc/sys/kernel/sched_rt_runtime_us to -1,

and yes very low priority threads might never get the CPU.

You should avoid this in your design.

VII. APPLICATION CONFIGURATION

Your applications have to be built and configured correctly

also! You should not allow the kernel to allocate real physical

memory only upon first use (the default behaviour in the

kernel). For instance, assume that you allocate a block of 1MB

memory using the malloc call. What you get is just the

virtual memory region of your process space, linked to the one

and only read-only physical memory zero page (which

contains zero data). As a result, reading from this allocated

memory is not a problem and will always return zero.

However, upon first write access into this virtual memory

space, a page fault will occur and a free physical page will be

linked to the virtual page. This is called the Copy-On-Write

behaviour. These page faults will be added to the worst case

latency in your application and that is something one does not

want in a RT system.

A solution for that is to use the mlockall() system call

so that each virtual allocation will be immediately linked with

physical memory. This of course slows down the start-up

process, but improves latency at later times. Another solution

is of course to perform a write on each page after allocation.

However, the latter does not help for the allocation of the

thread stack segments, something which is handled as well

when using mlockall().

Still these precautions are not enough! One kernel feature

that cannot be disabled is the eviction of read-only memory

pages which are loaded from some storage medium. Even

when swapping is not enabled in the kernel, this can still

happen. Such read-only pages could be for instance the

application code! Again this is something one does not want to

happen.

The only solution here is to have the application started

from a RAM filesystem (to make the read-only pages de-facto

present in RAM). This should not only be the case for the real-

time application, but as well for the libraries the application

uses. As an alternative, you can use a static linked application.

VIII. TESTING THE BUILT KERNEL TO MAKE SURE OF THE

AVAILABILITY OF REAL TIME CAPABILITIES

Taking all the above mentioned precautions into account,

we created a testing application, which is intended to test the

real-time behaviour of the PREEMPT_RT patch. In this

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 1 131 - 135

134
IJRITCC | January 2015, Available @ http://www.ijritcc.org

application, we tested the behaviour of the operating system

clock, thread scheduling latency, semaphores, mutexes and

finally interrupt latencies and highest sustainable interrupt

frequency.The detailed results can be found on [20].

So our answer for the first question: does the

PREEMPT_RT patch helps to achieve real-time performance

is clearly yes, especially if we compare Linux with for

instance a standard Android distribution. In this comparison,

we can see the huge difference (multiple factors) between

these variants.

The second question is if Linux is a real-time OS? Indeed,

there is a good control on worst case latencies. However, these

are still a factor away from the commercial real-time operating

systems, such as QNX and Windows CE. It largely depends on

your requirements and how long the latencies are allowed to

be. But as latencies are bound, it is usable for real-time

systems.

IX. CAN WE HAVE A 100% DETERMINISTIC REAL-TIME

GNU/LINUX KERNEL?

To answer this you need to keep in mind that the same

GNU/Linux kernel code base runs on the world's fastest

supercomputers as well as mobile phones. GNU/Linux was not

written with real-time in mind - not even to run on

supercomputers or mobile phones - but to provide by default

maximum raw processing power and throughput shared in a

fair way among users and processes, which is typical for

multi-user multi-processing operating systems. [18]

GNU/Linux supports more different types of devices and

processors than any other operating system ever has in the

history of computing [21]. So although it is possible to make

the scheduler behave deterministic like one would expect from

a real-time operating system you cannot assume that all

GNU/Linux drives are written with real-time in mind as well.

This means that if you don't use those drivers/configurations

which destroy the real-time behavior a “real-time enabled”

GNU/Linux does not behave worse than other real-time

kernels. Besides you can always run GNU/Linux on top of a

real-time operating system. [18]

X. CONCLUSION

Real-time together with GNU/Linux seems to be on the rise,

but there is no “one-fits-it-all” solution to bring real-time

capabilities to it. The reason is that there is no silver bullet to

make something as big and complex as GNU/Linux 100%

real-time aware since this would extremely costly in terms of

maintenance. [18]

With our Linux build and the testing application, we tested

the real time behavior and performance (like semaphore,

thread creation) of a real-time Linux and we concluded that

the real-time capabilities are there and working correctly, and

Linux can be considered as a real-time operating system if it is

correctly configured.

REFERENCES

[1] Y. Liping and S. Kai, "Improvement and Test of Real-time

Performance of Embedded Linux 2.6 Kernel," Digital

Content Technology and its Applications, vol. 5, p. 7, 2011.

[2] A. Claudi and A. F. Dragoni, "Lachesis: a testsuite for

Linux based real-time systems," in 13th Real-Time Linux

Workshop, Prague, 2011.

[3] K. Yaghmor, J. Masters, G. Ben-Yossef and P. Gerum,

Building Embedded Linux Systems, 2nd Edition, Building

Embedded Linux Systems, 2nd Edition, 2008.

[4] T. Jones, "Anatomy of real-time Linux architectures," IBM,

[Online]. Available:

http://www.ibm.com/developerworks/linux/library/l-real-

time-linux/.

[5] P. Regnier, G. Lima and L. Barreto, "Evaluation of

Interrupt Handling Timeliness in Real-Time Linux

Operating Systems," ACM SIGOPS Operating Systems

Review, vol. 42, no. 6, pp. 52-63, 2008.

[6] Z. Chen, X. Luo and Z. Zhang, "Research Reform on

Embedded Linux's Hard Real-Time Capability in

Application," in Proceedings of the 2008 International

Conference on Embedded Software and Systems Symposia,

2008.

[7] M. Mossige, P. Sampath and R. Rao, "Evaluation of Linux

rt-preempt for embedded industrial devices for Automation

and Power Technologies - A Case Study," in Proceedings

of the Ninth Real-Time Linux Workshop, Linz, 2007.

[8] N. Litayem and S. Ben Saoud, "Impact of the Linux Real-

time Enhancements on the System Performances for Multi-

core Intel Architectures," International Journal of Computer

Applications, vol. 17, no. 3, 2011.

[9] W. River, "The First with the Latest: Wind River Linux 4,"

[Online]. Available:

http://www.windriver.com/announces/linux4/. [Accessed

24 Juin 2012].

[10] E. Betti, D. P. Bovet, D. Pierre and R. Gioiosa, "Hard Real-

Time Performances in Multiprocessor-Embedded Systems

Using ASMP-Linux," EURASIP Journal on Embedded

Systems, vol. 2008, p. 16, 2007.

[11] P. McKenney, "A realtime preemption overview," 2005.

[Online]. Available: http://lwn.net/Articles/146861/.

[12] S. Rostedt and D. V. Hart, "Internals of the RT Patch," in

Proceedings of the Linux Symposium, 2007.

[13] D. Kang, W. Lee and C. Park, "Kernel Thread Scheduling

in Real-Time Linux for Wearable Computers," ETRI

Jornal, vol. 29, 2007.

[14] S. Arthur, C. Emde and N. Mc Guire, "Assessment of the

Realtime Preemption Patches (RT-Preempt) and their

impact on the general purpose performance of the system,"

in Real-Time Linux workshop, Linz, Austria, 2007.

[15] "CONFIG PREEMPT RT Patch-RT wiki," [Online].

Available:

https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_

RT_Patch.

[16] "High resolution timers - RT wiki," [Online]. Available:

https://rt.wiki.kernel.org/index.php/High_resolution_timer.

[17] A. S. Ugal, "Hard Real Time Linux using Xenomai on Intel

Multi-core processors," Intel corporation, 2009.

[18] R. Berger, "Getting real (time) about embedded

GNU/Linux," [Online]. Available:

http://www.eetimes.com.

[19] "Open Source Automation Development Lab," [Online].

Available: https://www.osadl.org/.

[20] D. S. Experts, "RTOS evaluation Reports and related

papers," [Online]. Available: http://download.dedicated-

systems.com.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 3 Issue: 1 131 - 135

135
IJRITCC | January 2015, Available @ http://www.ijritcc.org

[21] A. Oram and G. Wilson, Beautiful Code: Leading

Programmers Explain How They Think, O'Reilly Media,

2007.

