
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4243 - 4247

4243
IJRITCC | December 2014, Available @ http://www.ijritcc.org

Proposed Framework for Quality Assurance System with Duplicate Bug

Detection

Aniruddha Kshirsagar
ME Student, Department of Computer Engineering

 Flora Institute of Technology,

Pune,India

ani.kshirsagar@rediffmail.com

Pankaj Chandre
Asstt. Prof. Department of Computer Engineering

 Flora Institute of Technology,

Pune,India

pankajchandre30@gmail.com

Abstract:- When project are having so cost. Many times the problem of bug will get occur. So, it becomes very important to have proper quality

assurance system(QAS).Poorly designed quality assurance systems may exchange wrong information between developers. The purpose of this

paper is to make understandings of different quality assurance systems and explain them, to find out problems present in them and give proper

direction for improvement so as attract customers, raise customers satisfaction, to reduce downtime .This Paper proposes a framework to detect

duplicate bug. detection, QAS, bugs.

___*****___

I. INTRODUCTION

Sachin, a real person: Netbeans 6.0crashed.

Sourav, a bug-tracking system: What did you do?

Sachin: I clicked on File ! New Project and OK.

Sourav: Did you choose a Java project?

Sachin: No.

. . . (a few questions later)

Sourav: Thanks Sachin. The bug is Homepage.java

and we will fix it soon.

This example shows need of Bug/Quality Assurance

System.

The use of bug tracking systems[3] as a tool to organize

maintenance activities. The systems serve as a central

repository for monitoring the progress of bug reports,

requesting additional information from reporters and

discussing potential solutions for fixing bug. Developers use

the information provided in bug reports to identify the cause

of the defect, and narrow down plausible files that need

fixing.

What is Bug,Virus?

Bug[2] - A software bug is an error, mistake, failure, or

fault

in a computer program that prevents it from behaving as

intended (e.g., producing an incorrect result). Most bugs

arise from mistakes and errors made by people in either a

program's source code or its design, and a few are caused

by compilers producing incorrect code.

Virus[2] - A computer virus is a computer program that can

copy itself and infect a computer without the permission or

knowledge of the owner and attaches itself to a program or

file enabling it to spread from one computer to another,

leaving infections as it travels. Like a human virus,

computer virus can range in severity: some may cause only

mildly annoying effects while others can damage your

hardware, software or files. Almost all viruses are attached

to an executable file, which means the virus may exist on

your computer but it actually cannot infect your computer

unless you run or open the malicious program. It is

important to note that a virus cannot be spread without a

human action, (such as running an infected program) to keep

it going. Because a virus is spread by human action people

will unknowingly continue the spread of a computer virus

by sharing infecting files or Sending emails with viruses as

attachments in the email. Sometimes when you try to send a

mail with an attachment of .exe file to another then it fails,

this is due to a virus detection in email server Items such as

stack traces, steps to reproduce, observed and expected

behavior, test cases, and screenshots ranked high on the list

of preferred information by developers.

There is a mismatch between what developers consider most

helpful and what users provide[5].A quality assurance

system is an application that lets to keep track of bugs for

software project in database. Duplicate bug report entries in

QAS impact negatively on software maintenance ,

productivity[4].

II. LITERATURE SURVEY

Nicolas Serrano and Ismael Ciordia [4] has compared two

bug tracking tool i.e. are Bugzilla and ITracker. The

objective of their research was to provide a comparative

study of these two bug tracking tool based on the criteria

platform independence, database independence, how

customizable is it, are the number of users limited and life of

cost. G Abaee and D.S Guru[5] gave the best practice to test

documentation and effort estimations have been investigated

as well as Bug Tracking Tools. They compare the four

different existing Bug Tracking Tools with each other along

with their features and drawbacks. Then they proposed new

one, the Debugger

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4243 - 4247

4244
IJRITCC | December 2014, Available @ http://www.ijritcc.org

Thomas Zimmermann, et al. [6] addressed the concerns of

bug tracking systems by proposing four broad directions for

enhancements .They discussed that it is important that

information provided in bug reports is relevant and complete

in order to help resolve bugs quickly.. Poorly designed bug

tracking systems are partly to blame for exchange of

information being stretched over time enhancements. As a

proof-of-concept, they also demonstrate a prototype

interactive bug tracking system that gathers relevant

information from the user and identifies files that need to be

fixed to resolve the bug.

Fischer et al. [10] discussed that Version control and bug

tracking systems contain large amounts of historical

information that can give deep insight into the evolution of a

software project. Unfortunately, these systems provide only

insufficient support for a detailed analysis of software

evolution aspects. They addressed this problem and

introduced an approach for populating a release history

database that combines version data with bug tracking data

and adds missing data not covered by version control

systems such as merge points.

S. Just et al. [11] concluded that Developers typically rely

on the information submitted by end-users to resolve bugs.

They conducted a survey on information needs and

commonly faced problems with bug reporting among

several hundred developers and users of the ECLIPSE,

APACHE and MOZILLA projects.

M.P. Francisco et al. [12] have developed a tool to extract

and to store information from Debian's BTS (Bug Tracking

System) in a relational database. In this paper ,they showed

that there is a strong dependence between three variables

which can be used to analyze the activity of a project

through its bugs: communications between users and

developers, bug notifications and people involved. They

explained that bugs are an essential part of software projects

because they lead its evolution. Without bug notifications

developers cannot know if their software is accomplishing

its tasks properly.

A. Hora et al. [13] discussed that to harness the complexity

of big legacy software; software engineering tools need

more and more information on these systems. This

information may come from analysis of study of execution

traces, the source code, computing of metrics, etc. One

source of information received less attention than

source code: the bugs on the system. Little is known about

the evolutionary behavior, lifetime, distribution, and

stability of bugs. In this paper, they proposed to

consider bugs as first class entities and a useful source of

information that can answer such topics.

Stephen Blair in his paper [14] provided tips and guidelines

for evaluating features, and explains how these features fit

into a defect tracking process. He discussed that evaluating a

bug tracking system requires that you understand how

specific features, such as configurable workflow and

customizable fields, relate to your requirements and your

current bug tracking process. He explained before you start

evaluating bug tracking systems; make sure you identify

your requirements for the system.

The life cycle of a bug can be as follows:

1. New: If there is any bug, its status is considered as New.

2. Assigned: Here, bug is assigned to particular developer.

3. Resolved: When bug get solved ,it is treated as resolved.

4. Verified: Test results provided by the developer are

verified by the tester.

5. Closed: Bug is finally closed after the proper solution is

provided.

6. Reopened: If the QA team is not satisfied by the solution

provided for the bug, it is reopened.

Table 1 shows facilities provided in each Quality Assurance

System.

Table 1: Classification between Quality Assurance

System[1]

 Sea

rch

Email

alerts

Reports

Charts

Time

Tracking

,Free

Bugzilla yes yes yes yes yes

Mantis yes no no no yes

BugTracke

r.NET

yes yes yes yes yes

Redmine yes yes yes yes yes

Bugzero yes yes yes no no

1) Bugzilla very popular, actively maintained and free bug

tracking system, used and developed together with Mozilla,

giving it considerable credibility. Bugzilla is based on Perl

and once it is set up, it seems to make its users pretty happy.

It's not highly customizable, but in a odd way, that may be

one of its features: Bugzilla installations tend to look pretty

much the same wherever they are found, which means many

developers are already accustomed to its interface and will

feel they are in familiar territory. Bugzilla has a system that

will send you, another user, or a group that you specify the

results of a particular search on a schedule that you specify.

Bugzilla has a very advanced reporting systems and you can

create different types of charts including line graph, bar

graph or pie chart.QAS is also known as Defect Tracking

System[7].

2) Mantis is a free web-based bug tracking system. It is

written in the PHP scripting language and works with

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4243 - 4247

4245
IJRITCC | December 2014, Available @ http://www.ijritcc.org

MySQL, MS SQL, and PostgreSQL databases and a

webserver.

Mantis can be installed on Windows, Linux, Mac OS and

OS/2. Almost any web browser should be able to function as

a client. It is released under the terms of the GNU General

Public License (GPL). The main complaint is its interface

which doesn’t meet modern standards. On the other hand, is

easy to navigate, even for inexperienced users. There not

exists some advanced features such as charts and reports. In

short, the whole system is sloppily done, there are plenty of

bugs and very little functionality.

3)BugTracker.NET is a free, open-source, web-based bug

tracker or customer support issue tracker written using

ASP.NET, C#, and Microsoft SQL Server Express.

BugTracker.NET is easy to install and learn how to use.

When you first install it, it is very simple to setup and you

can start using it right away. Later, you can change its

configuration to handle your needs. It has a very intuitive

interface for generating lists of bugs. It has two very useful

features. First of them is a screen capture utility that enables

you to capture the screen, add annotations and post it as bug

in just a few clicks. The second feature is the fact that it can

integrate with your Subversion repository so that you can

associate file revision check ins with bugs.

4) Redmine is a flexible web-based project management

web application. Written using Ruby on Rails framework, it

is cross-platform and cross-database. Redmine is open

source and released under the terms of the GNU General

Public License. Redmine is flexible issue tracking system.

You can define your own statuses and issue types. He

support multiple projects and subprojects. Each user can

have a different role on each project. Interface is very

simple, intuitive and easy to navigate. Shortly, this is very

good product and our recommendation.

5) Bugzero is a web-based bug, defect, issue and incident

tracking software. Its single code base supports both

Windows and Unix (based on Java™) and supports database

systems including Access, MySQL, SQL Server, Oracle,

and etc. Bugzero can be customized for software bug

tracking, hardware defect tracking, and help desk customer

support issue and incident tracking. Bugzero have intuitive

interface but he lacks form features. The main drawback is

the fact that Bugzero is an commercial product and you can

find much better product for free.

III. HOW TO IMPROVE QUALITY ASSURANCE SYSTEM

Having complete information in the initial bug report (or as

soon as possible) helps developers to quickly resolve the

bug. The focus of our work is on improving bug tracking

systems with the goal of increasing the completeness of bug

reports. Specifically, improving bug tracking systems is

done in four ways.

1)Tool Centric[18]-:It means that the QAS can be

configured to collect stack trace implicitly and add it to the

report that contains bug details. It can improve the

information collection capabilities. It can also use steps to

make use of capture/replay tools that can be observed by

software engineers later.

2)Information Centric[18]-:This is another direction from

us that helps software developers to have improved focus on

the collection of information that has to be kept in bug

reports. Such tools verify the information provided in bug

reports and provide feedback which helps to improve the

quality of information.

3)Process Centric[18]-:Process centric feature helps

developers to estimate time to be spent on particular bugs

and schedule their time accordingly.

4)User Centric[18]-:Users centric feature includes both

developers and bug reporters. This focuses on educating the

reporters so as to enable them to collect proper information

and how to collect it as well. The expected information in

the bug report makes the developers to grasp it faster and act

quickly to fix bugs in real time applications.

IV. QUESTIONS ASKED IN BUG REPORT

When any software engineer presents a bug report, most

probably, he is asked many questions. Some of them are

what is the name of the product? What is the bug? in which

component is the bug?; in which module is the bug?; in

which method the bug is?; in which environment the bug

arises?; in which platform the application is built?; in which

OS the application runs?. The information given by

developer who report bug might be incomplete initially. For

this reason follow up questions required. They include do

you have .NET framework installed? Can you provide a

screenshot of the bug? Research revealed that the software

developers may answer 2 questions out of three [19]. When

a bug report is submitted by a developer, the follow up

questions are to be asked immediately besides keeping the

submitted bug report in hand. We recommend software

development teams to have bug tracking systems that

contain “build expert systems”. These systems ask all

required questions to software engineer so as to make the

work automated. The question to be given and answered by

developer is not static. The questions do not come

sequentially. Moreover answer to a question determines the

next possible question. Narrowing down the location of bug

and to have accurate bug descriptions are features of expert.

The following data is essential in order to build an expert

system. Bug location information which is crucial to tacking

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4243 - 4247

4246
IJRITCC | December 2014, Available @ http://www.ijritcc.org

bugs. Location gives you the line number, method, class and

so on. This helps developers to move to that place with ease.

Many software development environments (IDEs) allow the

bugs to be located just by a click of button or a click. From

the bugs list, machine learning models can be built that

choose questions and also predict the location of the bug

based on the responses that corresponds to the bugs. This

paper provides a proof of study that makes use of data that is

present in the bug reports. Thus we get collection of

information that is essential in implementing a tool that can

support automatic evaluation of the information.

V. FRAMEWORK FOR QUALITY ASSURANCE SYSTEM

Fig. 1 shows flowchart of proposed quality assurance

system.

This system will also guide the manager to allocate specific

type of bug (by means of bug details) to specific developer .

This technique is very advantageous when the developer

gets similar bug for solving (which kind of he has already

solved before) where he has expertise. Otherwise, other

developer has to research or to discuss on that bug and then

go for solution, which might be time consuming and result

could be less than accurate.

Fig.1: Flowchart of Proposed Quality Assurance System

Steps will be as follows.

1)Project go through SDLC model and then it found bug on

proposed system.

2)Manager verifies the bug/Alert comes to manager.

3)If it is a bug, then manager checks for an assignee and

give similar bug details to the system.

4)Manager assigns bug to assignee after checking whether

assignee is idle or not.

5)Then, Assignee receives alert and bug details also.

6)Assignee solves the bug and report it as “resolved”.

7)This Alert goes to reporter.

8)Reporter checks whether bug has been solved or not.

9)If bug has not been solved then control again goes to step

no.5.

10)If bug has been solved, report get displayed.

In proposed system, there will be a facility as “Detecting

Bug Duplicate” for Quality Assurance Systems. There may

be huge number of duplicate bug reports .In some projects,

as many as a quarter of all reports are duplicates. Initially,

developers have to manually identify duplicate bug reports,

but this process is very time-consuming .Proposed system

will automatically classify duplicate bug reports as they

arrive to save developer time.

CONCLUSION

Proposed framework for QAS will be helpful to raise

customer’s satisfaction, increase productivity and also to

minimize maintenance cost.

ACKNOWLEDGMENT

Sincere thanks to the all authors, whose papers in the area of

Software Engineering published in various conference,

proceedings and journals.

REFERENCES

[1] Trajkov Marko, Smiljkovic Aleksandar "A Survey of Bug

Tracking Tools: Presentation, Analysis and Trends"

[2] Rajnish Kumar et al, "Improving Software Quality

Assurance Using Bug Tracking System" (IJCSIT)

International Journal of Computer Science and Information

Technologies, Vol. 4 (3) , 2013, 492-497

[3] Thomas Zimmermann,Rahul Premraj,,Jonathan

Sillito,Silvia Breu, “Improving Bug Tracking Systems”,

ICSE’09, May 16-24, 2009, Vancouver, Canada 978-1-

4244-3494- 7/09/$25.00 © 2009 IEEE.

[4] Yguarat˜a Cerqueira Cavalcanti, Eduardo Santana de

Almeida et.al "An Initial Study on the Bug Report

Duplication Problem" 14th European Conference on

Software Maintenance ,2010

[5] Thomas Zimmermann, Rahul Premraj et.al.,"What Makes a

Good Bug Report?"Ieee Transactions On Software

Engineering, VOL. 36, NO. 5, September/October 2010

[6] V.B. Singh1, Krishna Kumar Chaturvedi, "Bug Tracking

and Reliability Assessment System (BTRAS) "International

Journal of Software Engineering Vol. 5 No. 4, October,

2011

[7] A.S.Syed Fiaz, N.Devi, S.Aarthi "Bug Tracking and

Reporting System" International Journal of Soft Computing

and Engineering (IJSCE) ISSN: 2231-2307, Volume-3,

Issue-1, March 2013

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4243 - 4247

4247
IJRITCC | December 2014, Available @ http://www.ijritcc.org

[8] Dr. P.K.Suri1,Rajni Rana "Defect Analysis and Prevention

Techniques for Improving Software Quality" 128X

International Journal of Advanced Research in Computer

Science and Software Engineering Volume 3, Issue 7, July

2013 ISSN: 2277

[9] Nawagata Nilambari, Shivani Gautam,Vintee Chaudhary,

"A Survey on Automated Duplicate Detection in a Bug

Repository" International Journal of Engineering Research

& Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 4,

April - 2014

[10] M. Pinzer Fischer, H. Gall “Populating a Release History

Database from version control and bug tracking systems”

Software Maintenance, IEEE, 2003.

[11] S, Just, R. Premraj and T. Zimmermann. “Towards the next

generation of bug tracking systems”, Visual Languages and

Human-Centric Computing, IEEE, 2008.

[12] M.P Francisco, P.B. Perez and G. Robles “Correlation

between bug notifications, messages and participants in

Debian's bug tracking system” Empirical Software

Engineering and Measurement, First International

Symposium, 2007.

[13] A. Hora, N. Anquetil, S. Ducasse, M. Bhatti, C. Couto,

M.T. Valente and J. Martins, “Bug Maps: A Tool for the

Visual Exploration and Analysis of Bugs” Software

Maintenance and Reengineering (CSMR), 16th European

Conference, 2012.

[14] Stephen Blair “A Guide to Evaluating a Bug Tracking

System, White paper, 2004.

[15] Nicolas Serrano, Ismael Ciordia, “Bugzilla, ITracker, and

Other Bug Trackers”, IEEE software, Vol 22, pp. 11-13,

2005.

[16] G Abaee, D.S. Guru, “Enhancement of Bug Tracking Tools;

the Debugger”, Software Technology and Engineering

(ICSTE), 2010

[17] Nicholas Jalbert, Westley Weimer “Automated Duplicate

Detection for Bug Tracking Systems” International

Conference on Dependable Systems & Networks:

Anchorage, Alaska, IEEE, 2008.

[18] S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making

software failures reproducible by preserving object states.

In ECOOP’08: Proceedings of the 22nd European Object-

Oriented Programming Conference, pages 542–565, 2008.

[19] S. Breu et. Al Frequently asked questions ,Calgary

University2009

http://www.ijritcc.org/

