
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 8 2331 – 2334

2331
IJRITCC | August 2014, Available @ http://www.ijritcc.org

Study of Genetic Algorithm, an Evolutionary Approach

Mrs.K.Jayavani

Research Scholar,

Manonmaniam Sundaranar University,

Tirunelveli

Vanigopinath@gmail.com

Dr.G.M.Kadhar Nawaz, M.C.A., Ph.D.,

Director,

Dept.Of.Computer Application,

Sona College of Technology.

Salem.

Abstract--Data mining is the process of discovering interesting knowledge, such as patterns, associations, changes, anomalies and significant

structures, from large amount of data stored in databases, data warehouses, or other information repositories. To do this process, data mining

uses a variety of algorithms according to the specifications of measures and threshold. The results of this analysis are then used to build models

based on real world behavior, which are in turn used to analyze incoming data and make predictions about future behavior. Here, we are

focusing on one of the efficient evolutionary algorithm called genetic algorithm. This is a search technique used in computing to find exact or

approximate solutions to optimization and search problems. Genetic algorithms are categorized as global search heuristics that use techniques

inspired by evolutionary biology such as inheritance, mutation, selection, and crossover. Genetic algorithms are numerical optimization

algorithms inspired by both natural selection and natural genetics. This method is a general one, capable of being applied to an extremely wide

range of problems. In this paper we will discuss the Genetic algorithm techniques and its application in data mining in detail.

 Keywords --Evolutionary algorithm, Genetic algorithm, Optimization, Selection, Crossover, Mutation, Natural selection, Natural Genetics.

__*****___

I. INTRODUCTION

 Genetic algorithms (GAs), first proposed by Holland in

1975(Adaptation in Natural and Artificial Systems, 1975) are

computational models for finding a solution to a problem,

mostly optimisation, modelled loosely on the principles of

evolution via natural selection. They are useful when the

search space for solution is large and complex, and no

mathematical analysis exists to narrow down the search space.

 A genetic algorithm emulates biological evolution by first

considering a set of individuals (the population, characterized

by a set of chromosomes) in the current generation and a set of

biologically-inspired operators that can change these

individuals to a newer generation of population.

Chromosomes, which carry genetic information, is comprised

of genes, each encoding a particular trait of an individual, for

example the colour of eyes. The complete set of genetic

material (all chromosomes) of a particular species is called its

genome or the gene pool. An individual of a species is

characterized by its own settings for genes; the particular set

of genes distinguishing the individual is called its genotype.

According to evolutionary theory, only the fittest of

individuals are likely to survive and generate off-springs by

transmitting their biological heredity to new generations.

 In computing terms, the chromosome is essentially a string

of bits, and Gas map these strings of bits to each potential

solution. Each solution becomes an individual in the

population, and each string becomes the representation of an

individual. The genetic algorithm then manipulates the most

promising strings in the set of strings, or the population, in its

search for an improved set of solutions. It eliminates weak

elements by favoring the retention of optimal individual, and

recombines features of good individuals (through reproduction

process) to perhaps generate better individuals. The algorithm

performs in cycles of generations. In each generation, the GA

creates a set of new solutions (or chromosomes) by different

genetic operations that correlate to the processes of natural

reproduction.

 Genetic algorithms have been shown to be an effective tool

in datamining.Essentially, when a problem in data mining is

viewed as a search problem or an optimization problem, there

is a scope of applying GA.It has been shown to be successful

in association rule mining, clustering and classification.

II. GENETIC ALGORITHM

Wherever Times is specified, Times Roman or Times New
Roman may be used. If neither is available on your word
processor, please use the font closest in appearance to Times.
Avoid using bit-mapped fonts if possible. True-Type 1 or Open
Type fonts are preferred. Please embed symbol fonts, as well,
for math, etc.

A. Process

 Genetic algorithms are a part of evolutionary computing

and they are inspired by Darwin’s theory of evolution. When

GAs are applied to solve a problem, the first step is to define a

representation that describes the problem states. An initial

population is then defined, and genetic operators are used to

generate the next generation. This procedure is repeated until

the termination criteria is satisfied. This basic principle of

genetic algorithm is outlined below.

1. [Start] Generate random population of n

chromosomes(suitable solution)

2. [Fitness] Evaluate the fitness f(x) of each

chromosome x in the population

3. [New population] Create a new population by

repeating the following steps until the new

population is complete.

mailto:Vanigopinath@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 8 2331 – 2334

2332
IJRITCC | August 2014, Available @ http://www.ijritcc.org

(a) [Selection] Select two parent chromosomes

from a population according to their

fitness(the better fitness, the better chance to

be selected)

(b) [Crossover] With a crossover probability cross

over the parents to form a new offspring. If no

crossover was performed, offspring (children)

is the exact copy of parents.

(c) [Mutation] With a mutation probability mutate

new offspring’s at each locus (position in

chromosome)...

(d) [Accepting] Place new offspring’s in the new

population.

4. [Replace] Use new generated population for the

further run of the algorithm.

5. [Test] If the end condition is satisfied, stop, and

return the best solution in current population.

6. [Loop] Go to step 2.

There are many parameters and settings that can be

implemented differently in various problems:

 Identify good (above-average) solution in a

population.

 Make multiple copies of the good solutions.

 Eliminate bad solutions from the population so that

multiple copies of good solutions can be placed in

the population.

These are the main key issues when using genetic algorithms.

This will be explained in the upcoming sections.

B. Representing a solution

 Before genetic algorithms are applied to solve a problem,

the first step is to define a representation that describes the

problem states. The most commonly used representation is the

binary string, which is sequence of 1’s and 0’s.This process of

coding is intended to achieve a pseudo chromosomal

representation of the problem. Besides binary string

representation, there are many other possible ways of encoding

in GA.The suitability of the encoding methods chosen depends

on the problem at hand. The type of encoding system is

discussed below.

Binary encoding: This is the most common representation and

popular encoding because of its simplicity. In this encoding,

every chromosome is a string of bits, e.g.

Chromosome A: 0101001011001000

Chromosome B: 1100001101011011

Each bit representing some characteristic of the solution. This

encoding, however, is not natural for many problems and

sometimes corrections must be made after crossover and/or

mutation. This is generally used in knapsack problems.

Value encoding: In value encoding, each chromosome is

represented as the string of some value. Value can be integer,

real number, character or some object. E.g.,

Chromosome A: 1.231, 1.324, 0.231, 2.326, 2.243

Chromosome B: ABDJEIFJDHERDLDFLIGTEF

Chromosome C: (red), (red), (right), (forward), (right)

The traditional genetic operators cannot be used in value

encoding, and it becomes necessary to develop new types of

crossover and mutation operations. Value encoding can be

generally used for finding weighs in neural networks.

Permutation Encoding: Permutation encoding is used in

ordering problems. In this, each chromosome represents

position in a sequence. Example for this is travelling salesman

problem, the string of numbers represent the sequence of cities

visited by salesman.

Chromosome A: 1 5 6 4 5 3 7 8 2

Chromosome B: 7 6 5 3 8 4 2 1 9

Permutation encoding is only useful for specific order

problems. Here some types of crossover and mutation

corrections must be made to leave the chromosome consistent

(i.e. have real sequence in it).

Tree Encoding: Tree encoding is used mainly for evolving

programs or expressions for genetic programming. In tree

encoding every chromosome is a tree of some objects, such as

functions or commands in programming language.

Chromosome A Chromosome B

(+ x (/ 5 y)) (do_until step wall)

Programing language LISP is often used to this, because

programs in it are represented in this form and can be easily

parsed as a tree, so the crossover and mutation can be done

relatively easily.

Fitness

 In order to determine which chromosomes are good for

retention and which are weak, it becomes necessary to

ascertain the fitness of a chromosome. Thus in genetic

algorithm, fitness is used to allocate reproductive traits to the

individuals in the population and thus act as some measure of

goodness to be maximized. This means that individuals with

higher fitness value will have higher probability of being

selected as candidates for further examination. Certain genetic

operators require that the fitness function be non-negative,

although certain operators need not have this requirement. The

fitness function is always problem dependent.

III. GENETIC OPERATORS

 Genetic operators used in GAs maintain genetic

diversity, is a necessity for the process of evolution.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 8 2331 – 2334

2333
IJRITCC | August 2014, Available @ http://www.ijritcc.org

Genetic operators are analogous to those which occur in the

natural world:

 Selection(or Reproduction)

 Crossover(or Recombination)

 Mutation

A. Selection Mechanism.

 The selection operators are also called as reproduction

operators. Selection means extract a subset of genes from

an existing population according to any definition of

quality. That is, selection is used to determine which

individuals survive to the next generation by taking part in

the process of reproduction. Individuals solutions are

selected a fitness based process, where fitter solutions (as

measured by a fitness function) are typically more likely to

be selected. Thus, the primary objective of the selection

operator is to make duplicates of good solutions and

eliminate bad solutions while keeping the population size

constant. This is done in the following way.

 Identify good (above-average) solution in a

population.

 Make multiple copies of the good solutions.

 Eliminate bad solutions from the population so that

multiple copies of good solutions can be placed in the

population.

 According to Darwin’s theory of evolution the best

chromosome survive to create new offspring. There are many

methods to select the best chromosomes. Certain selection

methods rate the fitness of each solution and preferentially

select the best solutions. Other methods rate only a random

sample of the population, as this process may be time

consuming. The popular and well-studied selection methods

include roulette wheel selection and tournament selection.

 In roulette wheel selection, individuals are given a

probability of being selected that is directly proportional to

their fitness. Two individuals are then chosen randomly based

on these probabilities and produce offspring. In tournament

selection, parents are pooled and a tournament is held with in

the pool(s).

B. Crossover

 Crossover operator combines (mates) two chromosomes

(parents) to produce a new chromosome (offspring). The

idea behind crossover is that the new chromosome may be

better than both of the parents if it takes the best

characteristics from each of the parents. Crossover occurs

during evolution according to a user-definable crossover

probability. Crossover selects gene from parent

chromosomes and create a new offspring.

The crossover operator are of many types:

 One point crossover

 Two point crossover

 Uniform crossover

 Arithmetic crossover and

 Heuristic crossover

The operators are selected based on the way chromosomes

are encoded.

Single point crossover: One crossover point is selected,

binary string from beginning of chromosome to the

crossover point is copied from one parent, and the rest is

copied from the second parent. This is the simple and most

commonly used method.

11001011+11011111 = 11001111

Parent A Parent B Offspring

Two point crossover: Two crossover point are selected,

binary string from beginning of chromosome to the first

crossover point is copied from one parent, the part from the

first to the second crossover point is copied from the second

parent and the rest is copied from the first parent.

11001011 + 11011111 = 11011111

Parent A Parent B Offspring

Uniform crossover: Bits are randomly copied from the first

or from the second parent.

11001011 + 11011101 = 11011111

Parent A Parent B Offspring

 Arithmetic crossover: Some arithmetic operation is

performed to make a new offspring

11001011 + 11011111 = 11001001 (AND)

Parent A Parent B Offspring

C. Mutation

 After selection and crossover, we now have a

population full of individuals. Inorder to ensure that the

individuals are not all exactly the same, we go for mutation.

This operator is used to maintain genetic diversity from one

generation of a population of chromosomes to the next. It

introduces new genetic structures in the population by

randomly changing some of the string bits. In other words,

mutation is implemented by occasionally altering a random

bit in a chromosome. With the new gene values, the genetic

algorithm may be able to arrive at better solution than was

previously possible. Mutation is an important part of the

genetic search, helps to prevent the population from

stagnating at any local optima. Moreover, some important

regions of the search space may never be explored if this

operator is not introduced. The mutation operators are of

many types which are given below.

Flip bit: This operator simply inverts the value of the

chosen gene. That is 0 goes to 1 and 1 goes to 0. This

mutation operator can only be used for binary genes

Original offspring 1 1101111000011110

Original offspring 2 1101100100110110

Mutated offspring 1 1100111000011110

Mutated offspring 2 1101101100110110

Boundary: A mutation operator that replaces the value of

the chosen gene with either the upper or lower bound for

that gene (chosen randomly). This mutation operator can

only be used for float and integer genes.

Non-Uniform: A mutation operator that increases the

probability that the amount of the mutation will be close to

0 as the generation number increases. This mutation

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 8 2331 – 2334

2334
IJRITCC | August 2014, Available @ http://www.ijritcc.org

operator keeps the population from stagnating in the early

stages of the evolution then allows the genetic algorithm to

fine tune the solution in the later stages of evolution. This

mutation operator can only be used for integer and float

genes.

Uniform: A mutation operator that replaces the value of the

chosen gene with a uniform random value selected between

the user-specified upper and lower bounds for that gene.

This mutation operator can only be used for integer and

float genes

Gaussian: A mutation operator that adds a unit Gaussian

distributed random value to the chosen gene. The new gene

value is clipped if it falls outside of the user-specified lower

or upper bounds for that gene. This mutation operator can

only be used for integer and float genes.

III. APPLICATION OF GENETIC ALGORITHM IN

DATA MINING

 The application of genetic algorithm in the context of

data mining is generally on tasks of hypothesis testing and

refinement, where the user poses some hypothesis and the

system first evaluates the hypothesis and then seeks to

refine it. Hypothesis refinement is achieved by starting with

some initial hypothesis and then allowing some or all parts

of it to vary. The important aspect of genetic algorithm

application is in the encoding of the hypothesis and in the

formulation of the evaluation function for fitness. Another

way to use genetic algorithm for data mining is to design

hybrid techniques by blending one of the known data

mining techniques with the algorithm. For example it is

possible to use genetic algorithm for optimal decision

induction. We can build many decision trees using any of

the traditional techniques by randomly generating different

samples. GA’s have been used in wide variety of

optimization tasks, prediction and classification. It supports

automatic programming such as building computational

structures like cellular automata and sorting networks.

 Advantages

 Concepts are easy to understands due techniques

similar to the natural processes like inheritance,

mutation, etc.

 Can be used where traditional search methods fail.

 Useful where search space is large, complex or

poorly understood.

 Provides us with several local optimums as well as

the global optimum

 Solves problems with multiple solutions.

 Genetic algorithms are easily transferred to existing

simulations and problems.

 Limitations

 Due to poorly known fitness function, some

optimization problems cannot be solved by genetic

algorithms. These are called variant problems.

 There is no assurance of finding a global optimum.

It happens very often when the population has a lot

of individuals.

 Like other artificial intelligence techniques, the

genetic algorithm cannot assure constant

optimization response time.

 While using genetic algorithms, it is true that the

entire population is improving but this could not be

said for an individual within this population.

 Writing of fitness function must be accurate.

V. CONCLUSION

 Genetic algorithm approaches to data mining are

increasingly becoming popular and there are several

extensions of the basic GA for different applications. Results

can be good on some problems while rather poor on others. If

we use mutation only, it makes the algorithm very slow,

crossover makes it significantly faster. They have applications

in commercial, educational and scientific areas. In addition

there are other population –based techniques such as Ant

Colony Algorithm and Particle Swarm Techniques that are

being developed, which share some foundational concepts

with GA.

REFERENCES

[1] Mitchell, Melanie (1996). An Introduction to Genetic Algorithms.

Cambridge, MA: MIT Press

[2] Eiben, Agoston; Smith, James (2003). Introduction to Evolutionary
Computing. Springer

[3] Coley, A.D. An Introduction to genetic Algorithms for Scientists and

Engineers, World Scientific, Singapore, 188p, 1999.
[4] Goldberg, D.E. Genetic Algorithm in Search Optimization and

Machine Learning .Addison Wesley Publishing Compnay,1989

[5] D.Simon, Evolutionary Optimization Algorithm, Wiley, 2013
[6] M.Gen, R. Cheng, “Genetic Algorithms and Engineering

Optimization,” John Wiley & Sons, Inc., New York, 2000.

[7] Anshul Sharma, Anuj Mehta 2013. “Review Paper of Various
Selection Methods in Genetic Algorithm”, International Journal of

Advanced Research in Computer Science and Software Engineering

Volume-03, No-07, July 2013, (1476-1479).
[8] Dr.Rajib Kumar Bhattacharyya, “Introduction to Genetic Algorithms”

2013.

[9] Darwin. C, “The origin of species by means of natural selection”,

1859.

[10] Freitas, "A survey of evolutionary algorithms for data mining and

knowledge discovery", In: A. Ghosh, and S. Tsutsui (Eds.) Advances
in Evolutionary Computation. Springer-Verlag, 2002.

[11] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and

Techniques, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011.

[12] Fogel D.B. (Ed.).Evolutionary Computation, IEEE Press, New York,

1998.
[13] Freitas A.A. Data Mining and Knowledge Discovery with

Evolutionary Algorithms, Springer, Berlin, 2002, p. 956.

[14] Keenan M. Novel and combined generation, selection, recombination
and mutation operators for evolutionary computing. In proceedings of

the Ninth International Conference On Computer Applications in

Industry. ISCA Publisher, 1996.
[15] Schmitt Lothar M. Fundamental study theory of genetic algorithms,

Theoretical Computer Science, 259, 2001, p 1-61.

[16] Pham, D.T., and Karaboga, D., Intelligent Optimisation Techniques.

Springer, London, Great Britain, 2000, 261p.

[17] Rothlauf, F., Representations for Genetic and Evolutionary
Algorithms. Springer, Netherlands, 2006, 314p.

